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The COVID‑19 pandemic is an unprecedented threat to humanity that has provoked global health 
concerns. Since the etiopathogenesis of this illness is not fully characterized, the prognostic factors 
enabling treatment decisions have not been well documented. Accurately predicting the progression 
of the disease would aid in appropriate patient categorization and thus help determine the best 
treatment option. Here, we have introduced a proteomic approach utilizing data‑independent 
acquisition mass spectrometry (DIA‑MS) to identify the serum proteins that are closely associated 
with COVID‑19 prognosis. Twenty‑seven proteins were differentially expressed between severely 
ill COVID‑19 patients with an adverse or favorable prognosis. Ingenuity Pathway Analysis revealed 
that 15 of the 27 proteins might be regulated by cytokine signaling relevant to interleukin (IL)‑1β, 
IL‑6, and tumor necrosis factor (TNF), and their differential expression was implicated in the systemic 
inflammatory response and in cardiovascular disorders. We further evaluated practical predictors of 
the clinical prognosis of severe COVID‑19 patients. Subsequent ELISA assays revealed that CHI3L1 and 
IGFALS may serve as highly sensitive prognostic markers. Our findings can help formulate a diagnostic 
approach for accurately identifying COVID‑19 patients with severe disease and for providing 
appropriate treatment based on their predicted prognosis.

Coronavirus disease 2019 (COVID-19) is a highly transmissible respiratory infection caused by the novel pos-
itive-sense, single-stranded RNA virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which 
emerged in Wuhan, China in 2019. Despite containment efforts, rapid person-to-person transmission resulted 
in widespread dissemination and the disease has become a pandemic and is still  spreading1. The molecular 
mechanisms of disease progression that cause respiratory distress in COVID-19 patients are still unknown, and 
no effective antiviral therapies for COVID-19 have been established to  date2. In order to optimize allocations of 
limited health care resources to the neediest patients, it is crucial to accurately predict the progress and prognosis 
of patients with this disease. In addition, targeted management of high-risk patients will contribute to a further 
reduction in  mortality3,4.

Most COVID-19 patients exhibit either mild symptoms without dyspnea or abnormal chest imaging, or 
moderate respiratory symptoms with pneumonia. They usually recover with or without supportive treatment. 
About 20% of patients develop respiratory distress and require immediate oxygen supplementation. A subset of 
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these patients become critically ill, developing rapid respiratory failure and severe hypoxemia that necessitate 
immediate intensive care to prevent death. Considering the wide variety of clinical manifestations of COVID-19, 
identifying patients who are at risk of severe disease and adverse prognosis is crucial for selecting appropriate 
treatment strategies. For this purpose, pinpointing novel biological indicators that can serve as precise prognostic 
biomarkers is necessary to help clinicians make better clinical decisions and provide appropriate therapeutic 
strategies during earlier stages of the disease. To date, several clinical and biochemical parameters have been used 
to predict the severity of COVID-19, including the following: C-reactive protein (CRP), serum amyloid A (SAA), 
interleukin (IL)-6, lactate dehydrogenase (LDH), white blood cell count, d-dimer, cardiac troponin and platelet 
 count3,5. In addition, multiple serological factors involved in the severity of COVID-19 have been identified by 
studies using a proteomic approach to analyze patient  serum6–10. Most of these studies identified protein profiles 
involved in systemic and/or local inflammation, and that accompany organ damage or dysfunction. Although 
currently available serological biomarkers can predict severe disease, there are no reports of markers that predict 
the clinical prognosis and mortality of severe COVID-19 patients.

In this study, we utilized recently developed mass spectrometry technology with the data-independent acqui-
sition (DIA-MS) approach to identify serum proteins closely associated with disease prognosis (discovery phase 
of the study). Using ELISA assays, we further delineated practical predictors of clinical prognosis in severe 
COVID-19 patients (verification phase of the study). Consequently, we identified two putative biomarkers that 
can indicate disease progression and adverse prognosis. These biomarkers shed light on a novel diagnostic 
approach that may serve to segregate COVID-19 patients based on their clinical prognosis and to select appro-
priate management measures.

