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Artefact‑removal algorithms 
for Fourier domain quantum optical 
coherence tomography
Sylwia M. Kolenderska1,3* & Maciej Szkulmowski2,3

Quantum Optical Coherence Tomography (Q‑OCT) is a non‑classical equivalent of Optical Coherence 
Tomography and is able to provide a twofold axial resolution increase and immunity to resolution‑
degrading dispersion. The main drawback of Q‑OCT are artefacts which are additional elements 
that clutter an A‑scan and lead to a complete loss of structural information for multilayered objects. 
Whereas there are very practical and successful methods for artefact removal in Time‑domain 
Q‑OCT, no such scheme has been devised for Fourier‑domain Q‑OCT (Fd‑Q‑OCT), although the latter 
modality—through joint spectrum detection—outputs a lot of useful information on both the system 
and the imaged object. Here, we propose two algorithms which process a Fd‑Q‑OCT joint spectrum 
into an artefact‑free A‑scan. We present the theoretical background of these algorithms and show 
their performance on computer‑generated data. The limitations of both algorithms with regards to the 
experimental system and the imaged object are discussed.

Optical Coherence Tomography (OCT) has become an important tool in  medicine1 because it enables visu-
alisation of internal structures of biomedical objects non-invasively and on a micrometre scale. It is based on 
an interferometric measurement of light’s time of flight and is performed by axially translating a mirror in a 
reference arm as in Time-domain  OCT2 or by keeping the mirror fixed and measuring light’s spectrum as in 
Fourier-domain  OCT3.

Quantum Optical Coherence Tomography (Q-OCT)4 is a non-classical counterpart of OCT using the quan-
tum nature of light. The core of Q-OCT is quantum interference of entangled photon pairs occurring in a Hong-
Ou-Mandel interferometer. The photon pairs are created in a nonlinear crystal at the input of the interferometer: 
one of the photons penetrates the object in the object arm and the other photon is reflected from a mirror in 
the reference arm. They both overlap at a beamsplitter and photodiodes located at the beamsplitter’s two output 
ports measure the coincidence of the photons’ simultaneous arrival. As in the case of traditional OCT, Quantum 
OCT can be performed in two ways. In Time-domain Q-OCT (Td-Q-OCT)5, a depth profile of the object—an 
A-scan—is obtained by axially translating the reference mirror and performing the coincidence rate measure-
ment. In Fourier-domain Q-OCT (Fd-Q-OCT)6, the mirror is fixed and the coincidence measurement is done 
together with wavelength discrimination producing a two-dimensional joint spectrum. An A-scan is obtained 
by Fourier transforming one of the diagonals of the joint spectrum and provides many benefits: an increased 
axial resolution and immunity to resolution-degrading even orders of chromatic dispersion.

Unfortunately, the same quantum effects that are responsible for Q-OCT’s extraordinary features give also rise 
to its one huge drawback—artefacts. Artefacts are additional peaks or dips in an A-scan which do not directly 
relate to the structure of the object and effectively lead to scrambling of the whole depth profile. They were the 
main reason why until recently Q-OCT, despite its great potential, has not been exhaustively studied in terms 
of its further imaging capabilities.

In the last year, the interest in Q-OCT has been revived and the first successful scheme allowing for a reduc-
tion of artefacts was finally presented. A potential strategy to remove the artefacts was already proposed in early 
studies on Q-OCT4. Having noticed that slight changes in the central frequency of the pump light used to gener-
ate entangled photon pairs make the artefacts in the resulting Td-Q-OCT depth profile transition from a peak to 
a dip and vice versa, the authors of Ref.4 suggested that the artefacts can be entirely removed by averaging depth 
profiles taken for multiple pump frequencies. Seventeen years later in their 2019 paper, Graciano et al.7 showed 
it experimentally by using a spectrally broadband light source as a pump. Because a broadband pump could be 
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viewed as a sum of different central frequencies, the resultant depth profile is basically a coherent integration of 
depth profiles that would be created if each of these frequencies were used separately to produce a depth profile.

Very basic artefact removal numerical algorithms were also proposed for Fd-Q-OCT6,8. By being applied to 
Fourier transforms of the diagonals of two-dimensional joint spectra, they are far from being universal and could 
only be used for well-defined objects. Here, we present two algorithms which are applied directly to the joint 
spectrum and are able to reduce or completely suppress artefacts regardless of the type of an object. We compare 
the performance of these algorithms on Fd-Q-OCT signals numerically synthesised for different kinds of objects.

