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In vivo demonstration of a novel 
non‑invasive model for inducing 
localized hypothermia 
to ameliorate hepatotoxicity
Yeong Lan Tan1,2, Min En Nga3 & Han Kiat Ho1,2*

Moderate hypothermia (32 °C) has been previously shown to ameliorate drug-induced liver injuries 
in vitro. However, there are concerns regarding its clinical relevance as it remains a challenge to 
perform selective liver cooling in a non-invasive manner. To reconcile this dilemma, we propose the 
use of pulsed cooling for regional hypothermic conditioning in liver. This involves intermittent cooling 
applied in pulses of 15 min each, with a one-hour recovery interval between pulses. Cooling is achieved 
by applying ice packs to the cutaneous region overlying the liver. Through an in vivo C57BL/6NTac 
mouse study, we demonstrated the feasibility of attaining localized hypothermia close to the liver 
while maintaining core body temperature. This has successfully ameliorated acetaminophen-induced 
liver injury based on the liver function tests, liver histology and total weight change. Collectively, 
we provide a proof of concept for pulsed external localized cooling as being clinically actionable to 
perform induced selective hypothermia.

We have previously reported on the potential of using moderate hypothermia (32 °C) to ameliorate acetami-
nophen-induced liver injury (AILI) in vitro1 and presented various mechanistic insights on the effect of hypother-
mia in AILI2. Notwithstanding its demonstrated efficacy, the conduct of systemic hypothermia in clinical settings 
drew skepticism as this could incur non-specific adverse effects such as a slowdown in overall metabolism3. 
While local hypothermia may evade these unfavorable outcomes, the current practice of targeted liver cooling 
involves an invasive in situ procedure, which may not justify its use in the management of hepatotoxicity. Briefly, 
it involves the delivery of a cooling solution through the portal vein into the liver with anterograde drainage 
via the vena cava or hepatic veins4. Such a procedure may not offer a prompt and convenient option for timely 
management of acute drug-induced liver injury (DILI) which has the propensity to worsen drastically within a 
short timeframe. Therefore, to accentuate the role of hypothermic therapy in managing hepatotoxicity, the key 
consideration would involve the design of a non-invasive cooling modality that is suitable and closely targeted 
to specific visceral sites.

For that, we explored the practice of chronic intermittent cold (CIC) exposure and innovated a pulsed cooling 
approach to achieve regional hypothermic conditioning with minimal invasiveness. By convention, CIC expo-
sure was often performed to evaluate the effects of cold stress in animal models. It may entail severe systemic 
hypothermia at 4 °C, conditioned for variable intermittent periods of 3–6 h/day for up to six weeks5,6. Rather 
than a continuous cooling, CIC exposure could circumvent prolonged physiological perturbations which may 
necessitate regular monitoring. Furthermore, Wang et al. reported an upregulation of cold shock protein (CSP) 
expression in the liver following CIC exposure6, where CSP was previously shown to play an imperative role in 
conferring cytoprotection1. Collectively, all these reports present intermittent cooling as a viable approach for 
achieving therapeutic hypothermia in the toxic liver. Yet, prolonged extreme cooling employed in CIC exposure 
could evoke several undesirable consequences - besides increasing oxidative stress6, it may also enhance sympa-
thetic activity5. A direct implementation of CIC exposure beyond animal models in a clinical setting is therefore 
impractical. Hence, we have attempted to improvise the concept of CIC by applying three primary changes. 
Firstly, moderate hypothermic conditioning would be performed concurrently with drug-induced liver injury 
(DILI), since liver preservative effects were evident in the past study when hepatocytes were conditioned with 
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moderate hypothermia1. This averts potential destructive effects associated with severe hypothermia (< 30 °C). 
Secondly, the duration of hypothermia would be reduced to shorter pulse of 15-min periods applied hourly for 
four hours, rather than sustained periods, based on the known pathology of most acute DILI in which the onset 
of toxicity may occur rapidly within 24 h of exposure. We arrived at the empirical interval and duration of pulsed 
cooling based on an in vitro study which demonstrated hepatoprotection with three cycles of 26 °C hypothermia, 
conditioned for ten minutes each7. Thirdly, instead of systemic hypothermia, regional surface cooling would be 
performed cutaneously over the region of the liver. By doing so, we attempt to increase the proximity between 
the liver and the site of cold application to improve the cooling efficiency in a non-invasive manner.

With this model of a novel, non-invasive pulsed cooling modality, we sought to validate its feasibility and 
efficacy for the amelioration of acute DILI through an in vivo mouse study. Acetaminophen (APAP) was used 
as the model toxicant in accordance with past studies of hypothermic conditioning in AILI in vitro1,2. Herein, 
the study first involved a pilot phase to evaluate the feasibility of attaining regional cooling close to the liver. 
Thereafter, we investigated the effectiveness of pulsed cooling in combating AILI in a larger sample size in the 
core study. Finally, a series of mechanistic study were performed to characterize the hypothermic behavior of 
pulsed cooling. Together, this preliminary study outlines the pursuit for a practical, non-invasive cooling strategy 
targeted at a specific visceral location.

