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Spatial distribution and regional 
difference of carbon emissions 
efficiency of industrial energy 
in China
Fang Liu1, Lu Tang2, Kaicheng Liao3*, Lijuan Ruan4 & Pingsheng Liu5

The three-stage super-efficiency slack-based measure and data envelopment analysis (SBM-DEA) 
model with undesirable outputs is used to calculate carbon emissions efficiency of industrial energy 
(CEEIE) of 30 provinces in China from 2000 to 2017. Then ArcGIS software is used to illustrate 
the spatial distribution of CEEIE, and Dagum Gini ratio is calculated to decompose the regional 
difference. The results show that the spatial distribution of CEEIE changes from disorder to order 
and provinces characterized with high or low CEEIE cluster in space over time. The total Dagum Gini 
coefficient indicates that the interprovincial difference in CEEIE across China is gradually expanding, 
which is mainly induced by the difference between regions. Our findings attach more importance to 
interregional integration policies for carbon emissions reduction in China.

The Covid-19 pandemic resulted in the largest-ever decline in global emissions, which indicated that global 
energy-related  CO2 emissions fell by 5.8% in 2020. However, as the only major economy to record an increase in 
annual  CO2 emissions in 2020, China’s emissions growth slows by just one percentage point compared with its 
average rate over the 2015–2019 period. The latest annual figures indicate that the country’s overall  CO2 emis-
sions in 2020 were 0.8% (or 75 Mt CO2) above the levels assessed at the end of  20191. The country has entered 
a new normal in which development mode has changed largely, which has large impacts on carbon  emissions2. 
In addition, China has committed to achieve carbon peak by 2030 and carbon neutrality by 2060. Ensuring eco-
nomic growth and the realization of the two targets will be extremely challenging for Chinese government. As 
we know, industry always plays an important role in the economy and has been the dominant energy consumer 
and carbon emitter. In 2020, Chinese industry contributed 37.8% increments of GDP (National Bureau of Statis-
tics of China 2021). Meanwhile, the proportion of energy consumption in the industrial sector is always higher 
than 65% and the carbon dioxide emissions by industry accounts for a share of over 70%. Therefore, reducing 
the carbon emissions of industrial energy consumption is a major challenge for China, which requires that the 
government pays more attention to carbon emissions efficiency of industrial energy (CEEIE).

As for how to implement the policies to curb the carbon emissions of industrial energy, first we should know 
the situation of carbon emissions efficiency. Kaya and  Yokobori3 and  Sun4 believe that the carbon emissions per 
unit of GDP can measure carbon emissions efficiency. Mielnik and  Goldemberg5 use the ratio of carbon emissions 
to energy consumption to measure carbon emissions efficiency. As direct measurement methods, these kinds of 
a single indicator have noticeable limitations, because it does not take a wide range of important external factors 
into consideration (Wang et al.6; Cheng et al.7). Although there are many methods for measuring carbon emis-
sions efficiency from total factors perspective, data envelopment analysis (DEA, an efficiency evaluation method 
that provides a comprehensive evaluation of the relative effectiveness of similar decision-making units) has been 
the most widely used method  (Ramanathan8; Zhou et al.9; Guo et al.10; Meng et al.11; Zhou et al.12; Cheng et al.13).

Second, it is vital to pay attention to regional difference of carbon emissions efficiency because of its variety 
across many regions in some countries, especially in those with many provincial regions like China. Guo et al.10 
use the DEA method to evaluate and compare the carbon emissions performance of 29 Chinese administra-
tive regions at provincial level. Instead of DEA, Dong et al.14 use a stochastic frontier analysis (SFA) method to 
measure and compare the carbon emissions efficiency of some provinces in China. Meng et al.11 also use DEA to 
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evaluate the variation of carbon emissions efficiency across 31 provinces in China. In China, developed provinces 
tend to have higher carbon emissions efficiency compared with less developed  provinces15. Some research focus 
on carbon emissions efficiency differentiation and variations among cities other than provinces. Similar to the 
findings  of15, Wang and  Wei16 find that developed cities have high carbon emissions efficiency because of strong 
economic development capabilities, while the carbon emissions efficiency of less developed cities are low because 
of weak economic development capabilities in China. Cheng et al.7 find that eastern China has the largest carbon 
emissions efficiency of provincial industrial sectors, and western China has the lowest.

Third, carbon emissions efficiency might be spatially correlated because environmental governance is spatially 
 dependent17. Spatial heterogeneity and spatial spillover effect of carbon emissions efficiency have been identified 
in many studies. Liu et al.18 use the k-means cluster method to analyze carbon dioxide emission efficiency of 
China and identity five groups of energy consumption structure. Zhang et al.19 find the spatial spillover effect 
of  CO2 emissions efficiency in China. The findings of Yan et al.15 show that the power sectors of eastern regions 
have relatively high carbon emissions efficiency and tend to have a positive spillover effect on the neighboring 
provinces. Wang et al.20 find that  CO2 emissions of China have shown a stable spatial agglomeration effect from 
global and local perspectives because of the similarity and connectivity of spatial units. Provinces and cities 
with high carbon emissions efficiency in China cluster in mid-east coastal  regions21, while provinces and cities 
with low carbon emissions efficiency cluster in northern part of  China22. Since the clustering effect is found to 
be quite obvious in China, some other researchers even initially partitioned clustering areas based on carbon 
emissions efficiency by using the quantitative methodology. For example, Ding et al.23 find that the eastern zone 
is the most advanced in carbon emission efficiency in China.

