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Dispensable roles of Gsdmd 
and Ripk3 in sustaining 
IL‑1β production and chronic 
inflammation in Th17‑mediated 
autoimmune arthritis
Yusuke Takeuchi1,3, Daiya Ohara1, Hitomi Watanabe1, Noriko Sakaguchi2, 
Shimon Sakaguchi2, Gen Kondoh1, Akio Morinobu3, Tsuneyo Mimori3,4 & Keiji Hirota1*

Programmed necrosis, such as necroptosis and pyroptosis, is a highly pro-inflammatory cellular event 
that is associated with chronic inflammation. Although there are various triggers of pyroptosis and 
necroptosis in autoimmune tissue inflammation and subsequent lytic forms of cell death release 
abundant inflammatory mediators, including damage-associated molecular patterns and IL-1β, 
capable of amplifying autoimmune Th17 effector functions, it remains largely unclear whether the 
programs play a crucial role in the pathogenesis of autoimmune arthritis. We herein report that 
Gasdermin D (Gsdmd) and receptor interacting serine/threonine kinase 3 (Ripk3)—key molecules 
of pyroptosis and necroptosis, respectively—are upregulated in inflamed synovial tissues, but 
dispensable for IL-1β production and the development of IL-17-producing T helper (Th17) cell-
mediated autoimmune arthritis in SKG mice. Gsdmd−/−, Ripk3−/−, or Gsdmd−/− Ripk3−/− SKG mice showed 
severe arthritis with expansion of arthritogenic Th17 cells in the draining LNs and inflamed joints, 
which was comparable to that in wild-type SKG mice. Despite the marked reduction of IL-1β secretion 
from Gsdmd−/− or Ripk3−/− bone marrow-derived DCs by canonical stimuli, IL-1β levels in the inflamed 
synovium were not affected in the absence of Gsdmd or Ripk3. Our results revealed that T cell-
mediated autoimmune arthritis proceeds independently of the pyroptosis and necroptosis pathways.

Programmed necrosis associated with tissue inflammation is a newly reported concept of a lytic form of cell death 
that has emerged over the past few decades1. Pyroptosis and necroptosis, two distinct forms of programmed 
necrosis, not only play a crucial role in the host defense against infectious pathogens1–3, but have also been high-
lighted in various pathological conditions2,4. Upon TNF signaling, inflammasome activation and cellular stress 
responses, key pyroptotic and necroptotic pathways, respectively, are initiated and finally result in the abundant 
release of pro-inflammatory components, including IL-1, IL-18, and damage-associated molecular patterns 
(DAMPs), which can provoke and augment immune reactions and tissue inflammation1. Gasdermin D (Gsdmd) 
has recently been identified as the executioner of pyroptosis and the cleavage of Gsdmd in its linker domain 
mediated by inflammasome and specific caspase activation induces its oligomerization and forms pores in the cell 
plasma membrane, leading to lytic cell death5,6. On the other hand, receptor-interacting serine/threonine kinase 
3 (Ripk3) is a specific key molecule of necroptosis to activate the pseudokinase mixed lineage kinase domain-like 
(MLKL) protein, which finally executes cell death7,8. Recent reports using Gsdmd−/− or Ripk3−/− mice revealed 
a pivotal role of pyroptosis and necroptosis in several tissue injuries and disease models, such as non-alcoholic 
hepatitis, familial Mediterranean fever (FMF), experimental autoimmune encephalomyelitis (EAE), cerulean-
induced pancreatitis, ischemia/reperfusion injury, and kidney transplantation9–14. Thus, the aberrant activation 
of programmed cell death exacerbates the tissue inflammation associated with acute injuries and innate cell 
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activation. However, it remains elusive whether programed necrosis plays a crucial role in the pathogenesis of 
T cell-mediated autoimmune diseases such as rheumatoid arthritis (RA).