Signal in Fd‑Q‑OCT. The signal acquired in Fourier-domain Q-OCT (Fd-Q-OCT)6 is a two-dimensional 
joint spectrum and is expressed in the following mathematical form:

where ωα and ωβ are the frequencies of photons in a pair which add up to the frequency of the pumping laser 
2ω0 , 
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 is a two-dimensional joint spectral profile of the photon pairs, and f  is an object’s transfer 

function which describes the phase delays which the object imparts on the light. f  is responsible for the appear-
ance of fringes in the signal.

In the Fd-Q-OCT signal, the transfer function takes two different forms, each contributing to different ele-
ments in the A-scan after Fourier transformation. The term |f (ωα)|2 + |f (ωβ)|2 will generate stationary artefact 
peaks located at a fixed distance from zero optical path difference (OPD, 0 OPD corresponds to the zero point of 
the abscissa axis of the A-scan). For each artefact of this type, its distance will be equal to the distance between 
a pair of interfaces or scattering centres this artefact is related to. The last term in expression (1), f (ωα)f

∗(ωβ) , 
will lead to peaks representing object’s dispersion-cancelled and resolution-doubled structure as well as another 
type of an artefact: an instationary one which appears midway between two interfaces.

An example of a joint spectrum for an object consisting of three interfaces is presented in Fig. 1a with the 
X and Y axes being the optical frequency of the photons, ωα and ωβ . The joint spectrum can be transformed to 
be presented in terms of the central frequency, ω0 is a pump laser frequency), and the frequency detuning from 
the central frequency, ω′ , where

Effectively, this transformation leads to the extraction of diagonals of the joint spectrum and putting them one 
on top of another. Such a stack of diagonals is depicted in Fig. 1b (50 central diagonals in this case). Through the 
relationships (2) and (3), each such diagonal represents a dispersion-cancelled and resolution-doubled structure 
of the object. Since every diagonal corresponds to a different central frequency ω0 and consequently, to a differ-
ent pump laser frequency 2ω0 , a joint spectrum broad in the anti-diagonal direction is obtained with spectrally 
broadband pump lasers. Broad anti-diagonal width of a joint spectrum is critical in Fd-Q-OCT—it enables 
extraction of a wider range of diagonals which—when Fourier transformed—provide a set of A-scans with 
enough information to distinguish artefact and structural peaks. Fig. 1c presents such a set of A-scans, an FFT 
stack. It can be seen in there that the height of the structural peaks remains constant with ω0 while the height 
of the artefact peaks oscillates. As mentioned before, there is a pair of artefacts for every two interfaces in the 
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(2)ωα = ω0 + ω′

(3)ωβ = ω0 − ω′.

Figure 1.  (a) The joint spectrum measured by Fd-Q-OCT is a function of the frequencies of photons, ωα and 
ωβ . (b) The diagonals of the joint spectrum (most central 50 of them) are extracted along the direction of axis ω0 
and put one on top of another to form a stack of diagonals. Each such diagonal spectrum represents a different 
central frequency ω0 (so a different frequency in the pump laser). (c) The rows of the stack of diagonals—when 
Fourier transformed—create an FFT stack which visualises differences between a solid-line structural peaks 
and intensity-varying artefact peaks. (d) A single row of an FFT stack—here, the FFT stack’s central row which 
corresponds to a Fourier transform of the main diagonal of the joint spectrum—provides an A-scan cluttered 
with artefacts. 1, 2 and 3 number the structural peaks representing the object.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18585  | https://doi.org/10.1038/s41598-021-98106-5

www.nature.com/scientificreports/

object’s structure and each such pair oscillates with a different frequency which depends on the thickness and 
optical parameters of the layer (for more details see  either6  or9).

One of the A-scans from the FFT stack is presented in Fig. 1d and shows that a single diagonal is not enough 
to retrieve the true depth structure, because it is completely scrambled by artefacts.

Here and in the rest of this paper, an Fd-Q-OCT system was simulated which uses entangled photon pairs 
centred around 1560 nm and with total spectral bandwidth of 180 nm. The joint spectrum was assumed to be 256 
by 256 points and enables the imaging range of 0.86 mm. The axial resolution of the simulated system is 5.6 µm.