Although the studies mentioned above can obtain the three key information of carbon emissions efficiency, 
i.e., the efficiency value, regional difference and spatial characteristics, at least three aspects should be improved. 
First, the traditional DEA  model24 may overestimate the efficiency value of decision-making unit (DMU) if there 
are nonzero slack variables. Slack based measure (SBM)  DEA25 can solve the problem resulting from slack vari-
ables, while super efficiency-SBM can evaluate the efficiency of DMU if there are more than one efficient DMU. 
But when these methods are used to measure carbon emissions efficiency, the environmental difference among 
regions should be ignored. Combining traditional DEA with SFA, the three-stage DEA method can eliminate 
the impact of environmental factors and random errors on efficiency  value26. In addition, carbon emission, as 
an output, is undesirable from the economic perspective. Therefore, we argue that it is more reasonable to use a 
three-stage super-efficiency SBM-DEA method with undesirable output to measure carbon emissions efficiency. 
Second, the findings of regional difference of carbon emissions efficiency is descriptive, and cannot identify 
the key factors inducing the difference and provide more information for policymaker. While the Dagum Gini 
ratio initiated by  Dagum27 can obtain the true difference of carbon emissions efficiency among regions, and also 
can get the source of the difference. Third, many literatures have studies carbon emissions efficiency from the 
perspective of nation, specific sub-sectors or specific regions. However, few studies focus on industrial energy 
consumption, which is highly correlated with carbon emissions efficiency. We thus attach more importance to 
CEEIE and target the effective solutions to reduce carbon emissions of industrial energy sectors.

Specifically, in order to avoid the lacks of traditional DEA model, we combine the three-stage DEA method 
with the super-SBM to construct an input–output framework and evaluate CEEIE. Then we illustrate the spatial 
distribution of CEEIE to discern the evolution trend over time. Besides, Dagum Gini ratio is used to decompose 
the regional difference of CEEIE, and then the sources of regional difference and spatial pattern of regional CEEIE 
are analyzed. Our findings can help the government to identify the spatial disequilibrium characteristics of CEEIE 
and are beneficial for balanced policy making of carbon emissions reduction from the regional perspective.

Methodology and data sources
The method for measuring CEEIE. In this paper, we use the three-stage super-efficiency SBM-DEA 
 method17 with undesirable output to measure the CEEIE of the 30 provinces in China. It is necessary to point 
out that the carbon emission is regarded as an undesirable output in the process of the calculation of CEEIE. We 
divide the outputs into desirable output and undesirable output in terms of the classification method proposed 
by Wang and  Luo28. The desirable output meets the expectation and is beneficial for society, but the undesirable 
output is just on the opposite. In addition, there are 34 provinces in China. For the reason of the lack of data, 
Tibet, Macau, Hong Kong and Taiwan are excluded from the sample. Therefore, the 30 provinces are Beijing, 
Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Guangxi, Hainan, Shanxi, 
Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan, Chongqing, Sichuan, Guizhou, Yun-
nan, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang. In the first stage, the super-efficiency SBM-DEA model is 
used to calculate the initial efficiency value and slack value of input/output for each DMU. Since there are zero 
values in our input data, we use the input-oriented super-efficiency SBM-DEA model
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where ρ is the efficiency value, and m, s and n are the number of input indicators, output indicators and DMU. 
s− is the slack variable of the input, s+ is the undesirable output slack variable. x and y are matrixes that compose 
of the input and output of all DMU, and x and y are the reference point of the decision variable. λ is the weight 
vector. ρ < 1 indicates that the DMU is inefficient, while ρ > 1 indicates that DMU is in an active state.

In the second stage, SFA is used to decompose the slack values obtained in the first stage. SFA (Aigner 
et al.29; Meeusen and van den  Broeck30) is regression-based, and so has the virtue of being capable of isolating 
managerial inefficiency from both environmental effects and statistical noise, although it has the drawback of 
doing so within a parametric framework. Fried et al.26 point out that the traditional DEA model cannot identify 
the inefficiency caused by managerial factors, environmental factors and random factors. Therefore, the way to 
solve this problem is to use SFA model at the second stage to screen out the impact of external environmental 
factors and random errors, and then the redundant input values are entirely caused by managerial inefficiency. 
The SFA regression model is

where Sni is the redundancy of the n-th input of the i-th DMU, Zi is the environment variable vector and βn is the 
coefficient vector to be estimated. εni= vni + µni represents the mixed error, in which vni is the random error and 
µni is the managerial inefficiency, and the two terms are independent. v ~ N (0,σ 2

v ) means that v follows the normal 
distribution, while μ ~ N+ (0, σ 2

µ ) means that μ follows the truncated normal distribution.γ = σ 2
v /(σ

2
v + σ 2

µ) 
is the ratio of management inefficiency variance to the total variance. When the γ converges to 1, the manage-
rial factor has the whole influence. When the γ converges to 0, µni equals 0 and the random model becomes a 
deterministic model, which can be estimated by ordinary least square. In order to adjust all the DMU to the 
same external environment and separate the random error from the mixed error terms, Frontier 4.1 is used to 
implement maximum likelihood estimation to get the estimation of βn , σ 2 and γ . Then the method proposed by 
Jondrow et al.31 can be used to obtain the management inefficiency estimation.

where ∅ and ϕ are the distribution function and density function of the standard normal distribution, and en is 
the error of maximum likelihood estimation. The estimation of vni is

And then the input data are adjusted by Eq. (5).

where Xni is the original input data, and X ′
ni is the adjusted input data. 
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that all DMUs are adjusted by the same environmental condition, and [max(vni)− vni] means that all DMUs are 
adjusted by the same random error.