RA, one of the most common human autoimmune diseases, affects approximately 1% of the world popula-
tion, and is characterized by bone-destructive chronic polyarthritis15. Although the precise pathophysiology of 
RA remains to be determined, it is widely appreciated that CD4+ T helper (Th) cells play a pivotal role in the 
pathogenesis of RA; this is supported by accumulating evidence, for example, MHC class II haplotype human 
leukocyte antigen (HLA)-DRB1 was identified as the strongest disease susceptibility gene and a high efficacy 
of cytotoxic T lymphocyte antigen 4 (CTLA4)-Ig blocking T cell co-stimulatory molecules for the treatment of 
RA15–17. Chronic synovial inflammation can accompany the cell death of proliferated fibroblast-like synoviocytes 
(FLSs) and recruited immune cells as well as pro-inflammatory cytokine production and the release of DAMPs, 
presumably by pyroptosis and necroptosis due to various triggers that are present in inflamed joints, including 
TNF and endogenous inflammasome ligands. Although it is considered that these events can amplify chronic 
inflammation and joint pathology18, it is unclear how a type of programed necrosis contributes to autoimmune 
arthritis.

SKG mice, a murine model of RA, spontaneously develop IL-17-producing T helper (Th17) cell-dependent 
autoimmune arthritis, resembling the immunopathology of chronic synovial inflammation in RA patients19,20. We 
have previously shown that DAMPs, including the alarmin IL-33, augment chronic inflammation in the inflamed 
joints of SKG mice, at least in part by stimulating tissue-resident synovial innate lymphoid cells (ILCs)21. Effector 
Th17 cells together with activated FLSs and ILCs orchestrate chronic arthritis by secreting abundant proinflam-
matory cytokines, including IL-6, IL-17, GM-CSF, and TNF, and these inflammatory cellular responses and their 
signaling pathways potentially trigger necrosis. Because lytic forms of programed necrosis can release abundant 
inflammatory mediators, including DAMPs and IL-1β, which is capable of amplifying the autoimmune Th17 
effector functions and joint inflammation, in this study, SKG mice were used as a suitable model to investigate 
whether programed necrosis contributed to the differentiation and expansion of arthritogenic Th17 cells and 
the development of autoimmune arthritis.

Results
The generation of Gsdmd−/− SKG mice and CD4+ T cell profiles in Peyer’s patches under a home-
ostatic state.  To investigate the role of Gsdmd in the pathogenesis of autoimmune arthritis, we first evalu-
ated the Gsdmd expression in whole synovial tissues from healthy and arthritic SKG mice. When arthritis was 
induced in SKG mice, the expression of Gsdmd tended to be upregulated in the inflamed joints (Fig. 1A). We 
next assessed the Gsdmd expression in CD4+ T cells, CD11b+Ly6G+ neutrophils, CD11b+Ly6G-Ly6Chigh inflam-
matory monocytes and CD45-CD31-Podoplanin+ FLSs sorted from the inflamed joints, each of which are the 
key cellular components that can augment chronic joint inflammation. The expression of Gsdmd in neutrophils 
and monocytes was higher in comparison to CD4+ T cells and FLSs, indicating the possible relevance of Gsdmd 
in these myeloid cells to the pathophysiology of SKG arthritis (Fig. 1B). We then generated Gsdmd−/− SKG mice 
on a BALB/c background by using CRISPR/Cas9 system to examine the effects of Gsdmd on the differentiation 
and maintenance of CD4+ T cell subsets in homeostatic and inflammatory conditions (Supplementary Fig. 1A). 
As reported previously in a C57BL/6 background5,10,11, Gsdmd−/− SKG mice grew up normally like wild-type 
(WT) SKG mice and the deletion of Gsdmd had no effect on their development, lifespan, or fertility (data not 
shown). Loss of the Gsdmd function in pyroptosis was confirmed by in vitro assay of LPS transfection into bone 
marrow-derived dendritic cells (BMDCs) from Gsdmd−/− Rag2−/− mice, which showed a remarkable reduction of 
the capacity for IL-1β release in comparison to BMDCs from WT Rag2−/− mice (Fig. 1C), as previously reported 
using other Gsdmd−/− strains5. To explore whether the physiological Gsdmd expression levels have any impact 
on CD4+ T cell profiles under a homeostatic condition, we assessed the Gsdmd expression in normal tissues from 
BALB/c mice maintained under specific-pathogen-free (SPF) conditions and found that the small intestine is an 
organ that constitutively expresses the high levels of Gsdmd, and the expression was found to be independent of 
the gut microbiota and bacterial components based on the comparable expression of Gsdmd in germ-free (GF) 
mice (Fig. 1D). Because various CD4+ T cell subsets reside in Peyer’s patches of the small intestine, we examined 
the proportions of physiological Th1, Th17 and regulatory T (Treg) cells in Peyer’s patches of WT and Gsdmd−/− 
SKG mice under SPF conditions. Gsdmd−/− SKG mice showed almost the same CD4+ T cell profiles in terms of 
the expression of IL-17, GM-CSF, IFN-γ and Foxp3 in comparison to WT SKG mice (Fig. 1E, F). Taken together, 
these results indicated that Gsdmd had little impact on the differentiation and maintenance of physiological 
CD4+ T cell subsets under a homeostatic state.