Results
Complex averaging of the diagonals. In the first algorithm, the diagonals of the joint spectrum are 
extracted, recalculated to their complex representations using Hilbert transformation, then added up with 
proper weights and divided by their total number. This is an analogous procedure to the one proposed by Jensen 
et al.10 for artefact removal in Intensity Correlation Spectral Domain OCT (ICA-SD-OCT). ICA-SD-OCT is a 
quantum-mimic OCT method able to reproduce the advantageous features of Q-OCT—dispersion cancellation 
and resolution enhancement—using standard spectral-domain OCT data. As it was shown  elsewhere9, ICA-SD-
OCT method processes an OCT spectrum into what can be viewed as the diagonals of Fd-Q-OCT’s joint spectra. 
It recreates all the elements of joint spectrum’s diagonals: dispersion-cancelled and resolution-doubled structure 
as well as stationary and instationary artefact peaks, but also adds new oscillatory artefact terms. Due to these 
additional artefacts, the correspondence of these two techniques is not ideal. However, since both techniques 
are based on analogous mechanisms (spectral correlation of photons in Fd-Q-OCT, intensity correlation in 
quantum-mimic OCT), the solutions of quantum-mimic OCT are easily adapted for use in quantum OCT (and 
vice versa) as is the case here.

The averaging algorithm can also be viewed as a software equivalent of the hardware approach of Graciano 
et al.7. In their approach, a broadband pump laser is used to generate entangled photon pairs with a joint 
spectrum broad in the anti-diagonal direction. The time-domain detection effectively complex “averages” the 
diagonals of the joint spectrum and outputs the Fourier transform of the outcome (for detailed analysis of a 
Q-OCT signal see Ref.4,9).

To visualise the effects of applying the complex averaging algorithm to Fd-Q-OCT data, we used the joint 
spectrum from Fig. 1a and extracted 50 most central diagonals from it which covered the central wavelength 
range ( �0 in Fig. 2a, where �0 = 2πc

ω0
 ) of 35 nm. Fourier transformation of the main diagonal of the joint spec-

trum—the central row of the stack of diagonals (Fig. 2b)—gives an A-scan full of artefacts (Fig. 2d). When all 
the rows from the stack of diagonals are averaged using a Kaiser window with β = 6 as a weighting function, we 
obtain a spectrum (Fig. 2c) that is Fourier transformed to an artefact-free A-scan (Fig. 2d). More examples and 
a comparison with the second algorithm is presented in the “Performance” section.

The artefact reduction with this approach is the more successful, the more diagonals are used in it. Just as 
in the case of the equivalent algorithm of ICA-SD-OCT, a bigger number of diagonals corresponds to a bigger 
span of ω0 ’s (or �0 ’s shown in Fig. 2a). Since the artefact peaks oscillate as a function of ω0 , a bigger span allows 
for more oscillations of artefact peaks (see Fig. 3c) and therefore, for a better artefact reduction as a result of 
the averaging of the diagonals. It was proved empirically in the article on ICA-SD-OCT that a complete artefact 
suppression is achieved when the averaging is done over the diagonals incorporating at least 5 full oscillations. 
This requirement poses a very strict limitation on how thin a layer can be for a given experimental setup so that 
the artefact suppression is absolute, and can be written as

(4)�z ≥ 2S
�
2
0c

��0

1

n(�0c)
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1

2πc�ω0

1

n(ω0c)
,

Figure 2.  Using the example from Fig. 1, (a) a stack of diagonals consists of 50 most central diagonals of the 
joint spectrum and covers the central wavelength range of 35 nm. (b) The central row spectrum of the stack—
when Fourier transformed (FFT)—gives (d) an A-scan which is cluttered with artefacts. (c) Complex averaging 
of the spectra in the stack of diagonals outputs a spectrum which—when Fourier transformed—gives (e) an 
A-scan where the artefacts are reduced or completely suppressed. 1, 2 and 3 number the peaks representing the 
structure of the object.
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where S is the number of oscillations of an artefact, �z is the minimum thickness, ��0 and �ω0 are the total �0 
and ω0 ranges covered by the diagonals, �0c is the central �0 , ω0c is the central ω0 , and n(�0c) and n(ω0c) are the 
refractive indices of the layer corresponding to �0c and ω0c.

