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From data to complex network 
control of airline flight delays
Xiang Niu1,2, Chunheng Jiang1,2, Jianxi Gao1,2, Gyorgy Korniss1,3 & 
Boleslaw K. Szymanski1,2,4*

Many critical complex systems and networks are continuously monitored, creating vast volumes of 
data describing their dynamics. To understand and optimize their performance, we need to discover 
and formalize their dynamics to enable their control. Here, we introduce a multidisciplinary framework 
using network science and control theory to accomplish these goals. We demonstrate its use on a 
meaningful example of a complex network of U.S. domestic passenger airlines aiming to control flight 
delays. Using the real data on such delays, we build a flight delay network for each airline. Analyzing 
these networks, we uncover and formalize their dynamics. We use this formalization to design the 
optimal control for the flight delay networks. The results of applying this control to the ground truth 
data on flight delays demonstrate the low costs of the optimal control and significant reduction of 
delay times, while the costs of the delays unabated by control are high. Thus, the introduced here 
framework benefits the passengers, the airline companies and the airports.

Increasingly, dynamics of complex networks are defined by vast data sets collected about their activities via 
monitoring and sensing  devices1–4. This creates a challenge for controlling such networks, since the control 
requires formal definition of network dynamics. We present a framework for deriving the formal definition of a 
network’s dynamics from data about its evolution. We show how to use this framework to provide a description 
of network failure  dynamics5. The main contribution of this paper is to present application of this framework to 
a meaningful and complex example. Accordingly, we apply our new framework to the passenger airline networks 
of the United States. We focus on controlling one of the most common and frequent failures of these networks, 
which are flight delays.

Air traffic is an essential part of human mobility and global trade, but now it is outstripping the capacity and 
becoming frequently congested. Passenger airline flight delays and cancellations are prevalent and have socio-
economic and environmental  consequences6–8. Hence, these delays have caught the attention of decision makers 
and researchers from different  fields9,10. To rein in the associated cost and increase the on-time performance of 
air traffic requires understanding of the causes of flight  delays11. There have been extensive relevant  studies2,12–16 
that concentrate on addressing two core problems: how to model and how to mitigate the passenger airline flight 
delays. For example, Qin et al.17 proposed an agent-based model to describe the flight delay propagation mecha-
nism, and applied the genetic algorithm to reschedule flights. Many approaches attempt to develop predictive 
models for flight delays, or for inferring flight delays causally. Hansen and  Hsiao18 formulated an econometric 
model of the U.S. airline flight delays to account for direct causes, such as arrival queuing, weather conditions, 
and indirect ones, like seasonal influences and internal airline regulation and procedural changes. Among the 
vast body of approaches to predictive models of flight  delays14,19, such as statistical  analysis3,4,11,18, probabilistic 
 models20–22, operational  research23,24 and machine learning  methods2,25,26, the network approaches based on com-
plex network  science27 have achieved much progress. Many techniques to model the mechanisms of flight delays 
employ direct acyclic  graphs28, propagation  trees29, Bayesian  networks20,22 ot network-epidemic  processes30,31. As 
for the mitigation strategies, with the exception of the traditional traffic  management32, so far no effective and 
practical strategy has been found. There are some valuable discussions about renting spare aircraft to prevent 
and recover from schedule disruptions  in33,34. The conclusions pointed to potentially prohibitive costs to airlines 
that may discourage them from adapting this approach to improve their on-time performance. In contrast, our 
analysis accounting for actual costs and past flight delays, shows that this aircraft renting may be economically 
viable in many airports and for many airlines.