In the third stage, Xni is replaced by X ′
ni , and then we can use the model (1) again to get CEEIE, which has 

excluded the impact of the environmental and random factors.

The method for decomposing regional difference of CEEIE. We use the Dagum Gini ratio method 
described by Peng et al.17 to decompose the regional difference of CEEIE. Dagum Gini ratio is defined as

In the formula (6), G is the total Gini ratio, which measures the total difference of CEEIE between provinces. K 
is the number of regions, including northern coast, eastern coast, southern coast, northeast, middle Yellow River, 
middle Yangtze River, southwest and northwest region in this paper. The eight regions are classified according 

(1)

minρ =

1
m

∑m
i=1

xi
/
xik

1
s

∑s
r=1

yr
/
yrk

s.t.

n∑

j=1,j �=k

�jxj < x,

n∑

j=1,j �=k

�jyj ≤ y

xik =

n∑

i=1

�jxij + s−, yrk =

n∑

i=1

�jyrj − s+

x ≥ xk , y ≤ yk
n∑

j=1,j �=k

�j = 1, y ≥ 0, � ≥ 0, s− ≥ 0, s+ ≥ 0

(2)Sin = fi(Zi ,βn)+ vni + µni(i = 1, 2, . . . , m; n = 1, 2, . . . , N)
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the report, Strategy and Policy of Regional Coordinated Development, published by Development Research 
Center of the State Council of China in 2005. And northern coast region includes Beijing, Tianjin, Hebei and 
Shandong, eastern coast region includes Shanghai, Jiangsu and Zhejiang, southern coast region includes Fujian, 
Guangdong and Hainan, northeast region includes Liaoning, Jilin and Heilongjiang, middle Yangtze River region 
includes Anhui, Jiangxi, Hubei and Hunan, middle Yellow River region includes Henan, Shanxi, Inner Mongolia 
and Shaanxi, southwest region includes Chongqing, Sichuan, Guizhou, Yunnan and Guangxi, and northwest 
region includes Gansu, Qinghai, Ningxia and Xinjiang. yih and yjr are the CEEIE of provinces in the i-th and 
the j-th region, respectively, and i = 1,2 , …, K; j = 1, 2,…, K. μ is the average of CEEIE of all provinces, n is the 
number of all provinces, and ni and nj are the number of provinces in the i-th and the j-th region, respectively.

Like the method of Dagum, the total Gini ratio can be decomposed as follows

with

measures the contribution of the difference of CEEIE within region to the total Gini coefficient G;

measures the net contribution of the extended difference of CEEIE between regions to the total Gini coefficient G;

measures the contribution of the transvariation intensity between regions to the total Gini coefficient G. λi = ni/n 
and si = λiμi/μ, μi and μj are the average of CEEIE of the i-th and the j-th region.

In Eq. (10), Dij = (dij − pij)/(dij + pij) is the relative economic affluence between the i-th and the j-th region, and 
the gross economic affluence dij between the i-th and the j-th region, such as μi > μj, is

where fi(y) and fj(y) are the probability density function of the i-th and the j-th region. dij is by definition the 
weighted average of the CEEIE difference yih–yjr for all CEEIE yih of the members belonging to the i-th region 
with CEEIE greater than yjr of the members belonging to the j-th region, such that, μi > μj.

pij is the first-order moment of transvariation between the i-th and the j-th region, such that μi > μj, is

By definition pij is the weighted average of the CEEIE difference yih − yjr for all pairs of provinces, one taken 
from the i-th and the other from the j-th region, such that yih > yjr and μi > μj. The word transvariation stands 
to the fact that the differences in CEEIE considered are of opposite sign than the difference in means of their 
corresponding region.

Gii is the Gini ratio within region and Gij is the Gini ratio between regions, i.e.,

Indicators and data sources. It’s vital to construct a comprehensive and objective input–output indicator 
system for accurately measuring the CEEIE in China. According to the relevant literatures and the availability of 
data, the input indicators are composed of labor, capital stock (calculated with the method proposed by  Shan32) 
and energy consumption (the sum of all kinds of energy consumed by material production and non-material 
production sectors). We divide the output into desirable output (gross value of industrial output, the total amount 
of industrial products sold or available for sale produced by industrial enterprises in the form of currency) and 
undesirable output (carbon dioxide emissions, calculated according to the Guidelines for National Greenhouse 
Gas Inventories (Intergovernmental Panel on Climate Change (IPCC) 2006)). We use the following equation 
to calculation the  CO2 emissions from industrial energy combustion on the basis of China’s provincial energy
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where E refers to the amount of energy consumption from different fuel types (emission factors), NCV refers 
to the net calorific value of different fuel types and CEC refers to the carbon emissions coefficient. Although Mi 
et al.33 attach more importance to the uncertainties in emission factors, we use the specific information in Table 1 
for the formula (15) because of the limit of data.

Many studies have found that carbon emissions efficiency is affected by many environmental factors. For 
example, technological progress can induce high carbon emissions  efficiency12, and the level of economic devel-
opment, economic capability, and energy structure also can lead to different carbon emissions  efficiency34. We 
thus choose six environmental indicators from the perspective of economy, energy and institution.