Results
Regional cooling close to the liver is feasible with a pulsed cooling procedure.  To achieve 
regional cooling close to the liver, we proposed an empirical pulsed cooling approach comprising short cooling 
durations with intermittent recovery intervals. Non-invasive cooling was administered periodically by placing 
an ice pack on the abdomens below the sternum, overlying the anatomical location of the liver (Figs. 1 and 2). 
The core and subcutaneous body temperature close to the liver was monitored across the four hours of pulsed 
cooling. A distinct contrast in the two temperatures was measured during each of the cooling cycles-where the 
liver in proximity achieved cooling within narrow limits of moderate hypothermia (32 ± 0.5 °C) while maintain-
ing a normothermic core body temperature (Fig. 3). This clearly exemplifies the capacity of targeted regional 
cutaneous cooling to influence local hepatic temperature. As such, it validates the approach for subsequent 
efficacy study.

Pulsed cooling could effectively attenuate AILI and improve the overall health status of the 
subjects.  To evaluate the effects of pulsed cooling in AILI, liver function tests i.e. alanine transaminase 

Figure 1.   In vivo set-up for targeted cooling of the liver. (A) A pictorial representation demonstrates the 
position of the temperature transponder and the ice pack with respect to the liver. The illustration is not drawn 
to scale. (B) Close-up photograph and (C) a wide shot of the actual set-up in mice. Pulsed cooling of the 
liver is performed with ice pack under isoflurane anesthesia and a rectal probe is used to measure core body 
temperature of the mice. Throughout the cooling cycle, the mice were placed on a 37 °C heating pad to maintain 
core body temperature within normal limits.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18620  | https://doi.org/10.1038/s41598-021-98078-6

www.nature.com/scientificreports/

Figure 2.   A summary of the in vivo experimental set-up for pilot and core study.

Figure 3.   Changes in the core and subcutaneous temperature following pulsed cooling procedure in mice. The 
core temperature is measured with a rectal probe every 3 min during pulsed cooling, and with an infrared non-
contact thermometer gun every 20 min during recovery. Data are presented as mean ± SD (n = 3).
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(ALT) and aspartate transaminase (AST) were employed along with the analysis and scoring of the extent of cell 
damage on liver histology samples. For the former, there was a prominent reduction of ALT and AST levels by 
more than 70% following pulsed cooling in AILI (Fig. 4A,B); for the latter, centrilobular necrosis was frequently 
observed in mice with AILI while mice with concomitant pulsed cooling and AILI had almost unremarkable 
liver histology across both left and right liver lobes, except for occasional reduction of glycogen (Fig. 4C). Over-
all, pulsed cooling significantly improved the histopathological scoring by at least one grade (Fig. 4D). All these 
findings collectively demonstrated an effective attenuation of AILI in mice with induced localized hypothermia 
close to the liver.

Finally, we also assessed the impact of pulsed cooling on the overall well-being of the mice. With intermittent 
hypothermia, most of the mice achieved a greater weight gain, with statistical significance, after 24 h of APAP 
treatment (Fig. 4E) compared to the control group that was not treated with induced localized hypothermia. This 
is evident of a higher feeding rate, which suggests improved overall vitality and activity. These findings suggest 
that significant deterioration of health and well-being was evaded in the mice that underwent pulsed cooling, 
in addition to alleviating liver injury.

RBM3 is the predominant CSP with potential induction during pulsed cooling.  As intermittent 
cooling and recovery via pulsed cooling promotes fluctuation of local hepatic temperature, we wish to discern 
the role of CSP and heat shock protein (HSP) in its underlying hepatoprotective mechanism. Therefore, the tran-
script and protein expression of well-known CSPs - RNA binding protein motif 3 (RBM3) and cold-inducible 
RNA binding protein (CIRP) were inquired along with HSP70, an inducible HSP expressed in the liver. Between 
the two CSPs, RBM3 responds more readily to pulsed cooling than CIRP. An apparent upregulation of RBM3 
transcripts was observed, even though its protein induction appears to be masked by mice-to-mice variability 
(Fig. 5). In contrast, there was unremarkable change in the transcript and protein expression of CIRP (Fig. 5). 
Similarly, the expression of HSP70 remained unchanged despite a relative rise in hepatic temperature, from 
moderate hypothermia (32  °C) to normothermia during intermittent recovery phases (Fig.  5). In summary, 
these observations may imply a predominant cold shock response, potentially involving RBM3, while a heat 
shock response, encompassing HSP70, would be absent in pulsed cooling.

Pulsed cooling could advocate concomitant autophagy and mitochondrial biogenesis to alle‑
viate AILI.  From our past study, moderate hypothermia was shown to render concomitant mitophagy and 
mitochondrial biogenesis vitro2. We thus inquired on their existence in a pulsed cooling animal model, to abate 
mitochondrial dysfunction in AILI. Notably, there was a higher phosphorylation of Unc-51-like autophagy 
activating kinase 1 (ULK1) with pulsed cooling, a key mediator to facilitate autophagosome-lysosome fusion8 
and hence, promote autophagy (Fig. 6). To affirm a heightened autophagic phenomenon, we also investigated 
changes in the activity of well-known upstream regulators of autophagy i.e. mechanistic target of rapamycin 
complex (mTOR) and AMP-activated protein kinase α (AMPKα). Of which, there was unremarkable difference 
in the p-p70S6K/p70S6K ratio, which denotes unchanged activity of mTOR (Fig. 6). On the other hand, there 
was an observed increasing trend of p-AMPKα/AMPKα ratio following hypothermia, which suggests a higher 
activity of AMPKα, the positive regulator of autophagy (Fig. 6). While its significant activation was seemingly 
masked by mice-to-mice variability, it appeared to be predominantly responsible for stimulating downstream 
autophagy, in comparison with mTOR. This illustrates a cold-mediated autophagy occurring with pulsed cool-
ing, with a potential to expel damaged mitochondria and downplay APAP-induced liver damage.