Our framework involves the control of processes on networked  systems35–38, which is well studied and 
achieves great success in many contexts, such as epidemic  spreading39,40, information  transmission41, and network 
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 resilience37,42–44. However, very few papers focus on mitigating delay propagation in airport networks. Among 
those with such focus the most relevant is Ref.8 whose approach models air traffic delay dynamics as topology 
transitions among a discrete modes of airport networks. Each such mode is associated with one characteristic 
airport topology. However, this approach has a limited capacity to deal with the complexity of air traffic networks. 
The airport networks built on such a scheme fail to recognize diverse interactions beyond pairs of airports, such 
as the interactions between pairs of flights, flights and airports. Another disadvantage is the expensive control 
of the mode transitions that usually require large infrastructure and technology investments. In contrast, our 
approach does not rely on any assumptions about the airport infrastructure. We build a multi-modal networked 
system over the flights and airports. It enables a flexible and effective control of the air traffic. Moreover, physical 
aspects of our control strategy are inexpensive, making it economical to apply.

Here we contribute a new solution by building a multidisciplinary framework using network science and 
control theory consisting of two components: (i) a model of dynamic of flight delays and (ii) a method for defin-
ing an optimal control strategy for this dynamic. The framework uses readily available ground truth data about 
flight delays currently collected by each airline to report it to the U.S. Department of Transportation’s Bureau of 
Transportation Statistics. We infer from this data the parameters for the model of flight dynamics. The proposed 
real time control strategy includes a economic feasibility test for renting a replacement aircraft in each airport. It 
requires that the cost of renting is lower than the cost of preventable delays. Our results demonstrate that this 
framework can effectively alleviate the delay propagation and significantly reduce the costs of delays to pas-
sengers, airlines and airports.

Methods
Flight delay networks. For each airline, we construct a flight delay network from historical data. It consists 
of graphs representing single aircraft flight delayed networks.

Figure 1A shows the flowchart of our framework for flight delay mitigation. The Flight Delays and Cancella-
tions (FDC) data is the source for designing Flight Delay Network for each airline studied here and for the CARP 
model to estimate probabilities of model state transition, and costs of delays and aircraft rental. Using the CARP 
model, we formally define dynamics of the system, and its linearization and then apply the Linear Quadratic 
Regulator (LQR) to find optimal control. In the real time system, the FDC data will be available directly in real 
time from the airline running the system, simplifying processing.

Figure 1B shows a sample graph of a single aircraft flying a circular route consisting of three flights between 
three airports: the first six hour flight N407US flies from San Francisco International Airport (SFO) to John F 
Kennedy International Airport (JFK), the second eight hour flight N584US, from JFK to Los Angeles Interna-
tional Airport (LAX), and the closing loop third four hour flight N171US, from LAX to SFO. As usual for air 
transportation  networks45, the flights are represented by nodes (each colored differently in the entire figure) and 
the airports by edges connecting a flight arriving into this airport to a flight departing later from this airport. 
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Figure 1.  An illustration of the optimal control of a sample single aircraft flight delay network. (A) The 
flowchart of our framework for flight delay mitigation. The Flight Delays and Cancellations (FDC) data is the 
source for designing Flight Delay Network for each airline studied here. Using the CARP model, we formally 
define dynamics of the system, and its linearization and then apply the Linear Quadratic Regulator (LQR) to 
find optimal control. (B) A sample single aircraft flight delay network whose circular route includes three flights 
between three airports. Flight 1 N407US is selected as the driver node in controlling the flight delays. The pie 
shows the fixed cost of renting a spare twin-engine Boeing 737-401 to replace, if needed, the aircraft delayed 
in flight N407US from SFO to JFK airport. (C) The scheduled time of each individual flight, the actual flight 
time with and without control, under the assumption that some flights suffer delays. The details of these fights 
are discussed in the main text. (D) This part shows the delay time dh and cost C of each flight in the network 
produced by simulations with and without optimal control.
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The pie shows the fixed cost of renting a sample aircraft. This cost includes depreciation, rentals, insurance, and 
other costs (see Table 4-3 for detailed cost items and Table 4-6 for estimated costs in Ref.46).

