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Modeling of the fracture energy 
on the finite element simulation 
in Ti6Al4V alloy machining
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Francisco Javier Trujillo Vilches1, Sergio Martín‑Béjar1 & Lorenzo Sevilla Hurtado1

One of the main problems that exists when working with Finite Element Methods (FEM) applied to 
machining processes is the lack of adequate experimental data for simulating the material properties. 
Moreover, for damage models based on fracture energy, the correct selection of the energy value is 
critical for the chip formation process. It is usually difficult to obtain the fracture energy values and 
requires complex tests. In this work, an analysis of the influence of this fracture energy on the cutting 
force and the chip generation process has been carried out for different sets of cutting parameters. 
The aim is to present an empirical relationship, that allows selecting the fracture energy based on 
the cutting force and cutting parameters. The work is based on a FEM model of an orthogonal turning 
process for Ti6Al4V alloy using Abaqus/Explicit and the fracture energy empirical relation. This work 
shows that it is necessary to adjust the fracture energy for each combination of cutting conditions, to 
be able to fit the experimental results. The cutting force and the chip geometry are analyzed, showing 
how the developed model adapts to the experimental results. It shows that as the cutting speed and 
the feed increase, the fracture energy value that best adapts to the model decreases. The evolution 
shows a more pronounced decrease related to the feed increment and high cutting speed.

Titanium alloys are important for the engineering field and are nowadays common in the aerospace, aeronauti-
cal, automotive, and biomedical industries. This is due to their combination of excellent mechanical and physi-
cal–chemical properties. Among the different titanium alloys, the Ti6Al4V alloy is the one widely used inairframe 
structure manufacture1. It presents a very good strength-to-weight ratio and superior corrosion resistance2,3. 
However, this alloy also gives rise to high machining costs due to its low thermal conductivity, high chemical 
reactivity and its ability to maintain hardness at high temperatures, leading to fast degradation of the cutting 
tool4–6. These problems are increased due to the current trend to reduce or eliminate the use of metalwork-
ing fluids (MWFs) when machining is performed7 due to social-economic and environmental aspects8. Dry 
machining reduces environmental pollution and health risks. However, a faster tool wear and surface integrity 
degradation is apparent in dry machining9.

The low machinability of the Titanium, combined with its high market price, has led to alternatives for per-
forming experimental studies. Therefore, the aim of which is to utilize predictive models, that provide reliable 
results of the machining process (such as the cutting area temperature, tool wear, cutting forces, chip geometry 
and surface quality)4. However, a good model of the machining process is often difficult to obtain because of 
the complex nature of the process itself, involving high strains, strain rates and temperatures. The numerical 
models, most of which are based on the Finite Element Method (FEM), usually are presented as a suitable tool 
to perform a reliable analysis. This is essential to improve the quality of the machining processes, not only from 
a functional perspective but also from an economic point of view10.

Even though the literature regarding this topic is vast, the simulation models that comprise the constitutive 
equations, parameters, etc., are constantly changing and improving. This helps to obtain results that better adapt 
to the real behavior of the alloy under study. Thus, due to the complexity of the material, the existing proposed 
FEM models are constantly changing based on newly discovered knowledge? Recent articles show that this field 
of study is still evolving and highlight the mentioned complexity of the material. Some examples can be found 
in the studies of Chen et al.11, where different constitutive models such as the Johnson–Cook (JC), the John-
son–Cook Modified (JCM) and the Khane Huange Liang model (KHL) are compared. In the chip formation 
simulation model of Ti6Al4V in orthogonal cutting, Maohua et al.12 implemented a new analytical formulation 
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for the friction coefficient at the tool-chip-workpiece interface, verifying the results with experimental analy-
sis. Childs et al.13 combined FEM simulation with experimental tests to develop a constitutive equation. This 
combination better describes the flow stress,failure behavior and also examines which parameters are criti-
cal to obtain good results. Sadeghifar et al. 14, implemented the Johnson–Mehl–Avrami–Kolmogorov (JMAK) 
recrystallization model. This model is used to study the effect of grain size in Ti6Al4V machining using different 
cutting parameters. They studied how the surface integrity is linked to the fatigue life and corrosion resistance 
of machined parts. Bai et al.10 have also proposed another analytical model for chip formation prediction in 
orthogonal cutting of Ti6Al4V.