Concomitantly, mitochondrial biogenesis was shown to occur with pulsed cooling too. With a prominent 
upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the master 
regulator of mitochondrial biogenesis, along with heightened levels of transcription factor A, mitochondrial 
(TFAM) in the mitochondria, they, together, suggest an activation of mitochondrial proliferation (Fig. 7A,B). 
In fact, a ~ 1.67-fold increase in mitochondrial DNA, upon intermittent hypothermia, was documented too 
(Fig. 7C). This fosters an increase in mitochondrial mass, and along with autophagy, their concomitant interplay 
may drive mitochondrial health and elevate hepatoprotection in AILI.

Pulsed cooling displays antioxidant effects by enhancing GSH conjugation.  Beyond examining 
the effects of pulsed cooling on mitochondrial damage, we further explored its impact on oxidative stress. With 
pulsed cooling, it lowered the reduced to oxidized glutathione (GSH:GSSG) ratio, while reduced glutathione 
(GSH) levels remained low (Fig. 8A,B). Accompanied with a declining trend in reactive oxygen species (ROS) 
level, these are suggestive of an efficient utilization of GSH for scavenging ROS (Fig. 8C). In other words, pulsed 
cooling could display desirable antioxidant effects which effectively curtails AILI.

Discussion
Previous studies have characterized the effects of hypothermia on AILI in vitro1,2. With this established under-
standing, we hoped to translate the concept of hypothermic treatment into a clinically actionable therapy-one 
which achieved hepatoprotection with minimal invasiveness and adverse outcomes. To do so, we applied inter-
mittent, localized cooling close to the liver. This was an empirical procedure in which the liver was subjected to 
transient hypothermia while maintaining core body temperature. Herein, we have demonstrated, for the first 
time, the feasibility and efficacy of this non-invasive method in ameliorating AILI in mice.

To perform regional cooling, the use of a small animal model poses some challenges. Mice have a high sur-
face area to volume ratio and high thermal conductance which increases their propensity towards rapid heat 
loss9. As a result, controlled hypothermia at a precise area, without whole body cooling, could be difficult. To 
address this issue, we placed the mice on a 37 °C heating pad during each cooling cycle to reduce the likelihood 
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Figure 4.   Effect of pulsed cooling on AILI and the overall well-being of mice. Quantitative analysis of (A) ALT and (B) AST 
levels were evaluated along with qualitative analysis of liver damage based on (C) liver histology using H&E staining. Liver 
histology in two representative mice in each treatment group is shown. Mice without APAP treatment and without pulsed 
cooling displayed unremarkable liver histology in both left (A1) and right (A2) liver lobes; mice administered with 300 mg/
kg APAP displayed (B1) centrilobular necrosis (left lobe) and (B2) bridging coagulative necrosis between centrilobular zones 
(right lobe) while mice administered with 300 mg/kg APAP and concomitant pulsed cooling displayed (C1) unremarkable 
liver histology (left lobe) or (C2) some loss of glycogen (right lobe). (D) Histopathological scoring of the degree of liver cell 
damage was also performed for all mice samples. Finally, mice were weighed before and after 24 h of APAP administration. 
(E) The weight difference was compared between treatment groups, with or without pulsed cooling, as an indicator of the 
overall well-being of the mice during AILI. Data are presented as mean ± SD (n ≥ 3) where one-way ANOVA was used to 
make comparison amongst treatment groups and post-hoc tests were subsequently carried out with correction for multiple 
comparisons using the Sidak’s method. For comparison of weight difference between APAP-treated mice, with or without 
pulsed cooling, unpaired t-test was used instead. Scale bar = 10 µm. *P < 0.05; **P < 0.01; ***P < 0.001.
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of systemic hypothermia. Measurement of regional subcutaneous vs core body temperature during each cooling 
phase showed a distinct difference (Fig. 3). This established temperature differential has thus allowed for the 
subsequent core study to evaluate on the efficacy of pulsed cooling in AILI.

To initiate the core study, we standardized the cooling duration to achieve moderate hypothermia at the liver 
for each cooling cycle i.e. 10 min for the first cycle, 5 min 40 s for the second cycle and 11 min 40 s for the third 
cycle. These precise cooling timings were derived from the pilot study, based on the mean duration required to 
cool the mice liver to 32 °C at each cooling cycle. We noted that the second cooling cycle took a shorter time 
(< 6 min) than the first cycle while the third cycle (> 11 min) took the longest. These findings are in alignment 
with the reported trends on heat loss upon repeated cold exposure in C57BL/6 J mice10 – that greater heat loss can 
ensue with repeated cold stimulation, hence a shorter cooling duration may be required for the second cooling 
phase, compared to the first. Yet, ironically, repeated cooling could also foster cold-induced heat production as a 
thermoregulatory response in mice. Therefore, this may explain the longer cooling duration of the third cooling 
cycle. By conducting pulsed cooling in this systematic manner, we hope to streamline the process of cooling and 
assess its efficacy in a larger study sample.