Equation (4) also implies that the complex averaging algorithm will only be successful in removing the arte-
facts for layer’s thicknesses which are on the order of the axial resolution if the antidiagonal spectral span of the 
joint spectrum ( �ω0 ) is 2S=2·5=10 times larger than the diagonal spectral span.

Two‑dimensional Fourier transform. In the second approach, a two-dimensional Fourier transforma-
tion is applied to the two-dimensional joint spectrum given by (1). This operation transforms the signal from 
frequency space (ωα ,ωβ) to its representation in the inverse space (zα , zβ) where all the components of the signal 
are better separated. To illustrate this, let us first consider a simple case of a layered object with two interfaces 
located at depths z1 and z1 + z2 . To account for dispersion of the layer, the wavenumber, β = β(ω) , is expanded 
into Taylor series:

where β(0) is the wavenumber of light in air, β(1)—the inverse of the group velocity of light propagating in air, 
and β(2) and β(3) correspond to the second and third order dispersion exhibited by the layer.

After skipping the constant term β0 that only influences the initial phase of the fringes, we obtain

where βD incorporates all the dispersion coefficients equal to or higher than 2.
The transfer function, f = f (ω) , describing the amplitude and phase changes introduced by the object can 

be written as:

where R1 and R2 are reflection coefficients of the interfaces of the object, and β1 = β1(ω) and β2 = β2(ω) are 
respectively the wavenumber of light propagating in the first medium, and the wavenumber of light propagating 
in the object. The above equation can be interpreted as follows. The light arrives at the first interface after having 
propagated in the first medium of thickness z1 and part of it is reflected back, while the rest is transmitted forward 
and reaches the next interface after having propagated in the object of thickness z2 . Also, the term z1β1—when 
recalculated to time—can serve as the time delay in the interferometer, since this term is an optical thickness of 
a layer whose front surface overlaps 0.

(5)β(ω) = β(0) + β(1)ω + β(2)ω2 + β(3)ω3 + · · · ,

(6)β(ω) = β(1)ω + β(2)ω2 + β(3)ω3 + · · · = β(1)ω + βD(ω),

(7)f (ω) = R1e
iz1β1(ω) + (1− R1)e

iz1β1(ω)R2e
iz2β2(ω),

Figure 3.  (a) 2D Fourier transformation is applied to the full joint spectrum from Fig. 1, then (b) its diagonal 
provides an A-scan where the artefacts are almost completely suppressed. (c) When the stack of spectra (from 
Fig. 1b or Fig. 2a) is 2D Fourier transformed or alternatively, when the FFT stack (from Fig. 1b) is Fourier 
transformed, (d) the middle row of the Fourier transform provides an A-scan where artefacts are reduced or 
completely suppressed. Note that the latter type of 2D Fourier transform approach gives a similar result as 
complex averaging of 50 central diagonals presented in Fig. 2. 1, 2 and 3 number the peaks representing the 
structure of the object.
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In the case of an object with N reflective interfaces, (7) can be generalised into

where at zero-delay position z0 = 0 , there is no light attenuation and R0 = 0.
In order to simplify the notation, let us define Sn = Rn

∏n
m=1(1− Rm−1) . Then (8) can be rewritten as:

Next, we expand the wavenumber and reorder the terms:

After introducing optical distance z̃n = znβ
(1)
n +

∑n
m=1 zm−1β

(1)
m−1 and the dispersion-related phase distortion 

φD
n (ω) = znβ

D
n (ω)+

∑n
m=1 zm−1β

D
m−1(ω) , we obtain:

It can now be easily seen that each term is composed of two phase terms, namely the one responsible for the 
position of the reflecting layer and the one responsible for the dispersive broadening.

Now, the last term in the expression (1), 2Re{f (ωα)f
∗(ωβ)} = M(ωα ,ωβ) responsible for dispersion cancel-

lation, resolution doubling and instationary artefacts can be expressed as:

where Pn,u will be responsible for a placement of peaks in the inverse space (zα , zβ) , Dn,u is a term responsible 
for dispersion effects.