The environmental indicators related to economy compose of GDP per capita (for measuring economic 
development) and the ratio of GDP of tertiary industry to GDP (for measuring industrial structure). On one 
hand, economic development means greater energy consumption and more carbon emissions. One other hand, 
infrastructure, energy utilization and pollutant treatment capacity will be improved with economic development. 
Therefore, the impact of economic development on CEEIE is not clear. As for industrial structure, it can affect 
CEEIE through energy consumption and energy intensity. For example, the optimization of industrial structure 
can promote the development of low-carbon industry to induce carbon dioxide emissions. The environmental 
indicator related to energy is the ratio of coal consumption to total energy consumption (for measuring energy 
consumption structure). According to the statistics of IPCC (2006), the carbon emissions per unit coal con-
sumption is 1.33 times that of oil and 1.73 times that of natural gas. Therefore, a high coal consumption rate 
means low carbon emissions efficiency or a poor energy consumption structure. The environmental indicators 
related to institution compose of the ratio of government investment in environmental governance to GDP (for 
government environmental governance), the ratio of R&D expenditure to GDP (for measuring technological 
innovation ability) and the ratio of total import and export to GDP (for measuring the degree of opening up). The 
expenditure in government environmental governance and technological innovation can curb energy consump-
tion of enterprises and promote the production and use of clean energy. With the increasing degree of opening 
up, the international organizations require China to make more contribution to carbon reduction. Besides, the 
effect of technology spillover brought by opening up should enhance energy efficiency.

The above-mentioned indicators are described in Table 2. All data in this paper are from China Statistical 
Yearbook, China Statistical Yearbook on Environment, China Energy Statistical Yearbook, China Labor Statis-
tical Yearbook, Statistical Yearbook of the Chinese Investment in Fixed Assets, China Statistical Yearbook on 
Science and Technology, National Bureau of Statistics, and Statistical Yearbook and Bulletin of each province. 

(15)CO2 =

8∑

i=1

Ei × NCVi × CECi

Table 1.  Fuel types, net calorific value and carbon emissions coefficient. The data of NCV is from China 
Energy Statistical Yearbook and the data of CEC is from IPCC 2006.

Fuel types Coal Coke Crude oil Gasoline Kerosene Diesel oil Fuel oil Natural gas

NCV (kj/kg(m3)) 20,908 283,435 41,816 43,070 43,070 46,252 41,816 38,931

CEC (kg  CO2/TJ) 95,333 107,000 73,300 70,000 71,500 74,100 77,400 56,100

Table 2.  Indicators for measuring CEEIE.

Categories Description Indicators Unit Data sources

Input

Labor input Employment Ten thousand people China Labor Statistical Yearbook

Capital input Capital stock Hundred million Yuan
Statistical Yearbook of the Chinese Invest-
ment in Fixed Assets, China Statistical 
Yearbook

Energy input Energy consumption Ten thousand tons of standard coal China Energy Statistical Yearbook

Output

Desirable output Gross value of industrial output Hundred million Yuan China Statistical Yearbook

Undesirable output Carbon dioxide emissions Ten thousand tons
Statistical Yearbook and Bulletin of each 
province, China Energy Statistical Yearbook, 
National Bureau of Statistics

Environment

Economic development GDP per capita Yuan China Statistical Yearbook

Industrial structure The ratio of GDP of tertiary industry to GDP % China Statistical Yearbook

Energy consumption structure The ratio of coal consumption to energy 
consumption % China Energy Statistical Yearbook

Government regulation The ratio of government investment in 
environmental governance to GDP % China Statistical Yearbook on Environment

Technological innovation The ratio of R&D expenditure to GDP % China Statistical Yearbook

Opening up The ratio of total import and export to GDP % China Statistical Yearbook
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Table 3.  The averages of CEEIE of China and the eight regions from 2000 to 2019.

China
Northern coast 
region

Eastern coast 
region

Southern coast 
region

Northeast 
region

Middle Yellow 
River region

Middle Yangtze 
River region

Southwest 
region

Northwest 
region

2000 0.818 0.687 0.814 1.440 0.780 0.813 0.743 0.858 0.546

2001 0.871 0.722 0.929 1.534 0.810 0.797 0.817 0.824 0.710

2002 0.885 0.786 0.859 1.165 0.920 0.861 0.895 0.917 0.740

2003 0.929 0.946 1.039 1.148 0.850 0.837 0.817 0.916 0.948

2004 0.814 0.937 0.955 1.231 0.737 0.624 0.663 0.772 0.722

2005 0.835 0.959 0.957 1.173 0.753 0.830 0.736 0.688 0.712

2006 0.890 1.026 0.960 1.249 0.759 0.905 0.797 0.864 0.642

2007 0.894 1.037 0.952 1.297 0.757 0.934 0.815 0.846 0.605

2008 0.914 1.063 0.942 1.394 0.757 0.962 0.805 0.845 0.648

2009 0.906 1.050 0.958 1.174 0.689 0.963 0.846 0.842 0.764

2010 0.921 1.052 0.983 1.427 0.776 0.978 0.936 0.761 0.599

2011 0.918 1.095 1.013 1.238 0.826 0.945 0.913 0.757 0.680

2012 0.932 1.106 0.982 1.522 0.735 0.966 0.963 0.747 0.591

2013 0.906 1.151 0.932 1.360 0.716 0.901 0.931 0.756 0.614

2014 0.897 1.153 0.972 1.407 0.799 0.827 0.802 0.817 0.543

2015 0.939 1.093 0.935 1.525 0.879 0.831 0.913 0.927 0.545

2016 0.947 1.161 1.010 1.610 0.738 0.835 0.865 0.922 0.567

2017 0.931 1.221 1.007 1.405 0.748 0.749 0.907 0.932 0.571

2018 0.999 1.273 1.086 1.547 0.776 0.806 0.961 1.005 0.637

2019 1.041 1.301 1.104 1.605 0.796 0.844 1.030 1.069 0.664

Average annual 
growth rate (%) 1.27 3.42 1.62 0.57 0.11 0.20 1.73 1.17 1.04

Figure 1.  The distribution of CEEIE in 2000 (prepared by KL in ArcGIS Pro, https:// www. esri. com/ zh- cn/ 
arcgis/ produ cts/ arcgis- pro/ resou rces).

https://www.esri.com/zh-cn/arcgis/products/arcgis-pro/resources
https://www.esri.com/zh-cn/arcgis/products/arcgis-pro/resources
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Figure 2.  The distribution of CEEIE in 2005 (prepared by KL in ArcGIS Pro, https:// www. esri. com/ zh- cn/ 
arcgis/ produ cts/ arcgis- pro/ resou rces).