With the administration of APAP (300 mg/kg) in the core study, acute hepatocellular injury was observed 
with high levels of ALT and AST, along with prominent centrilobular necrosis on histology (Fig. 4). These liver 
derangements were however, significantly ameliorated with pulsed cooling (Fig. 4). This localized, intermittent 
cooling method thus demonstrated hepatoprotection in a similar fashion to conventional continuous cooling11. 
At the same time, with repeated cycles of cooling and recovery, the alleviation of hepatic damage precludes the 
slowdown of thermodynamics as its primary factor to drive cold-mediated protection. This resonates with our 
earlier in vitro work which highlighted the role of CSP in driving hepatoprotection, independent of metabolic 
slowdown1.

Amidst the promising findings of reduced liver injury, a loss of glycogen in the hepatocytes was occasionally 
observed with intermittent cooling (Fig. 4C). This is, however, an expected outcome of cold application, which 
has been previously reported12. Upon cold exposure, glycogen would be employed extensively as the energy 
substrate while its rate of synthesis would decline. This eventually lead to a depletion of glycogen reserves13. By 
conducting brief periods of cooling with intermittent recovery, we can avoid significant glycogen depletion and 
preserve the necessary stores known to be crucial for cell survival14.

Figure 5.   Effect of pulsed cooling on RBM3, CIRP and HSP70 expressions in mice. (A) transcript expressions 
of RBM3, CIRP and HSP70 were explored with real time RT-PCR and β-actin was used as the housekeeping 
gene. Thereafter, (B) western blotting was carried out to investigate the protein expressions of RBM3, CIRP 
and HSP70. β-actin was used as the housekeeping protein for all western blots. Densitometric analysis was 
performed with ImageJ and normalized against the negative control i.e. mice without both APAP administration 
and pulsed cooling. Data are presented as mean ± SD (n ≥ 3) where one-way ANOVA was used to make 
comparison across different treatment groups and post-hoc tests were subsequently carried out with correction 
for multiple comparisons using Sidak’s method. *P < 0.05; **P < 0.01; ***P < 0.001.
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Furthermore, in terms of the overall well-being of mice, pulsed cooling was shown to be associated with 
better feeding since a higher resultant weight gain was observed after 24 h of AILI (Fig. 4E). This concurred 
with the findings of Honmore et al. who also reported weight gain in mice following alleviation of AILI15. The 
improved overall well-being of mice thus reinforces the therapeutic potential of pulsed cooling beyond mere 
hepatoprotection.

Next, we investigated its underlying mechanism and compared against conventional continuous hypother-
mia with known mechanistic behavior. First, despite frequent temperature cycling between normothermia and 
hypothermia, HSP70 was not upregulated in pulsed cooling (Fig. 5). Instead, pulsed cooling was more strongly 
associated with cold-mediated response, where RBM3, rather than CIRP, displayed significant induction (Fig. 5). 
In a separate transient cooling study, where cells were cooled at 4 °C for two hours followed by 37 °C incubation, 
the steep temperature elevation from 4–37 °C, failed to promote HSP induction in vitro16. This may rationalize 
the absence of heat-shock response in our pulsed cooling procedure, which comprised of gentler temperature 
elevations and shorter cooling cycles. By ruling out an interplay of heat-shock mediated protection, it further 
accentuates the resemblance between pulsed and continuous cooling, where hepatoprotection is driven in a 
similar manner, involving cold-mediated effects17,18. While the inclined induction of RBM3 protein was not 
consistently observed with pulsed cooling, its augmented transcript expressions raised possibility of a delayed 
kinetics in mRNA translation for some mice. According to Gottesman et al., translation efficiency can be reduced 
with cold treatment and an acclimation period of six hours was necessary to recover translational kinetics19. 
Specifically for translation of CSPs, Giuliodori et al. reported a preference for them to be translated in cold due to 

Figure 6.   Effect of pulsed cooling on autophagy in mice. Western blotting was carried out to determine the 
protein expressions of autophagy-related markers including p-p70S6K, p70S6K, p-AMPKα, AMPKα, p-ULK1 
and ULK1. β-actin was used as the housekeeping protein for all western blots; densitometric analysis was 
performed with ImageJ and normalized against the negative control i.e. mice without both APAP administration 
and pulsed cooling. Data are presented as mean ± SD (n ≥ 3) where one-way ANOVA was used to make 
comparison across different treatment groups and post-hoc tests were subsequently carried out with correction 
for multiple comparisons using Sidak’s method. *P < 0.05.
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the presence of cis-elements in their 5’-UTR of mRNA20. Hence, the presence of intermittent recovery in pulsed 
cooling could have hindered an effective translation of RBM3 mRNA in some mice. As a result, a four-hour 
empirical pulsed cooling could only manifests cold-mediated effects, independent of CSPs (Figs. 6, 7, 8), unlike 
conventional hypothermia which exhibits cold-mediated effects through both CSP-dependent and -independ-
ent pathways1,2. This therefore calls for a need in future study, to further optimize the pulsed cooling protocol 
to efficiently induce RBM3 proteins.