The retrieval of the structural information is done by applying Fourier transformation twice to (12), once 
along ωα axis and once along ωβ axis. The resultant two-dimensional Fourier transform, m , represents the signal 
in terms of optical time delays which are recalculated to optical path differences, or thicknesses, (zα , zβ):

where �D is the Fourier transform of D , and ⊗—the convolution operation.
It can be seen from the delta function that the two-dimensional Fourier transform m consists of peaks located 

at the positions (z̃n,−z̃u) , where the structural peaks are located at the diagonal for which n = u and artefact 
peaks will be placed off-diagonally where n  = u . Therefore, in order to reconstruct the positions of the layers 
without the parasitic terms it is sufficient to take the diagonal. However, one has to have in mind that the closer 
two interfaces are located, the closer to the diagonal their parasitic terms are and their impact on the diagonal 
starts to be visible. The convolution of the delta function with the dispersive term �D leads to the distorting of 
the off-diagonal artefact peaks due to all the non-zero higher-order dispersion terms, and distorting of the struc-
tural peaks due to any non-zero even-order dispersion terms. Also, the distance between the structural peaks is 
increased which results in the resolution increase. Let’s assume an object consisting of a single �z̃-thick layer. In 
traditional OCT A-scan, this object’s interfaces are positioned at depth z̃ and z̃ +�z̃ . In Fd-Q-OCT, the same 
two interfaces will create two peaks located at (z̃,−z̃) and (z̃ +�z̃,−(z̃ +�z̃)) whose distance is 

√
2�z̃ . Since 

this geometrical distance does not account for optical relationships between photons, it needs to be multiplied 
by 

√
2 . Consequently, the distance between the two peaks is 2�z̃ which means a twice better resolving power 

of the method. A detailed explanation of why the multiplication by 
√
2 needs to be performed can be found in 

Supplementary Document.
In summary, the second algorithm exploits the modulatory character of artefacts in the anti-diagonal direction 

( ω0 axis in Fig. 2c). Since structural peaks do not exhibit such behaviour, two-dimensional Fourier transform of a 
joint spectrum (depicted in Fig. 3a) comprises structural peaks on its diagonal and peaks corresponding to arte-
facts positioned at some distance from it. The shape of the peaks in the transform is not uniform and reflects the 
shape of the joint spectrum: the joint spectrum is broad in the diagonal direction and narrow in the anti-diagonal 
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direction, which results in peaks being narrow in the diagonal direction and broad in the anti-diagonal direction. 
The diagonal of the 2D Fourier transform presented in Fig. 3b does not incorporate any artefact peaks.

Alternatively, a stack of diagonals (such as one in Fig. 1b) or an FFT stack (such as one in Fig. 1c) could be 
used to achieve a similar result. In the first case, a two-dimensional Fourier transform should be calculated and 
in the second case—a one-dimensional Fourier transform of each column. In both cases, the end result will 
be a two-dimensional Fourier transform which is a 45-degree rotation of the joint-spectrum-based transform 
(Fig. 3c). The middle row of such a transform is an artefact-free A-scan. Of course, in these two cases the width 
of a peak in the vertical (perpendicular to the rows) direction is broader than in the corresponding, anti-diagonal 
direction for a peak in the joint-spectrum-based transform, because the former use only a part of the joint 
spectrum. Because of that, some trails of the artefacts overlap the middle row area and consequently the artefact 
reduction is not absolute (Fig. 3d).

Performance. The performance of the two algorithms is summarised in Fig. 4. As it can be observed when 
Fig. 2 and Fig. 3 are compared, both approaches are equivalent when a sufficient number of diagonals is used 
in the complex averaging algorithm. Complex averaging of 50 diagonals corresponding to 35 nm �0 range and 
Fourier transformation of its output (a case presented in Fig. 2) gives the same result as performing 2D Fou-
rier transformation on that very same stack and extracting the middle row (a case presented in Fig. 3c,d). In 
the example from Figs. 1, 2 and 3, to obtain equivalent results of applying 2D Fourier transformation to a full 