Gsdmd is dispensable for the induction and development of SKG arthritis.  We induced arthritis 
in WT and Gsdmd−/− SKG mice and assessed the clinical phenotypes and the development of arthritogenic Th17 
cells. The severity of arthritis did not differ between the two groups of mice (Fig. 2A). Notably, the levels of IL-1β 
in the synovium from the inflamed joints of the two groups were comparable, suggesting that IL-1β could be 
produced in a Gsdmd-independent mechanism (Fig. 2B). We then assessed the effects of Gsdmd on CD4+ T 
cell profiles after the induction of arthritis. The frequencies of IFN-γ-, GM-CSF-, IL-17-, and Foxp3-expressing 
subsets in CD4+ T cells from inflamed joints or draining lymph nodes (LNs) were almost unchanged between 
the groups (Fig. 2C, D). We also evaluated the onset and severity of arthritis induced by the adoptive transfer of 
CD4+ T cells from WT or Gsdmd−/−SKG mice into Rag2−/− or Gsdmd−/−Rag2−/− mice, which enables us to dissect 
the specific role of Gsdmd in CD4+ T cells and non-CD4+ T cells in recipient mice, separately (Fig. 2E). Like 
the arthritis phenotype in Gsdmd−/− SKG mice, the disease progression curves of arthritis were comparable in 
the four groups. Furthermore, the differentiation and expansion of arthritogenic Th17 cells in inflamed joints 
and draining LNs were not affected in Gsdmd-deficient conditions (Fig. 2F–H). These data demonstrated that 
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Gsdmd is dispensable in the induction of arthritogenic Th17 cells and the development of chronic arthritis in 
SKG mice.

The generation of Ripk3−/− SKG mice and CD4+ T cell profiles in Peyer’s patches under a home-
ostatic state.  Next, we similarly investigated a role of Ripk3 in CD4+ T cell homeostasis and the SKG 
arthritis model. Consistent with the previous report22, the expression of Ripk3 was significantly increased in 
inflamed joints (Fig. 3A). We further assessed the Ripk3 expression in CD4+ T cells, CD11b+Ly6G+ neutrophils, 
CD11b+Ly6G-Ly6Chigh inflammatory monocytes and CD45-CD31-Podoplanin+ FLSs sorted from the inflamed 
joints. Ripk3 was widely expressed by those key inflammatory cells in SKG arthritic joints, and the expression 
pattern was different from Gsdmd (Fig. 3B). We then generated Ripk3−/− SKG mice on a BALB/c background 
using a CRISPR/Cas9 system to examine the effects of Ripk3 on the differentiation and maintenance of CD4+ 
T cell subsets in homeostatic and inflammatory conditions (Supplementary Fig. 1B). Like Gsdmd-/- SKG mice, 
Ripk3−/− SKG mice showed no overt phenotypic changes in development or longevity. We confirmed the loss 