Figure 1C shows the scheduled time of each individual flight, the actual flight time with and without control. 
The first panel shows flights without delays, while second and third panels with delays without and with control 
(see Supplementary Table S1 for detailed information about the internal, external and total delays and boarding, 
departure and arrival times of each flight). In this example, we assume that the first flight delays departure for 
6 hrs because aircraft assigned to this flight undergoes an urgent maintenance procedure. This delay causes the 
internal delay for the first flight, and the external delays for the second and third flights (see Data Driven Dynam-
ics in Methods for specific definition of internal and external delays). Moreover, the second flight is assumed to 
have 2 hrs of internal delay. As a result, it imposes 8 hrs of external delay on the third flight. Then the next day, 
the first flight suffers additional 6 hrs of internal delay and arrives in JFK 14 hrs behind the schedule. If the airline 
rents an aircraft for the first flight, it can go on time for passengers connecting with the second flight already in 
the airport, while the original aircraft is under maintenance. Therefore, a 6 hour internal delay for the first flight 
and three external delays of other flights will be avoided for all their passengers. Ultimately, four flights would 
be spared in total at 24 hrs of external delays and the next day flight 6 hrs of internal delay, so the total 30 hrs of 
delays. These and the internal and external delays are shown graphically in the figure.

Figure 1D compares the delay times, and the real costs of the three flights, with and without control. In our 
example, the difference between the costs of delays incurred without and with control amounts to 30 hrs, which 
costs much more than renting an airplane. Thus, the optimal control is beneficial in this case since eliminating 
the delay for passengers already in JFK is just 10% of the cost of control. In this example we assume large delays 
to illustrate cascading effects of the flight delays. In  reality47, the average delay of a flight is about an hour (see 
Supplementary Fig. S1 for the real flight delay event samples over two days).

The flight nodes in single aircraft graphs of an airline are linked by connection edges. Such edge is drawn from 
a flight node na(X) arriving at the airport X to a flight node nd(X) departing from airport X when flight na(X) 
carries passengers connecting with flight nd(X) . We use the average number of passengers connecting between 
such two flights as the weight of the drawn connecting edge.

The Flight Delays and Cancellations (FDC)  dataset47 contains over five million flight records of 13 US passen-
ger airlines (see Supplementary Table S2) active in the United States. Each record contains 31 properties of flights. 
We use nine of these properties shown in Supplementary Table S3 as node attributes in flight delay networks 
that we construct for each airline. These attributes are used to estimate parameters of our flight delay model.

Data driven dynamics. Flight delay networks, like many real world networks, such as Internet and electri-
cal power grids, exhibit cascading  properties5,48–50. A single flight delay may cause cascading departure delays 
of many other flights as they wait at the gate for late-arriving connecting passengers. To describe and prevent 
such delay propagation of flights across the entire network, we introduce a CARP model that is based on an 
Markovian alternating renewal  processes5,51–55. Let xi(t) be the continuous variable representing an expected 
state of flight node i at time t in the range [0, 1], where 1 denotes flight on-time and 0 means that it is delayed. 
The Markov property determines that the state of a node evolves according to the current state but is completely 
independent of the past states of the system. Specifically, CARP is formulated as follows:

where F(x(t)) describes the endogenous delay dynamics on individual flights, G(x(t),E) defines the interactions 
among neighborhood flights through the underlying network E with N flight nodes, B is the input matrix that 
identifies usually a small set of driver nodes through which the input signals u(t) are entered to drive the system 
to a desired state. Often selection of the nodes that belong to a driver node set is difficult as different choices 
impose different costs of  control56. In our application, any airport in which an aircraft of a needed size is available 
for timely replacement of the delayed plane can make a driver from a node representing a flight with the delayed 
arrival in this airport. In our simulations, we assume that the number of passengers waiting for the delayed 
plane is a historical average. In reality, the airline may make a decision about providing a plane for delay control 
dependent on a sufficient number of passengers waiting for the delayed plane. Such real-time dynamic decisions 
will improve benefits of our method compared to our simulations using just historical averages.