Figure 4.  Complex averaging of (a) 100 diagonals extracted from a joint spectrum provides the same result 
(an A-scan with suppressed artefacts-(b)) as the 2D Fourier transform algorithm (the transform in (c) and 
the output A-scan in (d)). More complicated objects generate more complicated spectral interference patterns 
on the stack of diagonals (e) and therefore, a more complicated FFT stack (f) and 2D Fourier transform (h), 
which when processed give A-scans with reduced artefacts ((g)—the output A-scan of the complex averaging 
algorithm, (i)—the output A-scan of the 2D Fourier transform algorithm). For both algorithms, the minimum 
thickness of a layer for which artefacts can be fully suppressed depends mainly on the optical parameters of 
the photons (see Eq. (4)) and in the experimental case simulated in this paper is 135 µ m as it can be seen in 
the output A-scans of the complex averaging algorithm (k) and the output A-scan of the 2D Fourier transform 
algorithm (m) ((j)—the stack of diagonals, (l)—corresponding 2D Fourier transform). The suppression is 
irrespective of the joint spectral profile: a stack of diagonals (n) from a flat-top-shaped joint spectrum are 
processed into 2D Fourier transform (p) and complex-averaging algorithms output (o) and 2D Fourier 
transform algorithm output (q) with peaks of the expected sincus function shape.
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joint spectrum, 100 diagonals covering the �0 range of 70 nm are needed in the complex averaging algorithm 
as depicted in Fig. 4a–d. In general, so that the two algorithms are equivalent, the number of diagonals, K , in 
the complex averaging algorithm needs to cover the �0 span equal to at least the antidiagonal FWHM of a joint 
spectrum, �0.5�0 . This requirement can be expressed as a ratio of the FWHM and the spectral resolution of the 
detection δ�:

As it was mentioned before, the algorithms successfully suppress artefacts only if a layer in the object is thick 
enough to generate a sufficient number of oscillations of the artefact peaks on an FFT stack. For the imaging 
scenario simulated in this paper, the minimum layer’s thickness was determined to be 135 µ m (Fig. 4j–m). The 
minimum layer’s thickness can also be calculated using the relationship in (4).

A stack of diagonals and 2D Fourier transform for a signal corresponding to a more complicated object are 
presented in Fig. 4e and h together with the output of the two algorithms in Fig. 4g,i. It can be seen on the FFT 
stack in Fig. 4f that although most of the structural peaks overlap the artefact peaks, the complex averaging algo-
rithm is able to successfully suppress the artefact contributions leaving only the structural peaks. In the case of 
the 2D Fourier transform algorithm, the separation of the structural and artefact peaks is a natural consequence 
of applying a 2D Fourier transformation.

Both algorithms work as well with joint spectra whose profile is different than an assumed here Gaussian. As 
an example, we swapped the Gaussian profile of the joint spectrum in Fig. 4j with a more experimentally common 
flat top profile (Fig. 4n). As expected, the shape of the structural peaks in the artefact-free A-scans (Fig. 4o,q) as 
well as the shape of the peaks in the 2D Fourier transform (Fig. 4p) are of the sincus function shape.

In the end, it should be noted that the A-scans output by the two algorithms are not perfectly dispersion-
cancelled. This is due to the fact that they require several diagonal spectra from the joint spectrum, so although 
each such diagonal spectrum is a perfectly dispersion-cancelled signal for a given �0 , their direct summation 
(as in the complex averaging algorithm) or integration (as in the Fourier transform algorithm) is not, as each 
diagonal will Fourier transform to an A-scan presenting slightly shifted optical distances. However, the dispersion 
broadening due to the 35 or 75 nm anti-diagonal bandwidths presented in this paper will be much smaller than 
the broadening that would occur as a result of a 180 nm bandwidth of a diagonal spectrum if that spectrum did 
not exhibit the dispersion cancellation feature.

Summary
We have presented two algorithms for artefact reduction in Fourier-domain Quantum Optical Coherence Tomog-
raphy (Fd-Q-OCT). The first one complex averages the diagonals extracted from the signal acquired in Fd-Q-
OCT—the joint spectrum—and then applies Fourier transformation to those averaged diagonals. In the second 
algorithm, two-dimensional Fourier transformation is applied directly to the joint spectrum and the diagonal 
of the resultant Fourier transform is taken. The former approach is a reproduction of an algorithm for artefact 
removal in the classical counterpart of Fd-Q-OCT called ICA-SD-OCT10. What is more, both algorithms can be 
viewed as a software counterpart of the hardware-wise artefact removal in Td-Q-OCT7. 2D Fourier transform 
algorithm is a new approach for which we prove with theoretical calculations that indeed, the artefact-free A-scan 
is found on the diagonal of the transform. We show that both approaches are equivalent if a sufficient number of 
diagonals of the joint spectrum is used in the complex averaging algorithm. We provide mathematical expressions 
enabling calculation of this number and also, the calculation of the minimum thickness of a layer for which the 
artefacts will be fully suppressed.
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