Figure 1.   The Gsdmd expression in the tissues and inflammatory cells and CD4 + T cell profiles in Gsdmd-/- 
SKG mice. (A) Quantitative RT-PCR to analyze the expression of Gsdmd in whole synovial tissues of healthy and 
inflamed joints (n = 4 each). (B) Quantitative RT-PCR to detect the Gsdmd mRNA expression in CD4+ T cells, 
CD11b+Ly6G+ neutrophils, CD11b+Ly6G-Ly6Chigh inflammatory monocytes and CD45-CD31- Podoplanin+ 
FLS in inflamed joints (n = 4 each). (C) The IL-1β concentration of culture supernatant of Pam3CSK4-primed 
BMDCs at 16 h after LPS transfection (n = 4 each). (D) Quantitative RT-PCR to detect the expression of Gsdmd 
in the indicated organs of BALB/c mice housed under SPF or germ-free conditions (n = 4 each). (E,F) Flow 
cytometry of IL-17A+, GM-CSF+, IFN-γ+ and Foxp3+ cells in CD4+ T cells in Peyer’s patches of age-matched 
healthy WT and Gsdmd−/− SKG mice (n = 8 each). The vertical bars denote the SD in panel (A–C,F) and 
SEM in panel (D). *P < 0.05. Data are pooled from two independent experiments in panels (A–D) and three 
independent experiments in panel (F).
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Figure 2.   The dispensable role of Gsdmd in the development of autoimmune arthritis. (A) The arthritis scores 
of WT and Gsdmd−/− SKG mice (n = 8 each) after the injection of mannan (20 mg). (B) The IL-1β concentration 
of synovial tissues from inflamed joints. (C,D) Flow cytometry of IL-17A+, GM-CSF+, IFN-γ+ and Foxp3+ cells 
in CD4+ T cells in draining LNs and inflamed joints of WT and Gsdmd−/− SKG mice at 10 weeks after mannan 
injection (n = 8 each). (E) Experimental design of adoptive transfer of CD4+ T cells from WT or Gsdmd−/− 
SKG mice into Rag2−/− or Gsdmd−/− Rag2−/− mice. (F) The arthritis scores of the four groups (a-d) shown in 
(E) (n = 9–10 each). (G,H) Flow cytometry of IL-17A+, GM-CSF+, IFN-γ+ and Foxp3+ cells in CD4+ T cells in 
draining LNs and inflamed joints of the four groups of mice at 12 weeks after cell transfer (n = 8–10 each). The 
vertical bars denote the SD in panels (B,D) and SEM in (A,F). The horizontal line in panel (H) denotes the 
mean. *P < 0.05. Data are pooled from two independent experiments in panels (A,B,D,F,H).
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of the Ripk3 function in necroptosis by culturing BMDCs from Ripk3−/− Rag2−/− mice with LPS, which showed 
a significant reduction in the production of IL-1β in comparison to WT Rag2−/− mice (Fig. 3C), as previously 
reported23. When the physiological Ripk3 expression levels in normal tissues from BALB/c mice maintained 
under SPF or GF conditions were assessed, the Ripk3 expression was relatively high in the gut, LNs, and spleen 
(Fig. 3D). Among them, the expression of Ripk3 in the small intestine was likely controlled by the gut microbiota 
because of the specific reduction of its expression in GF mice (Fig. 3D). However, we found no difference in the 
frequency of the IL-17A, GM-CSF, IFN-γ and Foxp3 expression in the CD4+ T cells of Peyer’s patches between 
WT and Ripk3−/− SKG mice (Fig. 3E, F). Taken together, these data indicated that Ripk3 did not affect the dif-
ferentiation or maintenance of physiological CD4+ T cell subsets under a homeostatic state.

Ripk3 is dispensable for the induction and development of SKG arthritis.  We next investigated 
the role of Ripk3 in the induction and development of SKG arthritis. We induced arthritis in WT and Ripk3−/− 
SKG mice. There was no significant difference in the clinical arthritis scores of the two groups of mice (Fig. 4A). 
Unlike the in vitro assay, IL-1β could be secreted in the inflamed synovium of Ripk3−/− SKG mice (Fig. 4B). The 
frequencies of IFN-γ-, GM-CSF-, IL-17-, and Foxp3-expressing subsets in CD4+ T cells in inflamed joints and 
draining LNs were almost comparable between the groups (Fig. 4C, D). In addition, adoptive transfer experi-