Figure 3.  The distribution of CEEIE in 2010 (prepared by KL in ArcGIS Pro, https:// www. esri. com/ zh- cn/ 
arcgis/ produ cts/ arcgis- pro/ resou rces).

https://www.esri.com/zh-cn/arcgis/products/arcgis-pro/resources
https://www.esri.com/zh-cn/arcgis/products/arcgis-pro/resources
https://www.esri.com/zh-cn/arcgis/products/arcgis-pro/resources
https://www.esri.com/zh-cn/arcgis/products/arcgis-pro/resources
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Because of the lack of data, Tibet, Macau, Hong Kong and Taiwan are excluded from the sample, which consists 
of 30 provinces ultimately.

Results
The situation of CEEIE. Table 3 reports the averages of CEEIE of China and the eight regions. From 2000 
to 2019, the CEEIE of China is increasing significantly, and the average annual growth rate is 1.27%. Besides, 
the CEEIE of China ranges from 0.818 to 1.041, which implies a high level of carbon emissions efficiency. As for 
the regional CEEIE, northern coast region has the highest average annual growth rate (3.42%), while northeast 
region has the lowest (0.11%). In 2000, only the southern coast region has DEA effective CEEIE. But in 2019, 
there are five regions with DEA effective CEEIE and most of them (three out of five) cluster in coast. As we know, 
coastal regions in China have high level of economic development and advanced production technology, which 
means that they have greater abilities to reduce the carbon emissions.

The spatial distribution of CEEIE. As graphical supplements to CEEIE in Table 3, Figures 1, 2, 3, 4 and 
5 illustrate the geographic distribution of CEEIE across China for 2000, 2005, 2010, 2015 and 2019. The CEEIE 
varies substantially across provinces and tends to cluster in space over time, which means that the spatial distri-
bution of CEEIE is being from disorder to order. Specifically, provinces characterized by high CEEIE are shown 
to cluster in the coastal regions with developed economy or region attaching more importance to environment-
friendly industries from 2000 to 2019. In China, developed provinces have transformed from deep industriali-
zation to service-oriented industries and then realized sustainable emission reduction. For example, Beijing in 
northern coast region has been focusing on developing new energy utilization and cultivating industries related 
new energy, which also promotes the reduction of industrial carbon emissions. While Hunan in middle Yangtze 
River region has paid more attention to the environmental impact of the industry and tended to introduce low-
carbon emission and environment-friendly industries.

The regional difference of CEEIE. Figure 6 illustrates the variation of total Gini ratio of CEEIE in China 
from 2000 to 2019. The total Gini ratio ranges from 0.105 to 0.193, which means that there is a great change of 
CEEIE between provinces over time. Specifically, the highest total Gini ratio is 0.193 in 2014, the second highest 
is 0.191 in 2016, the lowest is 0.105 in 2003, but it is 0.176 in 2019. These results indicate that the total difference 
of CEEIE has a fluctuating and upward trend in the research period. As shown in Table 3, the provinces with high 
CEEIE also have high average annual growth rate, while the provinces with low CEEIE also have low average 
annual growth rate. Therefore, the gap of CEEIE among provinces in China is expanded over time.

Figure 4.  The distribution of CEEIE in 2015 (prepared by KL in ArcGIS Pro, https:// www. esri. com/ zh- cn/ 
arcgis/ produ cts/ arcgis- pro/ resou rces).

https://www.esri.com/zh-cn/arcgis/products/arcgis-pro/resources
https://www.esri.com/zh-cn/arcgis/products/arcgis-pro/resources
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The differences of CEEIE within region from 2000 to 2019 are reported in Table 4. We can find that the Gini 
ratio within region is increasing in northern coast and southern coast region, but deceasing in other six regions. 
From 2000 to 2019, the average annual growth rate of the Gini ratio of CEEIE within region is negative (− 0.61%). 
These results imply that the differences of CEEIE within region have been narrowed. We believe that the imple-
mentation of regional coordinated development strategy and the gap of economic development of provinces 
in a region are the two key factors affecting the Gini ratio within region. For example, eastern coast region has 
implemented regional integration development strategy of Yangtze River Delta since 2010 and economic devel-
opment of Shanghai, Zhejiang and Jiangsu has always been very balanced, which make that eastern coast region 
has the lowest Gini ratio within region.

The differences of CEEIE between regions from 2000 to 2019 are reported in Table 5. There are maximum 
gap between southern coast region and northwest region, while the minimum gap emerges between northern 
coast region and eastern coast region. These findings are consistent with the difference of economic development 

Figure 5.  The distribution of CEEIE in 2019 (prepared by KL in ArcGIS Pro, https:// www. esri. com/ zh- cn/ 
arcgis/ produ cts/ arcgis- pro/ resou rces).