Results
Use of quantitative proteomic analysis to identify serum proteins associated with favorable 
or adverse outcomes in severe COVID‑19 patients. To identify serological biomarkers that predict a 
favorable or adverse prognosis in severe COVID-19 patients, we performed a comparative proteomic analysis 
with DIA-MS (Fig. 1A). In this discovery study, we obtained the MS data from serum samples collected within 
one day after the start of special inpatient intervention in 10 severe COVID-19 patients with different progno-
ses (five adverse and five favorable). By utilizing our customized spectral DIA library containing information 
on 1534 human serum proteins, we determined that 656 proteins were differentially expressed in sera. Among 
them, 495 proteins were selected for further statistical analysis (Supplementary Table S1). Subsequently princi-
pal component analysis (PCA) was used to visualize the distribution of the samples and revealed an obvious sep-
aration trend between the two groups (Fig. 1B). To identify proteins that differed markedly according to disease 
prognosis, volcano plot was used to analyze significant changes of proteins in severely ill patients with adverse 
prognosis. Consequently, 16 upregulated proteins and 11 downregulated proteins were identified as being sig-
nificantly associated with an adverse COVID-19 prognosis (p < 0.01, fold change (difference) > 2) (Fig. 1C and 
Table  1). Indeed, a heatmap analysis exhibited hierarchical clustering of these proteins based on expression 
levels correlated with disease prognosis of severe COVID-19 patients (Fig. 1D). To investigate the biological 
processes affecting the severity of COVID-19, an upstream analysis was performed within the framework of 
Ingenuity Pathway Analysis (IPA). The results showed that several proteins in the sera of severely ill patients 
with adverse prognosis had increased or decreased levels and might be regulated by proinflammatory cytokines 
(Supplementary Table S2). Notably, out of 27 differentially expressed proteins, 15 were found to be regulated by 
IL-1β, IL-6, or tumor necrosis factor (TNF), which are seen at markedly higher levels in most severe COVID-19 
 patients11,12 (Fig. 2). In addition, a disease and functional enrichment analysis suggested that the several dif-
ferentially expressed proteins could be associated with cardiovascular disorders (Supplementary Table S3). This 
result was consistent with the hypothesis that COVID-19 causes cardiovascular diseases, including myocardial 
injury and venous  thromboembolism13. Simultaneously, there was evidence for inflammatory responses, such as 
neutrophil degranulation, as reported in the  literature7–10. Furthermore, most of the 27 differentially expressed 
proteins formed an interconnected network, as revealed by the STRING database (Supplementary Fig. S1).  

Identification of putative biomarkers for predicting the prognosis of severe COVID‑19. To 
identify practical prognostic indicators in severe COVID-19 patients, we focused on two proteins, namely chi-
tinase-3-like protein 1 (CHI3L1) and insulin-like growth factor-binding protein acid labile subunit (IGFALS), 
since statistical analyses showed that high and low levels of these proteins, respectively, were significantly cor-
related with adverse prognosis in severe COVID-19 patients (Table 1). We excluded myoglobin (MB) since it 
has previously been reported to be a prognostic  marker9. To validate the clinical utility of these two prognostic 
marker candidates, we used ELISA assays to analyze the levels of these proteins in serum samples generally col-
lected within three days after admission, except for four patients, in 61 severe COVID-19 patients (15 adverse 
and 46 favorable; Supplementary Tables S4 and S5). We also measured the levels of these proteins in the sera of 
healthy controls to compare them with the levels in severe COVID-19 patients with favorable prognosis. The 
clinical information and treatment of the recruited patients enrolled in the verification study is presented in Sup-
plementary Tables S4 and S5. The analyzed parameters, excluding the administration of extracorporeal mem-
brane oxygenation care and the incidence of death, did not differ between the adverse and favorable prognosis 
groups. On the other hand, ELISA assays of the serum levels of these proteins showed significant differences 
between severe COVID-19 patients with adverse versus favorable prognosis (p < 0.001) and between severe 
COVID-19 patients with favorable prognosis and healthy controls (p < 0.0001), suggesting that these protein 
levels correlate with adverse prognosis in severe COVID-19 patients (Fig. 3A). We further assessed the ability 
of CHI3L1 and IGFALS to predict adverse prognosis using receiver operating characteristic (ROC) curves. In 
the present study set, the areas under the ROC curves (AUCs) [95% confidence intervals (CI)] of models using 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20638  | https://doi.org/10.1038/s41598-021-98253-9