Figure 3.   The Ripk3 expression in tissues and inflammatory cells and CD4 + T cell profiles in Ripk3−/− SKG 
mice. (A) Quantitative RT-PCR to detect the expression of Ripk3 in whole synovial tissues of healthy and 
inflamed joints (n = 4 each). (B) Quantitative RT-PCR to detect the Ripk3 mRNA expression in CD4+ T cells, 
CD11b+Ly6G+ neutrophils, CD11b+Ly6G-Ly6Chigh inflammatory monocytes and CD45-CD31- Podoplanin+ 
FLS in inflamed joints (n = 4 each). (C) The IL-1β concentration of culture supernatant of  BMDCs at 16 h after 
LPS stimulation (n = 4 each) (D) Quantitative RT-PCR to detect the expression of Ripk3 in the indicated organs 
of BALB/c mice housed under SPF or GF conditions (n = 4 each). (E,F) Flow cytometry of IL-17A+, GM-CSF+, 
IFN-γ+ (n = 3 each) and Foxp3+ cells (n = 4 each) in CD4+ T cells in Peyer’s patches of WT and Ripk3−/− SKG 
mice. The vertical bars denote the SD in panel (A–C,F) and SEM in panel (D). *P < 0.05. Data are pooled from 
two independent experiments in panels (A–D,F).
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Figure 4.   The dispensable role of Ripk3 in the development of autoimmune arthritis. (A) Arthritis scores of 
WT (n = 9) and Ripk3−/− SKG mice (n = 8) after the injection of mannan (20 mg). (B) The IL-1β concentration 
of synovial tissues from inflamed joints. (C,D) Flow cytometry of IL-17A+, GM-CSF+, IFN-γ+ and Foxp3+ 
cells in CD4+ T cells in draining LNs and the inflamed joints of WT (n = 9) and Ripk3−/− SKG mice (n = 8) at 
10 weeks after mannan injection. (E) Experimental design of the adoptive transfer of CD4+ T cells from WT or 
Ripk3−/−SKG mice into Rag2−/− or Ripk3−/−Rag2−/− mice. (F) The arthritis scores of the four groups (a–d) shown 
in (E) (n = 9 or 13). (G,H) Flow cytometry of IL-17A+, GM-CSF+, IFN-γ+ and Foxp3+ cells in CD4+ T cells in 
draining LNs and inflamed joints of the four groups of mice 12 weeks after cell transfer (n = 9 or 13). The vertical 
bars denote the SD in panels (B,D) and SEM in (A,F). The horizontal line in panel (H) denotes the mean. 
*P < 0.05, **P < 0.01. Data are pooled from two independent experiments in panels (A,B,D,F,H).
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ments using CD4+ T cells from WT or Ripk3−/−SKG mice also revealed no significant differences in the clinical 
arthritis scores or the proportions of arthritogenic Th17 cells in draining LNs and inflamed joints from the 
recipient Rag2−/− or Ripk3−/−Rag2−/− mice, albeit a marginal decrease in the proportions of IFN-γ- and GM-
CSF-producing Th cells in the inflamed joints (Fig. 4E–H). Taken together, these data indicated that Ripk3 is 
dispensable in the induction of pathogenic Th17 cells and the development of chronic arthritis in SKG mice.

Crosstalk or the compensatory role between Gsdmd and Ripk3 is not required for the induc-
tion and development of SKG arthritis.  Because a compensatory role and context-dependent interac-
tion between Gsdmd and Ripk3 have been described24,25, we generated Gsdmd−/− Ripk3−/− SKG mice by crossing 
Gsdmd−/− SKG and Ripk3−/− SKG mice to assess whether Ripk3 or Gsdmd could compensate for a Gsdmd- or 
Ripk3-deficient condition, respectively, in the development of autoimmune arthritis, and evaluated their arthri-
tis phenotypes and the development of Th17 cells in Gsdmd and Ripk3 double-deficient conditions. The arthritis 
scores of Gsdmd−/− Ripk3−/− SKG mice after the induction of arthritis were unchanged from those in WT SKG 
mice (Fig. 5A). The differentiation and expansion of IFN-γ-, GM-CSF-, and IL-17-producing Th subsets from 
the inflamed joints and draining LNs of Gsdmd−/− Ripk3−/− SKG mice were similar to those of WT SKG mice, 
albeit with a marginal decrease in the proportions of Foxp3+ Treg cells (Fig. 5B, C). Collectively, these results 
further strengthened the concept that both Gsdmd and Ripk3 and their interactions are dispensable for the 
induction and development of chronic autoimmune arthritis in SKG mice.