Second, like conventional hypothermia2, there is a concomitant occurrence of autophagy and mitochondrial 
biogenesis in pulsed cooling (Figs. 6 and 7) and antioxidant effects were prominent too (Fig. 8). Together, they 
rationalized the hepatoprotective behavior of pulsed cooling in AILI, by downplaying the two key drivers of 
APAP toxicity-mitochondrial dysfunction and oxidative stress21. Interestingly, reduced oxidative stress in pulsed 

Figure 7.   Effect of pulsed cooling on mitochondrial biogenesis in mice. Western blotting was performed to 
investigate the protein expression of (A) PGC-1α in whole cell lysate and (B) TFAM in mitochondrial and 
cytosolic fractions. For whole cell lysate, GAPDH was used as the housekeeping protein; for mitochondrial and 
cytosolic fractions, VDAC1 and GAPDH was used as the housekeeping proteins respectively. Densitometric 
analysis was performed for all western blots and normalized against the negative control i.e. mice without both 
APAP administration and pulsed cooling. (C) A relative change in the mitochondrial DNA levels was also 
determined with real-time RT-PCR. Data are presented as mean ± SD (n ≥ 3) where one-way ANOVA was used 
to make comparison across different treatment groups and post-hoc tests were subsequently carried out with 
correction for multiple comparisons using Sidak’s method. *P < 0.05; **P < 0.01.
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cooling was accompanied with low levels of GSH. This could have stemmed from frequent rewarming in the 
pulsed cooling procedure. Based on past studies, rewarming from hypothermia may induce oxidative injury due 
to a sudden mismatch in the oxygen demand and supply at the local site following blood flow restoration17,22. 
Hence, it triggers the GSH to scavenge ROS and lowers GSH:GSSG ratio (Fig. 8). With a global suppression of 
ROS (Fig. 8C), this underscores a healthy redox environment following the empirical pulsed cooling procedure.

In conclusion, this is the first time a pulsed, localized cooling procedure has been applied to ameliorate DILI, 
and the results of this empirical in vivo trial have promising implications for future optimization and potential 
clinical application. The mechanistic similarity with conventional continuous hypothermia may help to build a 
continuum to define greater therapeutic possibilities of cold physical therapy. On this note, we anticipate further 
cold applications beyond AILI, for example, for other causes of acute hepatotoxicity and, potentially, for other 
liver disorders.

Materials and methods
Animals.  Male C57BL/6NTac mice, of 20–30 g, were purchased from InVivos (Singapore, SG). All animal 
experimental protocols (R19-1260) have been approved by the National University of Singapore Institutional 
Animal Care and Use Committee (IACUC). All animal studies were only conducted after three days of acclima-
tization in the in-house animal housing facility. All methods were carried out in accordance with the relevant 
guidelines and regulations, and they were reported in accordance with ARRIVE guidelines.

In vivo pulsed cooling in AILI model.  The study began with a pilot phase to establish the feasibility of 
an empirical pulsed cooling approach, followed by a core investigation of its efficacy in an AILI model in mice.

Pilot feasibility study.  At the skin surface overlying the liver i.e. just below the sternum, the cutaneous hair 
was shaved over an area of 1.5 cm by 1.5 cm. Thereafter, an IPTT-3000 temperature transponder (BioMedic Data 
Systems, Seaford, DE), 14 mm by length and 2 mm by diameter, was inserted into the subcutaneous region at 
the shaved area using a disposable needle assembly according to the manufacturer’s instructions (Fig. 1A). Both 
the hair shaving and the implantation of temperature transponder were performed under isoflurane (Piramal 
Critical Care, Bethlehem, PA) anesthesia to avoid potential discomfort on the mice. The mice were allowed to 
recover overnight before pulsed cooling is performed. On the next day, prior to the start of cooling procedure, at 
time, t = 0 h, the subcutaneous temperature was measured using the temperature transponder. Due to the prox-
imity of the transponder to the liver, the recorded readings reflected local hepatic temperature. The core body 
temperature was simultaneously measured, to ensure that the mice were in a normothermic state before further 
manipulation. The mice were then anesthetized and placed on a heating pad set to 37 °C to maintain the core 
body temperature within physiological range. Next, an ice pack measuring 1.5 cm by 1.5 cm was placed over the 
shaved area as depicted in Fig. 1. Subcutaneous temperature was monitored till 32 °C regional hypothermia is 
achieved, and cooling would be continued for 15 min, during which the ice pack was intermittently removed to 
prevent excessive drop in temperature below 32 °C. The mice remained anesthetized during local hepatic cool-
ing, while core body temperature was maintained within acceptable physiological limits. After 15 min of local 
hypothermia at the liver, the anesthesia was withdrawn and the mice were returned to their cages. This entire 
procedure of anesthetizing and cooling was repeated on an hourly basis for four hours in total. By recording the 
subcutaneous and core body temperature hourly on three mice, we sought to verify that local cooling at the liver 
could be achieved, without disruption to the core body temperature during each successive cooling cycle. At the 
end of the pilot study, the mice were left in the cage for a week to recover from the cooling treatments, before 
euthanizing them for liver harvesting and blood collection. Euthanasia was performed with carbon dioxide over-

Figure 8.   Effect of pulsed cooling on glutathione homeostasis and oxidative stress. (A) GSH/GSSG ratio and 
(B) relative GSH levels were determined to examine the flux of GSH recycling and GSH changes respectively. 
(C) The extent of oxidative stress was also inquired by measuring the ROS levels. Data are presented as 
mean ± SD (n ≥ 3) where one-way ANOVA was used to make comparison across different treatment groups and 
post-hoc tests were subsequently carried out with correction for multiple comparisons using Sidak’s method. 
*P < 0.05; **P < 0.01; ***P < 0.001.
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dose and cervical dislocation. These mice samples were then assigned as the negative controls in the subsequent 
core efficacy study.