Even though there are several studies on Ti6Al4V, the material parameters are, in most cases (mainly the 
flow and failure data), provided by different sources which are assumed to be valid. However, it is uncertain that 
these obtained parameters match the material behavior for the specific machining process being simulated13. It 
is well known that these material parameters can differ from one article to another, sometimes under the same 
machining conditions, because there is no specific FEM model in each case or a general model. This might occur 
when, for example, the JC equation15 and the fracture energy (Gf) are used to simulate the material fracture 
behavior. Gf is associated with the material in order to characterize fracture during the cutting process (shear 
failure criterion16). This value can be obtained from previous research, although it does not have a stable value, 
or through experimental methodology. However, this is time consuming and might not be economically and 
technically feasible.

So, this study aims to establish a relationship between the cutting parameters and the fracture energy to avoid 
being dependent on complicated experimental methods or values published in previous studies. This adapts the 
fracture energy value to the cutting parameters of the selected process. The cutting parameters implemented in 
machining processes highly influence the material behavior and so, the fracture energy should not be maintained 
as fixed but adapted. Especially in the machining processes, where extreme conditions are presented throughout 
the entirety of the cutting process and the material behavior is affected by it. Also, the simulation process can be 
better adjusted to the material behavior adapting the fracture energy, depending, in this case study, on the cutting 
parameters. One of the main objectives of the present work is to study the influence of the fracture energy on the 
machining process for different cutting parameters using FEM and to compare it with experimental results. The 
parameter Gf has been selected since the JC fracture equation only defines the initiation of the crack. However, 
Gf governs the damage evolution thus providing results that might fit better to the real behavior of the material. 
It should also be emphasized that the fracture energy is usually mode dependent and can therefore depend on 
the loading.

The JC-model and JC damage criterion considers plasticity and damage initiation. This takes into account 
the strain, strain rate and temperature. The JC damage criterion has been commonly employed in simulation of 
segmented chip formation when machining titanium alloys like the one considered in this study. The main JC 
parameters that can be found implemented in the literature do not, in general, present a significant variation11,17,18 
but Gf can deviate considerably depending on the fracture mode considered (from 11.53 MJ/mm217 to 33.67 MJ/
mm219). This material parameter is obtained from complex experimental tests20, taking the direction of the load 
application among others into account. However, the forces developed during the machining process are complex 
and so, its direct implementation in the numerical model can be complicated21. Gf is considered in general as a 
constant of the material even though it is affected by the process conditions22,23.

It is well-known that an inherent property of this type of failure modeling produces mesh dependent 
results24,25. In the case of JC dynamic failure criterion, where elements are continuously degraded and deleted 
when the failure criterion is reached, the released energy depends on the element size. When a material point 
softens in continuum damage models, the softening becomes localized, promoting further softening. The miti-
gation of damage localization and mesh dependency is outside the scope of the current paper, being focused on 
the relation of the cutting parameters and the fracture energy. Therefore, the element mesh is kept fixed during 
simulations and the reported fracture energies are only valid for the specific mesh used in this paper.

The main intention of this study is to analyze the influence of the fracture energy mentioned above using the 
Finite Element Analysis (FEA) and to establish an empirical relationship between the Gf, the cutting parameters 
and the force at fracture in the machining of the Ti6Al4V titanium alloy. The aim is to avoid being dependent 
on complicated experimental methods or values published in previous studies, presenting the fracture energy 
values that better adapt to the conditions simulated and fit the experiments conducted.

Materials and methods
As mentioned, the present work considers the study of the Ti6Al4V alloy machining process using finite element 
analysis and experimental tests. An empirical relationship based on the cutting parameters for the simulation 
model is established and fitted to the results. The empirical equation is also validated by comparing the simula-
tions with the experiments performed for different ranges of cutting parameters.

Experimental tests.  The composition of the selected Ti6Al4V alloy is presented in Table 1 and is obtained 
by arc atomic emission spectroscopy (AES).

Table 1.   Machined Alloy composition (mass %).