www.nature.com/scientificreports/

Figure 1.  Serum protein profiling by DIA-MS analysis of severe COVID-19 patients with adverse or favorable 
prognosis. (A) Study design for identification of potential biomarker candidates. Serum protein profiling 
was performed by DIA-MS analysis discovery study comprising five patients each with adverse and favorable 
prognosis. (B) A PCA score plot for proteins in the two groups was generated using Perseus. Severe COVID-
19 patients with adverse or favorable prognosis are represented by red and blue, respectively. (C) Volcano plot 
representing the difference in serum expression levels of 495 proteins between the two groups. Red or blue dots 
indicate proteins with increased or decreased serum expression levels, respectively, in patients with adverse 
prognosis compared to those with favorable prognosis (p < 0.01, difference [adverse/favorable] > 2) (listed in 
Table 1). (D) Heatmap visualization of the 27 differentially expressed proteins between severe COVID-19 
patients with adverse or favorable prognosis. Darker colors indicate a greater increased or decreased effect (red 
for increased and blue for decreased). Gene names are shown on the left.
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Table 1.  Proteins differentially expressed in severe COVID-19 patients with adverse prognosis, compared to 
favorable prognosis.

Protein accessions Genes Protein descriptions #Detected peptides p-value (− log) Difference [adverse/favorable]  (log2)

Increased protein

P02144 MB Myoglobin 3 3.646 4.161

P36222 CHI3L1 Chitinase-3-like protein 1 5 3.433 3.690

P05164 MPO Myeloperoxidase 7 3.363 1.725

Q9Y279 VSIG4 V-set and immunoglobulin domain-containing protein 4 2 3.185 2.147

P04275 VWF von Willebrand factor 56 2.885 1.117

Q8WVN6 SECTM1 Secreted and transmembrane protein 1 1 2.724 2.690

Q8TF65 GIPC2 PDZ domain-containing protein GIPC2 1 2.526 2.356

P80188 LCN2 Neutrophil gelatinase-associated lipocalin 6 2.365 1.721

P01034 CST3 Cystatin-C 9 2.258 1.431

Q9NPY3 CD93 Complement component C1q receptor 3 2.232 3.348

P10451 SPP1 Osteopontin 5 2.232 2.321

P28799 GRN Granulins 4 2.168 1.079

P07858 CTSB Cathepsin B 3 2.146 1.063

Q15904 ATP6AP1 V-type proton ATPase subunit S1 1 2.106 1.252

P24592 IGFBP6 Insulin-like growth factor-binding protein 6 3 2.099 1.276

P08670 VIM Vimentin 6 2.060 2.112

Decreased protein

P35858 IGFALS Insulin-like growth factor-binding protein complex acid 
labile subunit 24 6.068 − 1.829

P17936 IGFBP3 Insulin-like growth factor-binding protein 3 9 3.981 − 1.648

P02766 TTR Transthyretin 17 3.832 − 1.002

P02654 APOC1 Apolipoprotein C-I 13 3.654 − 1.378

P02655 APOC2 Apolipoprotein C-II 3 3.399 − 1.567

P02656 APOC3 Apolipoprotein C-III 8 3.263 − 1.208

Q92954 PRG4 Proteoglycan 4 17 2.930 − 1.267

P35542 SAA4 Serum amyloid A-4 protein 5 2.621 − 1.003

P53367 ARFIP1 Arfaptin-1 1 2.407 − 1.825

P55056 APOC4 Apolipoprotein C-IV 5 2.206 − 1.291

O95445 APOM Apolipoprotein M 5 2.139 − 1.363

Figure 2.  Network of proteins determined by biological upstream analysis within the framework of the IPA. 
The data was created using the IPA. Solid and dotted lines indicate direct and indirect interactions, respectively. 
Orange nodes represent molecules undetected in our study.
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CHI3L1 or IGFALS were 0.797 [0.644–0.914] and 0.843 [0.723–0.939], respectively (Fig. 3B). Internal valida-
tion of the final models for CHI3L1 and IGFALS was performed by bootstrap resampling, which showed that 
the two proteins maintained high predictive accuracy (optimism-adjusted AUC = 0.800 and 0.848, respectively). 
These values were more reliable than those of two established biomarkers, namely CRP (0.556 [0.375–0.736]) 
and d-dimer (0.688 [0.524–0.841]) (Supplementary Fig. S2). More precise statistical analysis using AUCs cor-
roborated that CHI3L1 and IGFALS had higher reliability than CRP (Fig. 3B). Furthermore, the AUC [95% CI] 
of a model using both CHI3L1 and IGFALS was 0.862 [0.745–0.957]. Consequently, the serum expression levels 
of these two proteins can enhance clinical diagnostic accuracy by providing a precise indication of the outcome 
of severely ill COVID-19 patients.