Core efficacy study.  The efficacy of pulsed cooling was evaluated with two groups of mice  - one, mice 
with AILI alone without pulsed cooling; two, mice with AILI that were subjected to concomitant pulsed cooling 
for four hours. Two mice were randomly assigned to each group and the entire study would be triplicated. The 
bulk of the procedure remained the same as in the pilot study with two exceptions - first, all mice were injected 
intraperitoneally with 300 mg/kg of 15 mg/mL APAP (Sigma-Aldrich, St. Louis, MO) dissolved in 0.9% (w/v) 
sodium chloride solution (B. Braun, Melsungen, DE) just before the start of pulsed cooling. Mice were fasted for 
12 h before the administration of APAP; second, a standardized pulsed cooling protocol would be implemented. 
Regardless of pulsed cooling treatment, mice were anesthetized with isoflurane and placed on heating pad dur-
ing the designated cooling intervals. The APAP dose was fixed at 300 mg/kg as mice administered with 400 mg/
kg (n = 2) failed to survive three rounds of 15-min isoflurane anesthesia. Indeed, long exposure of isoflurane 
anesthesia has been previously reported to induce liver injury23. Therefore, to limit the potential of fatal liver 
injury, mice were administered with 300 mg/kg APAP. Unlike the pilot study where close temperature monitor-
ing was performed for each mouse to determine the time needed for localized cooling to achieve moderate hypo-
thermia (32 °C), we sought to determine the average time taken to achieve targeted cooling at each cooling cycle 
based on the pilot study. We then standardized the duration of cooling for each cooling cycle and maintained 
the mice at moderate hypothermia for 15 min, followed by a one-hour recovery interval between each cooling 
cycle. Therefore, no temperature transponder was implanted at the site of cooling. Specifically, mice were cooled 
in a sequential manner for 10 min, 5 min 40 s and 11 min 40 s for the three cooling cycles within a four-hour 
pulsed cooling procedure. Thereafter, the mice were left in the cage overnight. After 24 h of APAP exposure, the 
mice were weighed before being euthanized by carbon dioxide overdose and cervical dislocation. After which, 
cardiac puncture was performed for blood collection and the liver was harvested for histological and biochemi-
cal analysis. A summary of the pilot and core study is illustrated in Fig. 2.

Measurement of subcutaneous and core body temperature.  The subcutaneous temperature was 
measured using an implanted temperature transponder that was inserted into the subcutaneous tissue overlying 
the liver. The measurement was thus suggestive of the local hepatic temperature. The core body temperature was 
measured using a rectal thermometer probe (Panlab, Barcelona, ES) during pulsed cooling. By simultaneously 
measuring both subcutaneous and core body temperature, we aimed to demonstrate a regional hypothermic 
effect close to the liver, independent of the core body temperature. Both subcutaneous and core body tempera-
ture measurements were taken before the start of pulsed cooling, at t = 0 h, and for every three minutes during 
each of the 15-min cooling cycle; during the hourly recovery period between pulsed cooling, temperature meas-
urements would be performed every 20 min. To protect the mice from physical trauma following frequent inser-
tion of rectal thermometer probe, we used an infrared non-contact thermometer gun (Movel Scientific Instru-
ment, Zhejiang, CN) to measure core body temperature at the rectal region instead, during recovery periods. Its 
accuracy had been found to be comparable with rectal thermometer probe during hands-on practice in mice.

Liver function tests.  Cardiac puncture was performed on mice after they were euthanized with carbon 
dioxide overdose and cervical dislocation. Whole blood was collected in serum separator tubes and left at room 
temperature to allow blood clotting for 30 min. Thereafter, they were transported back to the laboratory where 
serum samples were isolated by centrifuging whole blood samples at 3500 rpm for ten minutes. For analysis of 
liver enzymes levels, ALT and AST assay kits (Nanjing Jiancheng Bioengineering Institute, Jiangsu, China) were 
used according to manufacturer’s instructions. All serum samples were measured in triplicates.

Histological staining.  After euthanasia, the whole liver was harvested from each mouse and part of the 
liver, including both the left and right liver lobe, was fixed in 10% (v/v) neutral buffered formalin (Sigma-Aldrich, 
St. Louis, MO). The liver tissue was then processed and embedded in paraffin wax, followed by sectioning and 
mounting onto polysine ™ slides (Thermo Scientific, Waltham, MA). To visualize the liver histology, liver tissue 
sections were stained with hematoxylin and eosin (H&E) (Sigma-Aldrich, St. Louis, MO) before visualizing 
under an Olympus microscope (BX43, Tokyo, JP). For APAP-treated mice, histology was first compared between 
left and right liver lobes to confirm the distribution of liver injury. In the absence of a marked difference between 
left and right liver lobes (Supplementary Fig. S1), the comparison between APAP-treated mice, with and without 
pulsed cooling, was subsequently performed indiscriminately across various liver lobes. Histopathological scor-
ing for the degree of liver cell damage was performed according to the scoring rubrics detailed in Blakzka et al.24. 
Apart from the extent of hepatic congestion and necrosis, the extent of glycogen loss was added as another cri-
terion for grading the severity of APAP-induced liver damage.