Alloy C Fe N O Al V Ti

Ti6Al4V 0.08 0.164 0.05 0.05 5.47 4.09 Rest
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The selected cutting parameters for the experimental tests of this alloy26,27 (Table 2) have been chosen based on 
the industrial requirements. A total of 180 tests were performed, with 15 repetitions for each cutting parameter 
combination to ensure repeatability. The experiments are the same as in previous studies made on this alloy by 
the authors28–30. This facilitates a quick evaluation of the experimental results, reducing experimentation times.

The tests were performed in a parallel lathe (ECLIPSE model, ALECOP), equipped with FAGOR 8055 T 
Numerical Control, in dry conditions. To be able to minimize the geometric variable influence, all tests were 
carried out in an orthogonal configuration. The specimens were designed with a tailored geometry to main-
tain orthogonal conditions throughout the tests. Different grooving operations were carried out on a billet 
(L = 170 mm, D = 105 mm) to achieve a tubular geometry. Then, two crowns were formed, corresponding to 
the two diameters machined previously. Each crown was machined with a specific thickness equal to cutting 
depth. Additionally, a relief zone was established, eliminating a sector of the crowns, to ensure that the spindle 
reached a permanent regime. Therefore, the aim was to obtain results close to a two-dimensional behavior with 
this geometry and to allow comparisons with the FEM studies carried out, as they are usually implemented to 
minimize computational time18,29,31. A new coated WC–Co insert was used for each test to maintain the same 
initial conditions. For the monitoring of the cutting forces (Fc), a piezoelectric sensor dynamometer, 9121 Kistler 
with an amplifier and dynamic signal analyzer and a Pulse Labshop data acquisition system were used.

The generated chips were collected, codified, photographed and stored after each test using metallographic 
techniques for analysis. For the study of the chips, an inverted metallurgical microscope (EPIHOT 280 NIKON, 
Tokyo, Japan) and a CF Optical System (1.5 × to 400 ×) for the SOM images were used. The corresponding meas-
urements of the samples were obtained using a digital-image-processing software (Omnimet BUEHLER, Lake 
Bluff, IL, USA). A complete study and representation of the chip geometry is presented in28.

The experimental results indicate that a relationship can be obtained between Fc, f, vc, the height of the peaks 
(hp) and the height of the valleys (hv). For the validation of the model and the fracture energy equation, the results 
are compared with the results obtained from the FEM models.

Finite element analysis.  For the Finite Element Analysis, a 2D FEM Lagrangian formulation model is 
implemented using Abaqus/Explicit. The general JC flow stress model is used for the description of the visco-
thermo-plastic behavior of the material [Eq. (1)]. This law considers in a multiplicative way the work harden-
ing, strain rate hardening and thermal softening of the workpiece material at high cutting speeds. The JC law is 
usually applied in FEM studies of machining including new parameters32,33 or not11,12. Equation (1) shows the 
JC law, where σ is the flow stress, ε is the equivalent plastic strain (representing the work hardening based on 
the constants A, B and n), ε̇ the strain rate, ε̇0 the reference strain rate (representing the strain rate based on the 
constant C), Tr the ambient reference temperature and Tm the melting temperature of Ti6Al4V (representing the 
thermal effect based on the constant m). The parameter A is the initial yield strength of the material at quasi-
static strain rate. The parameter B and n represents the flow stress on strain hardening behavior at quasi-static 
strain rate. And the parameter C represents strain rate effect, and m represents thermal softening effect. Table 3 
shows the JC model parameters implemented for this study11. The reference strain is defined as 0.7 s−117.

Also, for the damage initiation, the JC fracture model or damage criterion12,34, given in Eq. (2), is used 
to define the initial failure strain. Table 4 shows the model parameters, where ε−pl

oi  is the equivalent plastic 
strain at the onset of damage (assumed to be dependent on ε̇−pl/ε̇0 a non-dimensional plastic strain rate, p/q 
a dimensionless pressure-deviatoric stress ratio (being p the pressure stress and q the von Mises stress), T∗ the 
non-dimensional temperature defined previously in Eq. (1) (T − Tr/Tm − Tr and di are the failure parameters11.
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Table 2.   Cutting parameters for dry turning tests.

f (mm/r) vc (m/min) ap (mm)

0.05
30
65
125

1
0.10

0.20

0.30

Table 3.   JC model parameters for Ti6Al4V.