The nonlinear functions F(x(t)) and G(x(t),E) can vary for different applications. For flight 
delays, both are defined as parametric functions F(x(t)) = pint ◦ [1− x(t)] + pcon ◦ x(t) and 
G(x(t),E) = [ETx(t)] ◦ pext ◦ [1− x(t)] , where ◦ denotes the Hadamard product.

The model relies on three probabilities pint , pext and pcon , where pinti  and pexti  are the probabilities of the flight 
represented by node i being delayed by an internal or external factor, and pconi  is the probability that this flight 
retrains its state. Since the causes of each flight delay are recorded in FDC, we estimate the probability of each 
cause directly from the data. Thus, we equate pinti  and pexti  to the frequencies with which flight i was delayed in 
the data for internal and external causes, respectively. Denoting by f reci  the frequency of the flight i being on time 
after experiencing a delay computed from the data, we estimate pconi = 1− f reci .

To estimate the needed probabilities, we made some assumptions to simplify processing the records in FDC. 
The most important are (i) we consider each record as a single event, related to others only by connection edges, 
that are either an on-time or a delayed flight, regardless how long the delay is; (ii) we assign the same time interval 
between the arrival of the previous flight and the departure of the next flight for all flights and airlines, and after 
this interval expired all flights depart simultaneously; and (iii) we merge the records of all flights between the 
same departure and arrival airports regardless of the aircraft actually used by each airline.

From FDC, we create a flight delay network for an airline including the associated adjacency matrix of con-
nection edges E based on the scheduled arrivals and departures of all flights of an airline in a given airport. With 

(1)x(t + 1) = F(x(t))+ G(x(t),E)+ Bu(t) � F(x(t),E)+ Bu(t),
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the data driven dynamics CARP, we are able to simulate all flights in the network and the resulting dynamics 
of direct and cascading flight delays. At the initial state x(0) , we randomly assign to each flight delayed status 
based on the probabilities estimated for this flight, otherwise the on-time status is awarded to this flight. If no 
control is exercised, i.e. u(t) = 0 , the network will automatically evolve to an equilibrium state xs , such that 
xs = F(xs)+ G(xs ,E) . The state xs is probably undesired, and may correspond to widespread presence of flight 
delays.

To limit the impact of flight delays, we need to develop a well-defined control strategy, watchfully monitor-
ing and manipulating the input signal u(t) to steer the system away from x(0) to an ideal inactive state xf = 0 , 
where no flight delay happens, at the cost acceptable to airlines. There is a problem, however, since unlike many 
existing control strategies for complex systems that require xf  to be an  attractor57,58, xf  usually is not an attractor 
of the flight delay system. Thus, we seek a compromise solution and control the system to a desired state with 
the minimum cost.

Optimal Control of Flight Delay Networks. The optimal control is an optimization problem in search 
of an optimal sequence of input signals {u(0) , u(1) , . . . , u(τ )} to minimize a function J(u, x; τ) regarding all 
involved states x and input signals u within τ time steps’ evolution.

Linearization.  Generally, nonlinear dynamics are extremely hard to solve directly for optimal control. A com-
mon practice is adopting the linearization  technique59 to reformulate the nonlinear dynamics in advance, and 
then to solve an approximated linear system instead. As described in Eq. (1), the governing dynamics of flight 
delay networks are nonlinear, so we linearize them at an operating point (x̄, ū) for optimal control. Let’s denote 
the reformulated linear system as follows:

where x̃(t) = x(t)− x̄ , ũ(t) = u(t)− ū and A = ∂F/∂x|x=xs . There are a variety of choices of (x̄, ū) , but some 
may ease the solving of the input signals u(t) for optimal control, e.g., the equilibrium xs of the system without 
control that satisfies ẋs = 0 and us = 0 . Let x̄ = xs and ū = us . Once x̃ and ũ for optimal control are solved, it is 
straightforward to derive the real-time control strategy: x(t) = x̃(t)+ xs and u(t) = ũ(t)+ us , ∀t ≤ τ.