Figure 3.  Serum levels and ROC curves of CHI3L1 and IGFALS as determined by ELISA assays. (A) In 15 
COVID-19 patients with adverse prognosis, the median serum levels [interquartile range, IQR] of CHI3L1 
and IGFALS were 136.2 [67.41–357.2] ng/mL and 1.479 [0.6873–3.059] µg/mL, respectively. In 46 COVID-
19 patients with favorable prognosis, the median serum levels [IQR] of CHI3L1 and IGFALS were 49.87 
[32.04–89.04] ng/mL and 4.498 [2.565–6.342] µg/mL, respectively. In 30 healthy controls, the median serum 
levels [interquartile range, IQR] of CHI3L1 and IGFALS were 24.3 [19.66–28.0] ng/mL and 8.396 [7.424–9.464] 
µg/mL, respectively. Differences in continuous values between the two groups were compared by the Mann–
Whitney U-test: ***p < 0.001, ****p < 0.0001. These analyses were carried out with GraphPad Prism software. 
(B) ROC curves for predicting the clinical prognosis of severe COVID-19 patients. The optimal cut-off values 
(sensitivity and specificity) for making a clinical decision using CHI3L1 or IGFALS were defined as 60.01 ng/mL 
(0.867 and 0.600) and 3.28 µg/mL (0.867 and 0.689), respectively. The p-values were generated from bootstrap 
tests for the two ROC curves. AUC indicates the area under the ROC curve [95% CI].
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Discussion
COVID-19 manifests in numerous ways, ranging from a lack of symptoms leading to spontaneous recovery, to 
acute respiratory distress syndrome (ARDS) characterized by respiratory failure and diffuse alveolar  damage14. 
While most patients with severe respiratory disorders recover successfully, a substantial number die of res-
piratory failure and/or systemic complications. Determining which individuals have the highest risk of adverse 
outcomes, including by identifying putative risk factors and/or biomarkers for severe illness, would be ideal for 
optimizing intensive medical management of COVID-19. For this purpose, we used the serum of COVID-19 
patients to perform DIA-MS-based proteomic analysis, which has the potential to discover proteins previously 
not shown to be related to adverse prognosis. Consequently, we identified 27 candidate proteins whose serum 
levels were increased or decreased in patients with adverse prognosis. Subsequent statistical analysis using ROC 
curves found that two putative prognostic indicators, namely CHI3L1 and IGFALS, may be useful in severe 
COVID-19 patients.

Several studies have reported that most severe COVID-19 patients exhibit marked increases in serum levels 
of proinflammatory  cytokines11,12,15. Therefore, the current understanding of the disease suggests that cytokine 
storm, along with the immunological dysregulation triggered by the viral replication phase, contributes to the 
progression of severe ARDS and multiple organ failure in COVID-1911,16. However, IL-6 levels in COVID-19 
patients are lower than the median values typically reported in  ARDS17,18, and other unidentified determinants 
may define COVID-19 severity. In this study, we investigated the molecular relevance of CHI3L1 and IGFALS 
by an upstream analysis using the IPA framework. This showed that the expression levels of these proteins were 
regulated by proinflammatory cytokines such as IL-1β, IL6, or TNF, indicating that our new biomarkers could 
be markers for the proinflammatory cytokine network and cascade.