Discussion
Although accumulated evidence strongly supports that pyroptosis and necroptosis have evolved to combat 
against infectious pathogens that escape detection by infection-induced apoptosis, particularly intracellular 
bacteria such as Shigella flexneri, the subsequent acute tissue inflammation and pro-inflammatory cytokine 
production triggered by the programmed cell death could mediate the immunopathology through the aberrant 
activation of various inflammatory cells1–4,9–14. It is noteworthy that the Ripk3 and MLKL—molecules that are 
specifically involved in necroptosis—were reported to be upregulated in the inflamed synovium of collagen-
induced arthritis, indicating a possible contribution of necroptosis to the formation of severe synovitis22. How 
programmed necrosis contributes to T cell-mediated autoimmune arthritis remains poorly understood. Thus, 
one of the key questions we addressed in the present study was whether the pyroptosis and necroptosis pathways 
would exacerbate chronic inflammation, in particular sterile synovial inflammation. Using Gsdmd−/−, Ripk3−/−, 
or Gsdmd−/− Ripk3−/− mice, we demonstrated that despite abundant cell death in inflamed joints, pyroptosis and 
necroptosis are not required for the expansion of arthritogenic Th17 cells or the progression of Th17-mediated 
autoimmune arthritis.

Inflammatory mediators, including DAMPs and pro-inflammatory cytokines released by pyroptosis and 
necroptosis could amplify Th17 functions; however, their modulation of pathogenic Th17 cells seems to be 
dependent on the type of inflammation and the target organ. Lytic forms of cell death seemed to augment sys-
temic auto-inflammation in an FMF model, and acute tissue injuries in ischemia and transplantation models 
through the excess production of IL-1β and DAMPs, which could mediate pathology by the activation of innate 
immune cells10,12–14. Given that the pathogenesis of these models is less dependent on adaptive T cell functions, 
pyroptosis and necroptosis are probably involved in the exacerbation of acute inflammation and tissue injuries 
are often autonomously amplified by the activation of innate immune and mesenchymal cells. On the other 
hand, the role of pyroptosis and necroptosis in T cell-mediated autoimmune pathology may be dispensable or 
limited in a specific inflammatory context. EAE is an exceptional model which relies on Gsdmd for the develop-
ment of Th17-mediated autoimmune neuroinflammation. Mechanistically, Gsdmd-dependent pyroptosis of the 
peripheral myeloid cells is necessary for the activation and differentiation of pathogenic Th cells in peripheral 
lymphoid tissues, which in turn migrate into the target spinal cord to cause chronic tissue inflammation11. 
Although pathogenic Th17 cells predominantly drive SKG arthritis and EAE, the differential requirement of 
Gsdmd in the models may be attributed how these diseases are induced. For EAE, immunization with complete 
Freund’s adjuvant and pertussis toxin, potent bacterial compounds, may be a strong inducer of pyroptosis in 
myeloid cells, following the activation of inflammasomes. In contrast, SKG mice are a spontaneous arthritis 
model and can be induced by the injection of mannan, which is a fungal compound distinct from that used in 
EAE and may not be involved in the activation of the pyroptosis pathway. Therefore, T cell priming in peripheral 
LNs between the models is probably different and Gsdmd was not required for the induction of arthritogenic 
Th17 cells in the LNs. However, it is tempting to speculate that persistent IL-1β production and Th17-mediated 
chronic inflammation in the target tissues of EAE or SKG mice may be similarly independent of pyroptosis and 
necroptosis, despite abundant cell death occurring in the inflamed tissue.