Linear quadratic regulator. LQR is an optimal control operating on a linear system like Eq. (2), widely adopted 
in many science and engineering  applications59,60. It minimzes a quadratic function of the state vector x and the 
control input u:

where the matrices Q and R are design parameters to penalize x and u , respectively; Jf (x(τ );Q) = xT (τ )Qx(τ ) 
is the cost at the final time step t = τ , while Jt(x(t), u(t);Q,R) = xT (t)Qx(t)+ uT (t)Ru(t) is the stage cost at 
t < τ . Because J is quadratic, an optimal control sequence is uniquely determined as the solution of an induced 
backward Riccati recursion  equation59.

The entries in Q and R are weights applied to x and u , respectively. Many applications require an ana-
lytic formulation of the optimal feedback control law, therefore Q and R need to be symmetric semi-posi-
tive and  definite60. In this paper, we consider them as diagonal matrices, i.e. Q = diag(q21, q

2
2, . . . , q

2
N ) and 

R = diag(r21 , r
2
2 , . . . , r

2
N ) , where qi is the average delay cost to a passenger, while ri is the rental cost of a replace-

ment aircraft. According to the statistics provided by the Federal Aviation Administration, the average loss caused 
by a flight delay is approximately $49 per hour per  passenger61. There were 9.5 million domestic flights carrying 
about 895.5 million passengers in  201562. On average, each flight services 94 passengers. Thus, the average delay 
cost for each flight is cd = 49× 94 = $4, 606 per delay-hour. Moreover, with the average delay time dhi in hrs 
for each flight i recovered from FDC, we can estimate qi = cd × dhi.

The input signals u in the optimal control may be of various forms, depending on the scenarios. In our 
framework, we proposed adding a backup airplane to an airport on the route as an input signal. According 
to the operating and fixed costs of renting an aircraft presented in Tables 4-6 in Ref.46, the average rent cost of 
an aircraft is cr = $526 per usage hour. From FDC, we retrieve the average flight time fhi of each flight i, and 
estimate ri = cr × fhi.

Total operating cost. The quadratic objective function J in Eq. (3) for optimal control guarantees the unique-
ness of the solution, but its physical implication is indefinite. To have a quantitative perspective of how much the 
optimal control can reduce flight delays and how the states x and the input signals u affect such performance, we 
formulate a linear function

for the total operating cost of enforce controls over a flight delay network. This cost has two sources: the expected 
delay cost and the aircraft renting cost, where q = (q1, q2, . . . , qN )

T and r = (r1, r2, . . . , rN )
T are weights assigned 

to x and u . The total operating cost C, alternatively called total cost or cost in short, is used in our analysis to 

(2)x̃(t + 1) ≈ Ax̃(t)+ Bũ(t),

(3)J(x, u; τ) = Jf (x(τ );Q)+

τ−1∑

t=0

Jt(x(t), u(t);Q,R),

(4)C(x, u; q, r) =

τ∑

t=0

[qTx(t)+ rTu(t)]



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18715  | https://doi.org/10.1038/s41598-021-98112-7

www.nature.com/scientificreports/

quantify the performance of the optimal control or no-control (i.e., u(t) = 0 , ∀t ≤ τ ) strategies in mitigation 
of flight delays.

Results
Optimal control for the sample flight delay network. We apply an optimal control approach to a 
small sample flight delay network to show how it reduces the flight delays with minimal cost defined by Eq. (3). 
We use the estimated flight delay cost matrix Q and the aircraft renting cost matrix R based on real data (see 
Fig. 1A and Methods).

Figure 2 shows a realistic example of the state and cost trajectories of five representative flights operated by 
the United Airlines (UA). Figure 2A,C show results for the system without control while those in B and D were 
simulated with control on. In all cases, a stable state is reached in a few steps. Figure 2A,B compare the prob-
abilities of delays for all flights. Without control, these probabilities range from 0.1 to 0.8, while with control they 
decreased a little for two flights but a lot for the remaining three flights. Figure 2C,D show costs. Compared to 
costs in C, the costs with control on decreased a bit for the two flights but dropped significantly for the remain-
ing three flights. This realistic example created with real data confirms the potential for strong improvements 
of both the average delay probability and the average costs of flights with control compared to those without it. 
However, it is likely that the two flights with the modest reduction of costs and probabilities will occasionally 
fail the feasibility test when the number of passengers awaiting for connection in the airport is below average.