Real‑time PCR analysis.  The harvested liver tissue was snap-frozen in liquid nitrogen and stored in -80 °C 
freezer prior to RNA and DNA extraction. To isolate total RNA, approximately 20 mg of mice tissue was first 
disrupted with Dounce homogenizer, followed by homogenization with QIAshredder (Qiagen, Venlo, NL) and 
finally extracted using RNeasy mini kit (Qiagen, Venlo, NL). Thereafter, total RNA was quantified with Nan-
oDrop 1000 UV/Vis spectrophotometer (Thermo Scientific, Waltham, MA) and cDNA was synthesized from 
1 µg of total RNA using qScript cDNA SuperMix (Quantabio, Beverly, MA) based on manufacturer’s instruc-
tions. Real-time PCR analysis was performed using QuantiFast SYBR Green PCR Kit (Qiagen, Beverly, MA) 
on CFX96 touch real-time PCR detection system (Bio-Rad, Hercules, CA) and the cycling conditions were as 
follow—the samples were heated at 95 °C for five minutes, followed by 40 cycles of 95 °C for 10 s and 60 °C 
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for 30 s. The relative mRNA expressions were determined based on fold changes calculated using 2-ΔΔCt, where 
normalization was performed against the negative control i.e. mice without both APAP treatment and pulsed 
cooling. The transcript expressions of RBM3, CIRP and HSP70 were quantified, and β-actin was used as the 
housekeeping gene. The primer sequences (Integrated DNA Technologies Coralville, IA) are listed in Table 1. All 
samples were run in triplicates.

To isolate total DNA, approximately 20 mg of mice tissue were homogenized in the same manner as described 
above, followed by an extraction using DNeasy blood and tissue kit (Qiagen, Venlo, NL). By conducting real-time 
PCR analysis as described above, the DNA expression of ND1 would be quantified. For that, hexokinase 2 is 
used as the housekeeping gene. The primer sequences were listed in Table 1. All samples were run in triplicates.

Isolation of mitochondrial and cytosolic fraction.  To isolate the mitochondrial and cytosolic frac-
tion from liver tissues, approximately 20 mg of frozen liver, was first homogenized with Dounce homogenizer 
in the mitochondrial isolation buffer (pH 7.5) comprising 50 mM HEPES, 320 mM sucrose, 10 mM potassium 
chloride, 1.5 mM magnesium chloride, 1 mM EDTA, 1 mM dithiothreitol and protease inhibitor cocktail which 
included 10 mM sodium fluoride, 100 mM PMSF, 2 M sodium orthovanadate and 2 μg/mL aprotinin. Following 
on, another round of mechanical homogenization was performed by passing through 25 G needle using a 1 mL 
syringe to disintegrate cell membranes for the release of cellular fractions. Thereafter, cell debris was removed 
by centrifuging the cell lysates at 800 g for 10 min. The supernatant was then collected and subjected to further 
centrifugation at 10,000 g for 20 min. Here, the supernatant was collected as the cytosolic fraction while the 
resultant pellet forms the mitochondrial fraction. Finally, the pellet was resuspended in cell lysis buffer compris-
ing 10 mM sodium fluoride, 100 mM phenylmethylsulfonyl fluoride (PMSF), 2 mM sodium orthovanadate, 
2 μg/mL aprotinin, 1% (v/v) octylphenoxypolyethoxyethanol, 0.5% (w/v) sodium deoxycholate and 0.1% (w/v) 
sodium dodecyl sulfate (SDS) diluted in PBS. All chemicals stated were obtained from Sigma-Aldrich (St. Louis, 
MO).

Western blotting.  Approximately 20 mg of the liver tissue was used for protein extraction to characterize 
various protein expressions with western blotting. To do so, the frozen liver tissue was first homogenized with 
Dounce homogenizer in the cell lysis buffer as described in earlier section. Thereafter, the proteins extracted 
in the lysis buffer were isolated through centrifugation at 13,000 rpm for ten minutes at 4 °C and quantified. 
Western blotting was performed based on our past study1. Briefly, 20 μg protein samples were separated via 8% 
and 15% (v/v) SDS–polyacrylamide gel electrophoresis and transferred onto polyvinylidene fluoride (PVDF) 
membranes (Bio-Rad, Hercules, CA) for all proteins, with the only exception of CIRP using nitrocellulose 
membrane (Thermo Scientific, Waltham, MA). All PVDF membranes were blocked with 5% (w/v) BSA in tris-
buffered saline containing 0.1% (v/v) Tween-20 (TBS-T) while nitrocellulose membrane was blocked with 5% 
(w/v) skim milk in TBS-T. Thereafter, all membranes were incubated overnight at 4 °C in primary antibodies 
diluted in 1:1000, except anti-β-actin antibody which was diluted in 1:10,000. Next, all membranes were washed 
with TBS-T before incubating with horseradish peroxidase-conjugated secondary antibodies (Cell Signaling, 
Danvers, MA), at 1:10,000 dilution, for an hour at room temperature. The protein bands were then visualized 
with chemiluminescence image analyzer (G:BOX Chemi XX6, Syngene, Cambridge, UK) using western light-
ning plus-ECL reagent (PerkinElmer, Waltham, MA). All protein bands were quantified with ImageJ software 
(National Institutes of Health, Maryland, US) and normalized against the housekeeping protein, β-actin or 
GAPDH; for phosphorylated proteins i.e. p-p70S6K, p-AMPKα and p-ULK1, they were normalized against 
their corresponding total protein levels; for TFAM in the specific mitochondrial and cytosolic fractions, it was 
normalized against the housekeeping proteins, VDAC1 and GAPDH, respectively. All chemicals stated were 
obtained from Sigma-Aldrich (St. Louis, MO).