CHI3L1, also termed YKL-40, is a protein that binds with chitin but lacks chitinase activity. We found that 
serum CHI3L1 levels were elevated in COVID-19 patients with severe disease and adverse prognosis. Parallel 
to this finding, previous studies show that high serum levels of CHI3L1 are associated with an increased risk of 
death from various causes, including cardiovascular  disease19,20. Additionally, elevated serum levels of CHI3L1 
were found in patients with idiopathic pulmonary fibrosis (IPF)21. Immunohistochemistry also showed that the 
expression levels of CHI3L1 were enhanced in bronchiolar epithelial cells and alveolar macrophages adjacent 
to fibrotic lesions in patients with IPF, suggesting the possible involvement of CHI3L1 in the fibrotic process of 
 IPF21. These findings together suggest that CHI3L1 plays an important role in tissue remodeling of the respira-
tory system in COVID-1922,23. Therefore, higher levels of CHI3L1 might be associated with the pathogenesis of 
COVID-19, especially in terms of pulmonary tissue damage and repair.

This study also demonstrated the reduction of IGFALS levels in severe COVID-19 patients with adverse 
prognosis. In healthy individuals, IGFALS forms a ternary complex with IGFBP3 and insulin-like growth factor 
1 (IGF-1). The binding of IGFALS/IGFBP3 to IGF-1 has been shown to prevent the interaction of IGF-1 with its 
receptor, IGF-1R, and to reduce the stability of IGF-1 and thereby suppress its biological  function24. It was also 
observed that plasma levels of IGF-1 were significantly reduced in mice with complete deficiency of IGFALS, 
suggesting an accelerated reduction of the half-life of IGF-1 despite no changes in its liver or renal  expression25,26. 
Consequently, deficiency of IGFALS disrupts IGF-1 circulation without affecting glucose or insulin  homeostasis25. 
The role of IGF-1 signaling in fibrotic processes varies depending on spatial and stoichiometric  conditions27. 
Irrespective of COVID-19, IGF-1 levels diminish gradually in later fibroproliferative stages, and show a negative 
correlation with mortality in patients with  ARDS28,29. Moreover, a recent study indicated that low serum IGF-1 
levels were associated with a higher risk of mortality in COVID-19  patients30. Together these findings may sug-
gest that serum IGF-1/IGFALS levels are directly or indirectly involved in respiratory dysfunction. However, 
the regulatory mechanisms of IGFALS and IGF-1 in COVID-19 remain elusive, and further studies are needed 
to determine the functional roles of both proteins in the pathogenesis of the disease.

The findings of this study may enhance the ability to identify which COVID-19 patients with severe pneumo-
nia are at high risk of mortality, based on the serum levels of two proteins closely involved in the pathogenesis in 
COVID-19. The ability of CHI3L1 and IGFALS to discriminate favorable and adverse prognosis in COVID-19 
patients was superior to that of the existing biomarkers.

This study has some limitations, especially in the initial discovery study, where we used only a small sample 
size to detect the differentially expressed proteins between the adverse and favorable prognosis groups. Also, 
the use of a COVID-19 patient specific spectral DIA library would be a more ideal representation than the cus-
tomized spectral library that we had created to discover new biomarkers. The use of the former would probably 
identify more proteins altered during COVID-19 infection. However, despite these shortcomings of the discov-
ery study, the verification study revealed that the newly discovered biomarkers CHI3L1 and IGFALS correlated 
better with the prognostic outcomes than the currently existing biomarkers. Further prospective studies with 
a larger sample size are needed to validate the quality of these biomarkers. A multidisciplinary approach and a 
multivariable statistical analysis of these biomarkers will be useful for determining their ability to predict the 
clinical prognosis of severe COVID-19.

Methods
Human samples. Serum samples were obtained from COVID-19 patients who were hospitalized at Yoko-
hama City University Hospital, Yokohama City University Medical Center, and National Hospital Organization 
Yokohama Medical Center from February 2020 to January 2021, or from otherwise healthy volunteers (employ-
ees of Yokohama City University) from January 2014 to December 2015. This research protocol was approved 
by the Clinical Ethics Committee of Yokohama City University Hospital (B2002000048 and B160800009). This 
study was also performed with the approval of the Clinical Ethics Committee of each participating medical 
facility. Informed consent was obtained from all patients or their guardians before serum sample collection. This 
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study was conducted in accordance with the Declaration of Helsinki. All the data was anonymized before the 
analyses.