A (MPa) B (MPa) n C m Tr (K) Tm (K)

870 990 0.25 0.011 1 298 1933
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The criterion for the damage evolution is based on the fracture energy (Gf) with exponential softening 
[Eq. (3)].

where D is the damage, σ̃ the effective stress and up the equivalent plastic displacement. When the damage 
progresses in a specific element and reaches D = 1, the element is considered fully damaged and is consequently 
removed from the analysis.

The element deletion is activated, so the elements that reach the distortion marked for the simulation (Gf) 
are eliminated from the simulation.

For the contact between the chip and the cutting tool, a surface-to-surface contact definition is applied. A 
penalty friction formulation based on Zorev’s model [Eq. (4)] is used to define the tangential behavior35

where τ the frictional stress, µ the apparent friction coefficient at the cutting tool/chip interface, µNf the fric-
tion along the contact length and τlimit the material shear stress, remaining constant µ and τlimit (µ = 0.3 and 
τlimit = 331 MPa). The normal behavior is defined as a hard contact. However, the friction variable has been set 
based on previous analysis and it is not part of this analysis36,37. The heat transfer coefficient at the interface was 
modelled using a high thermal conductance in order to reach the steady state quickly.

Figure 1 shows the mechanical boundary conditions for the model. As illustrated, the displacement is set to 
zero in the y-direction at the bottom of the workpiece. In addition, the cutting speed is applied in the x-direction 
at the bottom of the workpiece. The cutting tool is constrained to a Reference Point (RP) and is set to zero. With 
regard to the thermal boundary conditions, a starting temperature of 298 K is applied to the workpiece and the 
tool in the initial step.

According to the consulted literature, the mechanical and thermodynamic parameters for the workpiece and 
the tool are as presented in Table 5 32,38.

For decreasing the computational time, the mesh of the workpiece is divided into two different domains 
(Fig. 1). The upper part, which is subjected to severe deformation due to the machining process, is meshed with 
smaller elements. The rest of the workpiece is meshed with larger elements further away from the cutting area. 
The tool is divided into two areas; the first one around the contact zone with the chip and the second far away 
from the cutting area. The element size and shape, as well as the meshing control for each area, are shown in 
Table 6. As for the boundary conditions, the bottom of the workpiece has been fixed and no movement is allowed 
in the x-direction or y-direction. As for the cutting tool, a reference point (RP, Fig. 1) has been placed on the 
upper part to be able to include the cutting speed in the x direction.

The general element type applied for the workpiece and cutting tool is CPE4RT (4-node plane strain thermally 
coupled quadrilateral, bilinear displacement and temperature, reduced integration, hourglass control). For a 
better transition between the areas with different elements size, the element type CPE3T (3-node plane strain 
thermally coupled triangle, linear displacement and temperature) is used. The model has a total of 6514 number 
of elements and 6639 number of nodes.

(3)D = 1− exp

(
∫ up

0

σ̃

Gf
dup

)

(4)τ =

{

µNf , τ < τlimit(sliding)
τlimit , τ ≥ τlimit(sticking)

Table 4.   JC Damage model parameters for Ti6Al4V.

d1 d2 d3 d4 d5

− 0.09 0.25 − 0.5 0.014 3.87

Figure 1.   FEM model, mesh and boundaries.
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Also, in order to complete the simulations and consume as little computational time as possible, it is impor-
tant to avoid severe element distortion as much as possible. Therefore, it is essential to create a suitable mesh. 
As mentioned above, it is also well-known that the results are mesh dependent for materials which exhibit 
softening19,39,40. The mesh dependency is unavoidable and therefore it is referred to as model data instead of true 
material data. However, using the same mesh configuration, size, elements, etc. with no remeshing, it is assumed 
that the results are valid for this model. An optimization study has been conducted to set the final mesh used 
in all the simulations.

Results and discussion
To obtain the empirical relation, a set of simulations are carried out using a set of Gf values. In the literature, a 
fracture energy of 33.67 mJ/mm2 is commonly used for this alloy17. However, it is not possible to maintain this 
value for the set of cutting parameters, because of the differences between the simulation and the experimental 
results, but also due to the simulation problems encountered with mesh distortion etc.