Optimal control for the real airline flight delay networks.  With the data-driven dynamics CARP 
from FDC, we evolve the system without any control and with the LQR based optimal control for τ = N time 
steps. Figure 3 compares the results that demonstrate that LQR can be adopted to successfully control the flights 
of all 13 US domestic passenger airlines with a minimum cost. For each airline, both the overall delay time and 
the cost of flights are dramatically reduced with LQR. First, Fig. 3A,B show histograms of the delay time and 
the total cost without control in the logarithmic horizontal scale for a flight on the United Airlines. Figure 3C,D 
display these histograms with the optimal control. The median delay time with control (C) is less than 10% of 
that without control (A), but the ranges of distributions of delays and costs vary strongly among flights. Each of 
the UA flights saves at least 50% of the cost. Fig. 3E,F show the ranges of distributions of delays for all airlines. 
Each dot indicates the costs incurred from LQR or with no control for an individual flight. Most flights fall below 
the anti-diagonal line, with only a few outliers on or above the line. On average, the reduction of the cost is about 
75% and of the delay time 90%. Yet, we notice that for some airlines, such as US Airways (US), the delay times 
and costs are relatively similar among all flights; while for other airlines, such as American Eagle Airlines (MQ), 
some flights arrive close to the scheduled time, while others experience lengthy delays. Overall, the ranges of 
distributions of delays vary strongly among airlines.

Figure 2.  State and cost trajectories of five representative flights by United Airlines. (A, C) The state and cost 
trajectories of flights without control. (B, D) The state and cost trajectories of flights under LQR control.
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According to Fig. 4A,B, almost every single flight benefits from the optimal control, and the flights of each 
airline save at least 50% in cost. In addition to the study of individual flights, we also evaluate the impact of 
optimal control of airports. Figure 4C–F show the costs with or without control for two airports LAS and JFK 
(see Supplementary Fig. S2 for the costs with or without control for 316 airports in the United States, Figs. S3 
and  S4 for the top 10 costs of flights and airports for each airline). For each airline, we average the cost of an 
airport over all departing flights. The optimal control significantly reduces the costs of most of the airports. 
However, the reductions are the largest for the airports in the central areas of the U.S. In contrast, the airports 
in big cities or coastal areas achieve more moderate cost reductions because of their relatively high passenger 
flow and heavy air traffic. Figure 4A,B explicitly show the costs of two of the most representative airports: LAS 
on the west coast and JFK on the east coast, each of which serves more than eight airlines. Under LQR control, 
the cost of each airline in both airports reduces. In LAS, SkyWest Airlines (OO) benefits most, while in JFK the 
biggest beneficiary of control is American Eagle Airlines (MQ).

Figure 3.  Comparison of flights with or without control in terms of the delay time dh  and the total cost C . 
(A, B) The distributions of the delay time dh and the total cost C of flights on the United Airlines (UA) without 
control. (C, D) The distributions of the corresponding dh’s and C’s with the optimal control. The striped bars 
indicate the bins where the median values of dh’s or C’s fall, and the numbers in parentheses are these median 
values and their associated frequencies. The median dh with control (C) is less than 10% of that without control 
(A), while the associated total cost with control (D) is only about 32% of that without control (B). (E, F) The 
difference between with and without control for flights from all 13 airlines in terms of dh and C, respectively. 
Each individual shape represents one flight, and the shape form and color indicate which airline operates it. 
Black dots show the median values of the corresponding dh’s or C’s. On average, LQR reduces the delay time by 
over 92%, and reduces the total cost by around 80% relative to the no-control strategy. To make the comparisons 
consistent, all experiments are ran for a fixed number of steps, i.e., τ = N , which equals to the size of the flight 
delay network, but value of τ negligibly affects the results.
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Discussion
Flight delays are a widespread and highly visible problem in the passenger aviation industries. They often bring 
uncertainties into air travel and cause financial losses to all involved parties, including the passengers, the airlines, 
the airports, and even the insurance companies.