Figure 6.  The total difference of CEEIE.

https://www.esri.com/zh-cn/arcgis/products/arcgis-pro/resources
https://www.esri.com/zh-cn/arcgis/products/arcgis-pro/resources
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between the two regions in China. For the variation of Gini ratio of CEEIE between regions over time, it shows 
that the differences of CEEIE between adjacent regions are decreasing but increasing between distant regions. 
For example, the lowest average annual growth rate of Gini ratio of CEEIE between regions (− 3.46%) is for 
eastern coast region and middle Yangtze River region, while the highest (5.63%) is for northern coast region 
and northwest region. Therefore, we can conclude that CEEIE may have spatial spillover effect and the regions 
with high CEEIE or the regions with low CEEIE may cluster in space, which is consistent with the results of 
spatial distribution analysis.

The sources of the regional difference of CEEIE are shown in Table 6 and Fig. 7. From 2000 to 2019, the Gini 
inequality within region contributes with a 7.58% to the total Gini ratio on average, the Gini inequality between 
regions contributes with a 71.59%, and the contribution of the transvariation intensity between regions is a 
20.83%. As shown in Fig. 7, the contribution rate (CR) of the Gini inequality within region is stable, but the CR 
between regions is increasing and the CR of transvariation intensity is decreasing. These findings indicate that 
there are great differences between regions, which are the greatest sources of CEEIE inequality. Because the CR 
of transvariation intensity is the impact of the interaction of the difference within region and between regions on 
the total difference, its second largest CR means that the spatial dependence of the carbon emissions reduction 
behavior of local government also is an important source of the regional difference of CEEIE in China.

Conclusions and implications
This paper uses the three-stage super-efficiency SBM-DEA model with undesirable output to evaluate CEEIE of 
30 provinces in China from 2000 to 2017, and analyzes the spatial distribution and regional difference of CEEIE. 
We find that there is a big difference of CEEIE between provinces and between regions and the CEEIE of most 
provinces and regions are low. The analysis of spatial distribution indicates that the provinces characterized with 
high or low CEEIE cluster in space and the spatial distribution of provincial CEEIE is being from disorder to 
order over time. But the results of total Dagum Gini ratio indicate that the difference of CEEIE among provinces 
is expanded over time, which means that there are great gaps among the carbon emissions reduction capability 
of local government. Especially, the provinces with good economic foundation always have higher CEEIE. Fur-
thermore, the decomposition of the total Dagum Gini ratio shows that the differences of CEEIE within region 
have been narrowed. Because the provinces in a same region have similar emissions reduction capability and it 
is more convenient for them to carry out carbon emission cooperation, the decreasing trend of the differences 
of CEEIE within region occurs. Besides, the differences between regions and its greatest contribution to the total 
difference of CEEIE imply that other than interprovincial carbon emission cooperation, interregional coopera-
tion can play an important role in the regional difference of CEEIE. Finally, all the findings mean that the spatial 
dependence of carbon emissions reduction behavior of local government has a vital influence on CEEIE.

The findings of this study have some important policy implications for improving carbon emissions effi-
ciency and promoting the balance of regional carbon emissions. First of all, the governments should implement 

Table 4.  The difference of CEEIE within region.

Northern coast 
region

Eastern coast 
region

Southern coast 
region

Northeast 
region

Middle Yellow 
River region

Middle Yangtze 
River region

Southwest 
region

Northwest 
region Average

2000 0.016 0.106 0.128 0.108 0.174 0.114 0.097 0.063 0.101

2001 0.049 0.056 0.152 0.110 0.155 0.133 0.113 0.132 0.113

2002 0.078 0.073 0.023 0.061 0.127 0.101 0.091 0.099 0.082

2003 0.055 0.017 0.013 0.092 0.107 0.107 0.093 0.105 0.074

2004 0.067 0.062 0.08 0.132 0.063 0.066 0.156 0.141 0.096

2005 0.061 0.083 0.119 0.143 0.129 0.103 0.089 0.132 0.107

2006 0.005 0.081 0.163 0.133 0.103 0.093 0.110 0.061 0.094

2007 0.009 0.084 0.199 0.131 0.103 0.091 0.111 0.034 0.095

2008 0.011 0.067 0.235 0.117 0.094 0.098 0.083 0.061 0.096

2009 0.011 0.056 0.144 0.047 0.117 0.087 0.053 0.107 0.078

2010 0.014 0.051 0.229 0.063 0.111 0.067 0.131 0.067 0.092

2011 0.036 0.018 0.189 0.077 0.119 0.082 0.110 0.094 0.091

2012 0.037 0.025 0.257 0.020 0.100 0.059 0.086 0.074 0.082

2013 0.06 0.034 0.204 0.014 0.13 0.062 0.043 0.077 0.078

2014 0.081 0.035 0.238 0.114 0.184 0.100 0.097 0.048 0.112

2015 0.134 0.039 0.26 0.099 0.181 0.077 0.068 0.039 0.112

2016 0.091 0.003 0.239 0.136 0.151 0.096 0.064 0.022 0.100

2017 0.120 0.029 0.198 0.098 0.114 0.069 0.064 0.035 0.091

2018 0.138 0.027 0.192 0.082 0.117 0.069 0.063 0.044 0.092

2019 0.138 0.025 0.185 0.077 0.111 0.072 0.071 0.039 0.09

Average 0.061 0.049 0.172 0.093 0.125 0.087 0.090 0.074 0.094

Average annual 
growth rate (%) 12.01 − 7.32 1.96 − 1.77 − 2.34 − 2.40 − 1.63 − 2.49 − 0.61