Having this parameter fixed for the wide range of cutting parameters simulated is also inadequate. This is 
mainly due to its dependency on the changes in the fracture mechanics of the cutting process. A Gf adaptation 
for a low or a high speed, as well as for the different feeds, provides more suitable results, as can be seen in this 
section.

Several simulations are performed using different fracture energies to obtain the dependence of the cutting 
forces on the feed, cutting speed and Gf. Due to the computational time requirements, the simulations are limited 
to two different feeds, as seen in Fig. 2. Also, in Table 7, the simulated chips are shown. Depending on the applied 
Gf different behavior can be observed. All the parameters have been fixed except for Gf and the feed.

Based on the cutting forces provided from the experimental results in28 and presented in Table 8, the fracture 
energy is obtained from Fig. 2 using the corresponding cutting speed and feed. The empirical relation [Eq. (5)] 
is then obtained by applying a multivariable linear regression to determine the unknown parameters, presenting 
a R2 of 0.91. By studying the results obtained from the experiments and the FEM model, the empirical relation 
for Gf, the cutting parameters and the cutting force has been obtained [Eq. (5)]. This can be used to determine 
Gf from experiments by measuring the cutting force from the experiments, using the corresponding feed and 
cutting speed. The final equation is given by

Two more simulations are made with the predicted Gf for a cutting speed of 65 m/min and a feed of 0.10 and 
0.20 mm/r in order to confirm the results obtained from Eq. (5). The resulting cutting forces from each simulation 
give a good fit to the fracture energy given by Eq. (5), as it can be seen in Fig. 2 (v65f01 check and v65f02 check).

(5)Gf = 0.2253 · v−0.3132
c · f −1.3161 · F0.6973c

Table 5.   Ti6Al4V and tool parameters used in the FEM simulations.

Mechanical and thermal properties for Ti6Al4V

Density (t/mm3) 4.5E−09

Young’s modulus (MPa) 144,000

Poisson’s ratio 0.32

Expansion coefficient (m/m K) 9.40E−06

Specific heat (J/kg) 656

Thermal conductivity (W/m K) 6.6

Melting point (K) 1933

Thermal and mechanical properties of the cutting tool

Density (t/mm3) 1.19E−08

Young’s modulus (MPa)

–Poisson’s ratio

Expansion coefficient (m/m K)

Specific heat (J/kg) 33,700,000

Thermal conductivity (W/m K) 86

Table 6.   Meshing features.

Area Element size (mm) Element shape Meshing control

Workpiece
Chip 0.015 Quad Structured

Rest 0.015–0.3 Quad-dominated Free

Tool
Cutting 0.06 Quad-dominated Free

Rest 0.06–0.20 Quad-dominated Free
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Once the equation is assumed to be valid, a set of simulations are performed using the cutting parameters in 
Table 2. From the obtained results, the cutting forces and the chip geometry are compared with the ones acquired 
from the experimental tests.

Figure 3 shows the comparison of the cutting forces for the implemented range of cutting parameters. It can be 
seen that the empirical relation works good for the implemented feed range. Table 9 shows the calculated Gf and 
the simulated and experimental cutting forces and the corresponding error for each couple of cutting parameters. 
It can be seen that the error is in general below 10%. Only for a 125 m/min and 0.05 mm/r, the simulation result 
error is over 10%, which can be explained due to the mechanical behavior of the Ti6Al4V at a higher cutting 
speed. This type of alloy presents a low thermal conductivity which leads to a rapid increase in temperature in 
the primary deformation zone, having an adiabatic process. So, the material softens and it is easily deformed29,41. 
Also, as vc increases, friction is reduced and so the cutting forces are lower42. These kinds of mechanisms are 

Figure 2.   Cutting force evolution based on the fracture energy.