We developed a generic data-driven framework for an optimal control of networked systems that focuses on 
system  failures5,53,56,63. Here, we apply this framework to the flight delay data collected in 2015. We discuss how 
to formalize dynamics of flight delay propagation using historical data and how to define the optimal control 
strategy to minimize the flight delay at the reasonable costs. To this end, based on historical data, we create a flight 
delay network for each of the 13 US passenger airlines. Then, we estimate the optimal parameters for a model 
of nonlinear dynamics of the flight delay propagation mechanism. Using this model and the LQR approach we 
define the optimal control over the flight delay networks. The results from simulations of the solution demonstrate 
that the framework effectively suppresses the flight delay propagation and significantly reduces the costs of delays. 
These simulations are run under a pessimistic assumption that flights have an average number of passengers. In 
real time use of this approach, the system can compute the exact cost of renting a replacement plane to the next 
flight of the delayed airplane and compare it with the cost of delay for the actual number of passengers on the 
delayed plane or in the airport waiting to board the arriving plane for a connecting flight. Hence, the replacement 
will only be made if it is economically viable according to the actual data. This further validates the applicability 
of this framework to different scenarios, such as airline flight delays demonstrated here, the global economy risks 
discussed in Ref.5, and COVID-19 government strategies for slowing pandemics presented in Ref.56.

To summarize the novelty of our approach. The key to our approach is constructing a flight delay network 
that enables us to precisely predict the consequences of not controlling the delay (letting the delay happen una-
bated) versus renting (or using an airline own) airplane to control delay and then implement that choice that 
is less costly. Without flight delay network, comparing such costs was impossible. This network also enables us 
to predict the expected number of delays from past performance and to establish the expected minimum and 
maximum demands for rented airplanes and their costs.

The data needed to create the networks are currently gathered by each airline by request from the US govern-
ment. None of the previously proposed approaches used this precious data to build a flight delay network and 
compute quickly costs of unabated and abetted failure crucial for our approach.

Figure 4.  Reduction in delay cost by the optimal control LQR on airlines in the United States and airlines 
departing from two airports LAS and JFK. (A, C, E) The total cost per flight with and without control for each 
airline. The shaded areas represent costs with control and the blank areas represent costs saved by LQR. (B, D, 
F) The relative percentage of the saved costs by LQR.
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In short, our approach maps a flight delay problem into a standard model of a complex machine in which 
each flight is a part of the machine that processes elements (passengers) into final products (passengers arriving 
in their destinations or canceled trips). Each part (flight) interacts with other parts (flights connecting with the 
original flight), and each part (flight) has as crucial parameters its probability of delay, number of passengers and 
each passenger itinerary. Thus, the problem becomes the standard machine efficiency optimization to which we 
apply tools of control theory. Thus, we creatively use the existing data and a system control theory to solve the 
problem that on a first glance is far from the standard model of machine failure control.

As suggested  in45, the method can be enhanced by merging flight delay networks of airlines cooperating within 
airline alliances. In future work, we will address some related issues to make the framework broadly applicable. 
The most challenging extension is to design a direct solver for a model with non-linear dynamics. We expect 
that it might be more costly computationally, but the optimal control will be more efficient. The most interesting 
extension is the control of coordinated delays.

Currently, our model only considers delays of individual planes that are fairly independent from each other. 
However, in case of storms, security breaches, or personnel strikes, the entire airports may be affected and depar-
tures and arrivals may be suspended for hrs at a time. Real-time models deployed by airline will be able to use 
real-time precise data about flights and their schedules, the delay costs and aircraft renting to accurately predict 
the cost and effectiveness of using additional planes, improving benefits over those estimated here.
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