Measurement of hepatic GSH content and GSH/GSSG ratio.  20  mg of frozen liver tissue was 
homogenized with a Dounce homogenizer in the cell lysis buffer as described in earlier section. The relative 

Table 1.   Primer sequences used in real-time PCR. *Cited from Quiros et al.26.

Gene Primer sequence (5ʹ → 3ʹ) Product length (bp)

RNA-binding motif protein 3 (RBM3)-homologous to human RBM3
F: CCT​TCA​CAA​ACC​CAG​AGC​AT

177
R: TTC​CAT​ATC​CCT​GGT​CTC​CA

Cold-inducible RNA-binding protein (CIRP)-homologous to human 
CIRP

F: GCG​GCA​GAT​CAG​AGT​TGA​C
191

R: AGC​CTC​CAT​AAC​CCC​CAC​T

Heat shock protein 1A (HSPA1A)-homologous to human HSP70
F: CAA​GAT​CAC​CAT​CAC​CAA​CG

237
R: ATG​ACC​TCC​TGG​CAC​TTG​TC

Mitochondrially encoded NADH dehydrogenase 1 (ND1)*-homolo-
gous to human ND1

F: CTA​GCA​GAA​ACA​AAC​CGG​GC
–

R: CCG​GCT​GCG​TAT​TCT​ACG​TT

Hexokinase 2 (HK2)*-homologous to human HK2
F: GCC​AGC​CTC​TCC​TGA​TTT​TAG​TGT​

–
R: GGG​AAC​ACA​AAA​GAC​CTC​TTC​TGG​

Beta-actin (β-actin)
F: TGT​TAC​CAA​CTG​GGA​CGA​CA

165
R: GGG​GTG​TTG​AAG​GTC​TCA​AA
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hepatic GSH content in mice samples were determined with glutathione cell-based detection kit (Cayman 
Chemical, Ann Arbor, MI) according to manufacturer’s instructions. By using monochlorobimane as the GSH 
substrate, it reacts with GSH and the resultant fluorescence intensity was measured at an excitation wavelength 
of 380 nm and at an emission wavelength of 480 nm on a microplate reader. Relative changes, by percentage, 
in the GSH content were determined by normalizing against the negative control i.e. mice without both APAP 
administration and pulsed cooling. All samples were run in triplicates.

To further examine the extent of reduced (GSH) and oxidized glutathione (GSSG) levels, GSH/GSSG ratio 
detection assay kit (Abcam, Cambridge, UK) was used according to manufacturer’s instructions. With the use 
of thiol green fluorophore, the fluorescence intensity representing the total glutathione and reduced GSH were 
measured at an excitation wavelength of 490 nm and at an emission wavelength of 520 nm on a microplate 
reader. Following on, the level of GSSG was calculated and GSH/GSSG ratio was determined. All samples were 
run in triplicates.

Measurement of ROS levels.  The measurement of ROS levels in the liver tissue was performed as previ-
ously described25. Briefly, 20 mg of frozen liver tissue was homogenized with a Dounce homogenizer in 200 µL 
of 40 mM Tris–HCl buffer (pH 7.4) (Bio Basic, Markham, ON). Next, 100 µL of the homogenate was mixed with 
1 mL of Tris–HCl buffer, containing 10 µM of DCFDA (Sigma-Aldrich, St. Louis, MO). The mixture was then 
incubated, with orbital shaking, at 37 °C for 40 min. The resultant fluorescence intensity was measured at an 
excitation wavelength of 485 nm and an emission wavelength of 535 nm on a microplate reader. Relative changes 
in the ROS levels were determined by normalizing against the negative control i.e. mice without both APAP 
treatment and pulsed cooling. All samples were run in triplicates.

Statistical analysis.  Data was expressed as mean ± SD of three biological replicates in the pilot study, and as 
mean ± SD of six biological replicates in the core study. Statistical analysis was carried out using GraphPad Prism 
for Windows (version 7.00) (GraphPad Software, La Jolla, CA). One-way ANOVA was used to compare across 
all groups i.e. mice without APAP treatment and pulsed cooling, mice with APAP treatment alone and mice 
with both APAP treatment and pulsed cooling. Post-hoc tests were subsequently carried out with correction 
for multiple comparisons using the Sidak’s method. For comparison of weight difference between APAP-treated 
mice, with or without pulsed cooling, two-tailed unpaired student’s t-test, of equal variance, was performed. Dif-
ferences between groups were considered statistically significant for P < 0.05.
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