Crosstalk among different forms of programmed cell death, including apoptosis and necrosis, has recently 
been highlighted as a new aspect of interactions and compensatory roles between the signaling pathways of 
the distinct programs24–26. Although there are various triggers (TNF, endogenous inflammasome ligands, etc.) 
of pyroptosis and necroptosis in inflamed joints, our data using Gsdmd−/− Ripk3−/− SKG mice clearly excluded 
the compensatory role between Gsdmd and Ripk3 for the development of autoimmune arthritis and further 
strengthened our claim that they are not involved in Th17 cell-mediated chronic inflammation. However, con-
sidering the IL-1β production capability in Gsdmd−/− and Ripk3−/− mice and its crucial role in SKG arthritis27, 
unappreciated cellular mechanisms that can also process IL-1β maturation and release may be present in sterile 
tissue inflammation (e.g., the synovium and central nervous system)28,29.

In contrast, given that Gsdmd−/− and Ripk3−/− mice do not show an overt phenotype in development or physi-
ology, inhibitors of Gsdmd or Ripk3 may be a potential therapeutic target for the treatment of innate immune 
cell-mediated tissue injuries and systemic auto-inflammation because the inhibitors could have limited adverse 
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effects with regard to the blocking of physiological functions and T cell-mediated immunity. Further studies are 
needed to investigate the unknown mechanisms through which programmed cell death modalities are involved 
in the production of pro-inflammatory mediators (e.g., IL-1β), and the amplification of chronic tissue inflam-
mation in autoimmune diseases.
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Figure 5.   The dispensable role of crosstalk between Gsdmd and Ripk3 in the development of autoimmune 
arthritis. (A) Arthritis scores of WT (n = 9) and Gsdmd−/− Ripk3−/− SKG mice (n = 10) after the injection of 
mannan (20 mg). (B,C) Flow cytometry of IL-17A+, GM-CSF+, IFN-γ+ and Foxp3+ cells in CD4+ T cells in 
draining LNs and inflamed joints of WT (n = 9) and Gsdmd−/− Ripk3−/− SKG mice (n = 10). The vertical bars 
denote the SD in panel (C) and the SEM in (A). **P < 0.01. Data are pooled from two independent experiments 
in panels (A,C).
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Materials and methods
Mice.  SKG and Rag2−/− mice were described previously21. Gsdmd−/− and Ripk3−/− SKG mice were generated 
using a CRISPR/Cas9 system. Gsdmd−/− Rag2−/−, Ripk3−/− Rag2−/−, and Gsdmd−/− Ripk3−/− SKG were generated by 
crossing the above described strains. BALB/c mice housed under SPF and GF conditions were purchased from 
CLEA Japan. All animal experiments were approved by the Ethical Committee of Institute for Frontier Life and 
Medical Sciences and Graduate School of Medicine, Kyoto University, and were performed in compliance with 
the institutional and ARRIVE guidelines.

Induction of arthritis.  Arthritis was induced by a single intraperitoneal injection of mannan (20  mg; 
Sigma-Aldrich) in SKG mice, or by adoptive transfer of SKG CD4+ T cells (intravenously) into recipient mice, 
and was scored as described previously19,20,30. For the adoptive transfer of CD4+ T cells, CD4+ T cells were posi-
tively selected from the spleen and peripheral LNs using MACS CD4 microbeads and an LS column (Miltenyi 
Biotec) according to the manufacturer’s instruction, and 2 × 106 CD4+ T cells were transferred into each recipient 
mouse intravenously via the tail vein.