All patients in the study were diagnosed with COVID-19 according to the Manual for the Detection of 
Pathogen 2019-nCoV of the National Institute of Infectious Diseases in Japan. Severe COVID-19 patients were 
defined according to the National Institutes of Health guidelines. In addition, patients with severe disease who 
died or required extracorporeal membrane oxygenation were classified as having adverse prognosis, while the 
remainder were defined as having favorable prognosis. All serum samples were stored at − 80 °C until use and 
then denatured by adding an equal volume of 8 M urea solution for MS analysis.

LC mass spectrometry. Desalted peptides were resuspended in 0.1% formic acid and 2% ACN containing 
iRT peptides (Biognosys) and then analyzed using a Q-Exactive mass spectrometer coupled with an UltiMate 
3000 HPLC system (Thermo Fisher Scientific). The mass spectrometer was operated using Xcalibur software. 
Peptides were loaded on a trap column (100 μm × 20 mm, C18, 5 μm, 100 Å, Thermo Fisher Scientific) and sub-
sequently separated on a Nano HPLC capillary column (75 μm × 180 mm, C18, 3 μm, Nikkyo Technos) at a flow 
rate of 300 nL/min. Solvent A was 0.1% formic acid in 2% acetonitrile (ACN), while solvent B was 0.1% formic 
acid in 95% ACN. Peptides were eluted using a gradient from 2% B for 0–5 min, then 2–33% B for 5–120 min 
followed by 90% B for 10 min, and finally equilibrated for 20 min at 2% B. Data were acquired using either data-
dependent acquisition (DDA) or data-independent acquisition (DIA).

Human sera spectral library generation. For the comprehensive serum proteome analysis, we attempted 
to construct an original DIA-MS system for human serum. To construct a serum spectral library, four differ-
ent human pooled sera purchased from Kohjin Bio (cat# 12181201), Biowest (cat# S4200), PAN-Biotech (cat# 
P30-2701), and Sigma-Aldrich (cat# S7023) were used because of the limited amount of serum from COVID-19 
patients. These sera were pooled and then fractionated in three ways, as described below, after removal of 14 
human proteins (albumin, IgG, antitrypsin, IgA, transferrin, haptoglobin, fibrinogen, alpha2-macroglobulin, 
alpha1-acid glycoprotein, IgM, apolipoprotein AI, apolipoprotein AII, complement C3, and transthyretin) using 
a Human 14 Multiple Affinity Removal System (MARS) column (Agilent Technologies) or after compression 
of the dynamic range of protein abundance using ProteoMiner beads (Bio-Rad). First, the immunodepleted or 
compressed serum was fractionated using an HPLC system with a C4 reversed-phase column (Vydac), and 20 
fractions were independently subjected to in-solution digestion with trypsin (Promega)31. Second, the immu-
nodepleted or compressed serum was separated using a 5–20% polyacrylamide gel and then the gel was frac-
tionated into six sections, followed by in-gel digestion with  trypsin32. Third, the immunodepleted serum was 
digested with trypsin, and the resultant peptides (240 μg) were separated into 24 fractions using a 3100 OFFGEL 
 Fractionator33. After desalting using a Stage  Tip34, the obtained peptides were analyzed in DDA mode. The 
Q-Exactive was set to positive mode in a top-20 configuration. DDA mode analytical conditions consisted of a 
full MS1 scan with a resolution of 70,000 and a scan range from 350 to 1500 m/z, with the automatic gain con-
trol (AGC) target value being set to  3e6 (Full MS) and  1e5 (MS/MS). The normalized collision energy was set 
to 27. Spectral library generation from a data set containing 76 DDA-MS measurements was performed using 
Spectronaut Pulsar X (Ver.12.0.2, Biognosys) by searching against the iRT fasta database (Biognosys) and human 
protein sequences from the UniProtKB/Swiss-Prot database (version January 28, 2019), allowing for variable 
N-terminal acetylation, N-terminal carbamylation, methionine oxidation, and cysteine carbamidomethylation. 
MS1 and MS2 tolerances were set to dynamic, and two missed cleavages were allowed. Search results were fil-
tered to satisfy a false discovery rate (FDR) of 1% on peptide levels and 5% on protein levels using Spectronaut 
Pulsar X for identification.