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19419  | https://doi.org/10.1038/s41598-021-98225-z

www.nature.com/scientificreports/

differentiated schemes based on the actual situation of each region when formulating carbon emissions reduc-
tion policies. For example, the coast regions, as economic leading and industrial transfer out regions, have high 
degree of industrialization and economic development and strong demand for industrial upgrading and envi-
ronmental improvement. Therefore, the governments in these regions should strengthen the current governance 

Table 5.  The difference of CEEIE between regions. 1 is northern coast region; 2 is eastern coast region; 3 is 
southern coast region; 4 is northeast region; 5 is middle Yellow River region; 6 is middle Yangtze River region; 
7 is southwest region; 8 is northwest region.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

Average 
annual 
growth 
rate (%)

1 and 
2 0.077 0.090 0.084 0.045 0.068 0.074 0.048 0.049 0.046 0.037 0.035 0.035 0.046 0.077 0.076 0.112 0.067 0.100 0.108 0.108 0.069 1.80

1 and 
3 0.220 0.237 0.124 0.067 0.106 0.113 0.112 0.138 0.163 0.099 0.163 0.131 0.185 0.151 0.183 0.227 0.201 0.170 0.177 0.176 0.157 − 1.17

1 and 
4 0.070 0.087 0.089 0.084 0.121 0.123 0.099 0.099 0.102 0.110 0.087 0.092 0.113 0.136 0.134 0.137 0.161 0.174 0.18 0.179 0.119 5.07

1 and 
5 0.139 0.126 0.113 0.094 0.133 0.102 0.061 0.061 0.058 0.071 0.069 0.088 0.075 0.112 0.157 0.176 0.149 0.180 0.185 0.179 0.116 1.34

1 and 
6 0.086 0.115 0.107 0.096 0.119 0.115 0.085 0.085 0.094 0.077 0.050 0.075 0.059 0.083 0.134 0.121 0.121 0.125 0.132 0.128 0.100 2.12

1 and 
7 0.094 0.100 0.101 0.079 0.133 0.123 0.075 0.084 0.083 0.072 0.119 0.129 0.128 0.130 0.130 0.111 0.096 0.115 0.116 0.117 0.107 1.16

1 and 
8 0.076 0.103 0.095 0.087 0.134 0.129 0.128 0.141 0.137 0.107 0.154 0.146 0.177 0.185 0.215 0.218 0.206 0.228 0.22 0.215 0.155 5.63

2 and 
3 0.199 0.181 0.098 0.032 0.100 0.125 0.154 0.182 0.208 0.131 0.195 0.148 0.214 0.177 0.199 0.228 0.207 0.163 0.159 0.158 0.163 − 1.21

2 and 
4 0.110 0.096 0.073 0.082 0.126 0.137 0.131 0.130 0.114 0.108 0.091 0.073 0.083 0.078 0.092 0.078 0.108 0.103 0.108 0.105 0.101 − 0.25

2 and 
5 0.156 0.123 0.110 0.094 0.137 0.119 0.100 0.098 0.089 0.100 0.092 0.085 0.078 0.101 0.138 0.139 0.109 0.117 0.119 0.113 0.111 − 1.68

2 and 
6 0.119 0.107 0.095 0.099 0.122 0.126 0.108 0.103 0.098 0.083 0.065 0.061 0.048 0.054 0.092 0.064 0.072 0.061 0.063 0.061 0.085 − 3.46

2 and 
7 0.104 0.100 0.090 0.072 0.136 0.129 0.107 0.109 0.084 0.069 0.122 0.113 0.100 0.071 0.092 0.062 0.047 0.056 0.055 0.057 0.089 − 3.12

2 and 
8 0.140 0.129 0.104 0.081 0.139 0.143 0.136 0.141 0.125 0.114 0.152 0.128 0.151 0.132 0.165 0.153 0.149 0.157 0.150 0.142 0.137 0.08

3 and 
4 0.209 0.223 0.079 0.098 0.175 0.186 0.210 0.233 0.258 0.184 0.238 0.191 0.264 0.225 0.249 0.255 0.296 0.236 0.243 0.243 0.215 0.80

3 and 
5 0.216 0.237 0.116 0.112 0.203 0.161 0.166 0.186 0.205 0.150 0.207 0.177 0.227 0.206 0.262 0.281 0.273 0.238 0.242 0.236 0.205 0.47

3 and 
6 0.223 0.226 0.100 0.117 0.189 0.177 0.182 0.198 0.232 0.153 0.198 0.171 0.212 0.176 0.236 0.230 0.248 0.183 0.186 0.178 0.191 − 1.18

3 and 
7 0.181 0.216 0.094 0.090 0.179 0.181 0.172 0.196 0.208 0.135 0.247 0.203 0.256 0.198 0.223 0.211 0.214 0.167 0.165 0.161 0.185 − 0.61

3 and 
8 0.284 0.259 0.144 0.089 0.188 0.193 0.220 0.248 0.266 0.180 0.289 0.222 0.317 0.267 0.308 0.331 0.326 0.282 0.279 0.275 0.248 − 0.17

4 and 
5 0.158 0.142 0.104 0.105 0.111 0.147 0.134 0.134 0.130 0.148 0.128 0.114 0.120 0.128 0.165 0.154 0.152 0.110 0.107 0.103 0.130 − 2.23

4 and 
6 0.120 0.129 0.088 0.104 0.108 0.127 0.120 0.118 0.112 0.094 0.091 0.090 0.089 0.087 0.110 0.090 0.126 0.100 0.099 0.106 0.105 − 0.65

4 and 
7 0.107 0.113 0.083 0.102 0.151 0.125 0.130 0.127 0.105 0.076 0.113 0.105 0.069 0.039 0.108 0.084 0.111 0.096 0.100 0.110 0.103 0.15