Single cell suspension from synovial tissue and flow cytometry.  The collected synovial tissues 
were cut into small pieces, followed by enzymatic digestion for 1 h at 37 °C in 3 ml of IMDM buffer containing 
2% FBS (GIBCO) with 300U of collagenase I and collagenase IV (Worthington). Digested tissues were then 
mashed through a 70-μm mesh filter. The resultant single cell suspension of the synovial tissues was used for flow 
cytometry and cell sorting experiments. For intracellular staining of cytokines, cells were restimulated for 2.5 h 
with phorbol 12-myristate 13-acetate (50 ng/ml; Sigma-Aldrich) and ionomycin (500 ng/ml; Sigma-Aldrich) in 
the presence of Brefeldin A (1 μg/ml; Merck) in IMDM (Sigma-Aldrich) supplemented with 5% FBS (GIBCO), 
2-mercaptoethanol (GIBCO), GlutaMAX (GIBCO), sodium pyruvate (GIBCO), MEM NEAA (GIBCO) and 
penicillin–streptomycin (Nacalai Tesque). Cells were then fixed with 3.7% formaldehyde (Sigma-Aldrich), fol-
lowed by permeabilization with 0.1% NP-40 (Nacalai Tesque), and staining with antibodies against cytokines. 
Foxp3 was stained using the Foxp3/Transcription Factor Staining Buffer Set (eBioscience) in accordance with 
the manufacturer’s instructions. The following monoclonal antibodies were used for flow cytometry (BD FAC-
SCantoII) and cell sorting (SONY MA900): anti-mouse CD4 (RM4-4), CD11b (M1/70), CD45.2 (104), Ly-6G 
(1A8), Podoplanin (8.1.1), IL-17A (TC11-18H10.1), GM-CSF (MP1-22E9), and IFN-γ (XMG1.2), all from Bio-
legend, anti-mouse Ly-6C (AL-21), CD31 (390) and PE-Streptavidin, all from BD Bioscience, anti-mouse Foxp3 
(FJK-16 s) from eBioscience. All FACS data were analyzed using the FlowJo software program (Tree Star, Inc.).

Quantitative RT‑PCR.  Total RNA from tissues and sorted cells was extracted using TRIzol (InvitroGen) 
and was reverse-transcribed with SuperScript VILO (Invitrogen). The resultant cDNA was used for quanti-
tative RT-PCR on a Light cycler 480 (Roche) or StepOnePlus (Applied Biosystems) using qPCR master mix 
(TOYOBO) or Luna Universal qPCR Master Mix (NEB) and TaqMan Gene Expression Assays (Thermo Fisher: 
Gsdmd, Mm00509958_m1; Ripk3 Mm00444947_m1; Hprt, Mm03024075_m1). The expression levels of target 
genes were quantified after normalization to the expression of Hprt as a housekeeping gene.

Generation of bone marrow‑derived dendritic cells (BMDCs).  Bone marrow cells were collected 
from the femur and tibia and red blood cells were lysed with RBC lysis buffer (Sigma-Aldrich). Resultant cells 
were cultured at 5 × 105/ml in RPMI containing 10% FBS, 2-mercaptoethanol and penicillin–streptomycin with 
20 ng/ml GM-CSF for 6 days to differentiate into BMDCs for in vitro assays.

Measurement of IL‑1β from BMDCs and joint tissues.  BMDCs were cultured in 96-well plates at 
1 × 105 cells per well and either treated with 1 μg/ml LPS (InvivoGen), or transfected with 1 μg/ml LPS using 
0.3% v/v FuGENE HD (Promega) after priming with 1 μg/ml Pam3CSK4 (InvivoGen) for 6 h. At 16 h after LPS 
stimulation, the IL-1β concentrations in the culture supernatants were measured using a Cytometric Bead Array 
(BD Biosciences) in accordance with the manufacturer’s instructions. As for the measurement of IL-1β in the 
synovium, synovial tissues were resected from the inflamed joints, cut into small pieces, and the tissue weight 
was measured. The resultant synovial tissues were placed into 500 μl of D-PBS (−) (Nacalai Tesque), then vor-
texed and centrifuged. The collected supernatants were then used for the measurement of the IL-1β concentra-
tion, which was performed using a Cytometric Bead Array, and the results were normalized with tissue weights 
of individual samples.

Statistical analysis.  Statistical analyses were performed using the GraphPad PRISM7 software program 
(GraphPad Software). A two-tailed t-test was used for the statistical analysis. A two-way ANOVA followed by 
Tukey’s multiple comparisons test was used for the analysis of grouped data. Data are shown as the mean ± stand-
ard error of mean (SEM) or mean ± standard deviation (SD). P values of < 0.05 were considered to indicate sta-
tistical significance.

Data availability
The datasets analyzed during the current study are available from the corresponding author on reasonable 
request.
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