Sample preparation for DIA‑MS analysis. After adding 20 ng/μl E. coli β-galactosidase (β-gal) as the 
internal standard, 14 high abundance serum proteins (albumin, IgA, IgD, IgE, IgG, IgG [light chains], IgM, 
alpha-1-acid glycoprotein, alpha-1-antitrypsin, alpha-2-macroglobulin, apolipoprotein A1, fibrinogen, hapto-
globin, and transferrin) were removed using High Select Top14 Abundant Protein Depletion Mini Spin Columns 
(Thermo Fisher Scientific). After centrifugal ultrafiltration using Amicon Ultra centrifugal filters, immunode-
pleted serum samples were dissolved in 4 M urea solution. To determine the reproducibility of results obtained 
using immunodepletion column, the proteins separated by SDS-PAGE were transferred to polyvinylidene fluo-
ride membranes and then incubated with anti-β-gal antibody (diluted 1:1000) at room temperature (data not 
shown). Subsequently, proteins in 2 µl of immunodepleted serum were reduced with DTT (final concentration 
of 10  mM) and alkylated with 2-iodoacetamide (final concentration of 25  mM). The protein solutions were 
diluted from 8 to 2 M urea in 50 mM  NH4HCO3 and then incubated with trypsin (final concentration, 15 ng/μl) 
at 37 °C for 16 h. To prepare the resultant peptides for MS analysis, they were desalted using a Stage  Tip34, and 
the subsequently eluted peptides were completely lyophilized and kept at − 80 °C until use.

DIA‑MS analysis and data analysis. To determine protein abundance, serum peptide samples were ana-
lyzed twice each in DIA mode. DIA mode analytical conditions consisted of a full MS1 scan with a resolution of 
70,000 full width at half maximum (FWHM) with a scan range from 380 to 1240 m/z, with the AGC target value 
being set to  3e6, followed by 40 DIA windows acquired at a resolution of 35,000 FWHM, with the AGC target 
value being set to  3e6. The isolation width and normalized collision energy were set to 5 m/z and 28, respectively. 
DIA-MS data were analyzed using Spectronaut Pulsar X against the spectral library to identify and quantify pep-
tides and proteins. The retention time among different samples was calibrated using the iRT peptides. The Biog-
nosys default settings were applied for identification; duplicate assays were excluded and FDRs were estimated 
using a q-value of 0.01 for both precursors and proteins. Interference correction was activated and a minimum of 
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three fragment ions and two precursor ions were kept for the quantification. The area of the extracted ion chro-
matogram at the MS/MS level was used for quantification. Peptide quantity was measured by the mean of the 
1–10 best precursors, and protein quantity was calculated accordingly by summing the 1–10 best peptides. The 
global normalization strategy and q-value sparse selection were used for cross run normalization. All other set-
tings were set to their defaults. To perform downstream statistical quantitative analysis, we used Perseus (Max-
Planck-Institute of Biochemistry), which is a software program for functional analysis of large-scale quantitative 
 data35. Distinct samples were categorized into two groups, the intensity values were  log2-transformed, and only 
proteins present in at least 70% of samples in each group were used for further analysis. The missing values were 
replaced by random numbers drawn from a normal distribution with a value of 0.3 for the width parameter 
and 1.8 for the down-shift parameter. A PCA score plot and volcano plot were created with Perseus. Protein 
interaction analysis was carried out with the online tool STRING (https:// string- db. org, default settings)36. IPA 
(Content version: 60467501, Release Date: 2020-11-19, QIAGEN) was used for the biological analysis. ELISA 
assays were performed to measure the serum levels of CHI3L1 (cat# CY8088V2, MBL) and IGFALS. The ELISA 
assay for IGFALS was constructed using two anti–human IGFALS antibodies (cat# 537302 and cat# 537404, 
BioLegend) and a recombinant human IGFALS/ALS protein (cat# 9917-IA-050, R&D). ROC curve analysis was 
performed to assess the predictive performance of CHI3LI, IGFALS, d-dimer and CRP. The optimal cut-off value 
was determined by Youden’s index. Internal validation was performed by bootstrapping and was done with 150 
simulations to obtain a bootstrapped AUC.

Statistical analysis was performed using GraphPad Prism software (version 7.0.2) or statistical software R 
(version 4.0.2).

 Data availability
All mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http:// 
www. prote omexc hange. org,) via the jPOST (https:// jpost db. org) partner repository with the dataset identifier 
PXD027635 (Spectral library data) or PXD021702 (DIA-MS analysis data). All data are fully available without 
restriction.
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