4 and 
8 0.130 0.132 0.108 0.108 0.141 0.143 0.108 0.100 0.100 0.090 0.097 0.105 0.081 0.075 0.137 0.152 0.104 0.100 0.082 0.075 0.108 − 2.85

5 and 
6 0.161 0.146 0.117 0.109 0.069 0.130 0.116 0.117 0.118 0.123 0.098 0.105 0.085 0.105 0.155 0.140 0.131 0.110 0.113 0.114 0.118 − 1.80

5 and 
7 0.142 0.136 0.110 0.106 0.139 0.128 0.111 0.115 0.107 0.112 0.149 0.135 0.130 0.114 0.148 0.131 0.115 0.109 0.113 0.116 0.123 − 1.06

5 and 
8 0.175 0.153 0.126 0.114 0.114 0.142 0.140 0.150 0.145 0.144 0.171 0.146 0.169 0.160 0.180 0.174 0.146 0.110 0.105 0.102 0.143 − 2.80

6 and 
7 0.114 0.125 0.098 0.107 0.135 0.103 0.111 0.109 0.093 0.071 0.120 0.116 0.106 0.082 0.101 0.074 0.083 0.070 0.069 0.076 0.098 − 2.11

6 and 
8 0.132 0.143 0.119 0.117 0.114 0.123 0.100 0.107 0.104 0.109 0.143 0.126 0.152 0.137 0.136 0.157 0.137 0.141 0.131 0.138 0.128 0.23

7 and 
8 0.152 0.131 0.116 0.103 0.154 0.116 0.130 0.130 0.107 0.094 0.134 0.110 0.108 0.085 0.140 0.156 0.142 0.144 0.138 0.145 0.127 − 0.25
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and intervention means to formulate more stringent carbon emissions reduction standards and promote the 
optimization of industrial structure and industrial carbon emissions. Nevertheless, the economic zones located 
in the center and west (such as middle Yellow River region) have relatively low level of economic development, 
and they are also the main areas for undertaking industrial transfer. They thus bear the dual pressures of eco-
nomic development and environmental improvement. The governments in these regions should play better 
roles in supervision and guidance, and take into account the obligation of carbon emissions reduction when 
pursuing economic growth. For example, formulating scientific industrial development plans based on regional 
characteristics and functional positioning, and effectively screening the transferred industries through reason-
able guidance and intervention may avoid the possible negative effects of industrial transfer on environmental 
pollution in the process of economic development.

Table 6.  The contributions to the total difference of CEEIE.

Total difference
Difference within 
region

Difference 
between regions

Transvariation 
intensity between 
regions

G Gw CR (%) Grb CR (%) Gt CR (%)

2000 0.182 0.013 7.18 0.129 70.88 0.04 21.95

2001 0.174 0.015 8.40 0.108 61.77 0.052 29.83

2002 0.118 0.011 9.35 0.064 54.11 0.043 36.54

2003 0.105 0.01 9.58 0.057 54.09 0.038 36.33

2004 0.161 0.013 7.84 0.114 70.61 0.035 21.55

2005 0.154 0.013 8.52 0.095 61.95 0.045 29.53

2006 0.147 0.011 7.84 0.101 69.07 0.034 23.09

2007 0.157 0.012 7.51 0.111 70.98 0.034 21.51

2008 0.159 0.012 7.36 0.117 74.00 0.03 18.64

2009 0.13 0.01 7.46 0.086 66.09 0.034 26.45

2010 0.167 0.012 7.18 0.128 76.51 0.027 16.31

2011 0.145 0.012 7.99 0.103 71.12 0.03 20.90

2012 0.176 0.011 6.29 0.144 82.09 0.02 11.62

2013 0.163 0.01 6.27 0.132 80.70 0.021 13.03

2014 0.193 0.015 7.55 0.138 71.40 0.041 21.05

2015 0.189 0.015 7.79 0.131 69.053 0.044 23.16

2016 0.191 0.013 6.84 0.154 80.51 0.024 12.66

2017 0.176 0.012 6.76 0.145 82.65 0.019 10.59

2018 0.175 0.012 6.92 0.145 82.76 0.018 10.31

2019 0.174 0.012 6.99 0.141 81.48 0.02 11.5

Average 0.162 0.012 7.58 0.117 71.59 0.032 20.83

Average annual growth rate (%) − 0.24 − 0.42 − 0.14 0.47 0.74 − 3.58 − 3.33

Figure 7.  The trend of CR.
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Second, the interregional integration policies for carbon emissions reduction should be made by central 
government to enhance the CEEIE. Most importantly, it is necessary to establish an effective interregional coop-
erative mechanism to draw up a long-range carbon emissions reduction plan. For example, it is practicable to 
establish an integrated management organization for interregional environmental management, or establish an 
interregional environmental protection organization. The agency should formulate a clear action plan for inter-
regional integration of carbon emissions reduction policy, which is not only a comprehensive plan, but must be 
implemented into environmental protection policy of each province in different regions.

Third, the provinces in China should regularly share energy saving and emissions reduction technology and 
exchange the carbon emissions reduction policies. Green technology innovation activities are mainly concen-
trated in the developed regions of China, in which there are better capitals and technology endowment advan-
tages. Therefore, the realization of high-efficiency carbon emissions reduction depends on the deep integration of 
technical endowment between the developed regions and the underdeveloped regions. The conventional sharing 
of the experiences of carbon emissions reduction can make green technologies spread rapidly, which should 
give fully positive role for spillover effects of science and technology of industrial carbon emissions reduction.
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