Table 7.   Chip evolution depending on the Gf applied for 65 m/min.

f (mm/r)

Gf (mJ/mm2)

15 30 75

0.1

   

0.2

   

Table 8.   Cutting parameters for dry turning tests.

vc (m/min) f (mm/r) Fc (N) Gf (mJ/mm2)

30
0.10 255.75 88.50

0.20 294.23 29.69

65
0.10 209.92 54.85

0.20 309.29 30.32

125
0.10 75.93 34.05

0.20 154.44 15.40



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18490  | https://doi.org/10.1038/s41598-021-98041-5

www.nature.com/scientificreports/

not included in such an empirical relation as the one presented in Eq. (5). However, the main objective of this 
analysis is to work with a simple equation that can be used to determine the fracture energy from cutting forces 
and cutting data. Knowing its limitations, it is presented as a first approximation.

In Fig. 4, Gf is presented as a function of feed and cutting speed. It can be clearly observed that the fracture 
energy tends to converge to a specific value at a higher feed. This tendency also applies for higher speeds. This 
demonstrates that less fracture energy is needed to fracture the material at higher values of feed and cutting 
speed. So, Eq. (5) shows how it is necessary to adapt Gf depending on the cutting data choice. This implies the 
importance of having a mixed-mode Gf model due to the complex interaction of loading, geometry etc. as the 
fracture mode varies in the machining process depending on these parameters43.

In order to illustrate the obtained results more clearly, a geometry comparison of the chip formation process 
and the experimental results28 has been carried out. The results of the study are presented in Table 10. It can be 

Figure 3.   Cutting forces comparison between experimental results and FEM for 30 (a), 65 (b) and 125 (c) m/
min.
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seen that the cutting forces are in good agreement with the experimental results. The model presents similar 
chip formation for higher range of feeds (0.30–0.20 mm/r). However, it is not possible to capture the serrated 
geometry for the lower range of feed (0.10–0.05 mm/r). This might be explained due to the changes in the fracture 
mechanism. For higher f, the cutting process develops higher shear forces that can be well represented with the JC 
formulation implemented. However, for lower f, the portion of material that is submitted under the cutting tool 
thrust is less (thinner). Because of this, the normal force is bigger than the shear force and the model is not able 
to present the characteristic serrated geometry. It can also be observed that the mesh consists of fewer elements 
in the chip zone resulting in a stiffer behavior. This can be improved with a thinner mesh but, as explained in 
previous paragraphs, a thinner mesh, brings more elements and that more time is needed for the simulation. So, 
for this first approximation, the mesh is maintained.

JC material model in simulations can lead to continuous chip geometry for low vc and f17,44 but is one of the 
criteria generally used to simulate the crack initiation and propagation into the primary shear zone during the 
chip formation. The literature shows several numerical models developed but none of which are adequately 
adapted to predict the chip formation profile which highlights the difficulty behind the replication of this mecha-
nism and the existing gap4. Also, the chip formation mechanism of Ti6al4V is still not well understood due to 
the complexity of the material behavior itself42. It can be seen in the literature, that some authors consider that 
chip formation in this kind of alloy is due to a thermoplastic instability, while others consider the initiation and 
propagation of cracks inside the primary shear zone of the workpiece material. Moreover, the microstructural 
state of the alloy strongly influences the chip formation. This alloy presents a transitional chip at lower vc, show-
ing a more segmented chip at higher vc

41, as it shows in the experimental tests.
As stated in previous research28, over the experimental tests performed the serrated chip morphology remains 

continuous across the vc and f range studied, due to the high plasticity levels of this alloy and its low thermal 
conductivity, resulting in thermal softening, making the chip more difficult to break. This kind of behavior and 
the characteristics explained in previous paragraphs are what make it difficult to translate the alloy behavior to 
the simulation experiments.

Table 9.   Cutting forces evaluation for each Gf calculated.

Vc (m/min) f (mm/r) Fc (N) experimental Fc (N) simulation Fc (%) Gf (mJ/mm2) empirical

30

0.05 208.94 198.56 − 5.22 166.02

0.10 255.75 261.52 2.21 76.77

0.20 294.23 312.21 5.75 34.00

0.30 472.05 458.62 − 2.92 27.72

65

0.05 158.90 172.35 7.80 107.67

0.10 209.92 216.84 3.19 52.51

0.20 309.29 306.62 − 0.87 27.63

0.30 350.54 332.47 − 5.43 17.68

125

0.05 70.05 91.06 23.07 49.56

0.10 75.93 77.43 1.94 21.05

0.20 154.44 171.23 9.81 13.87

0.30 244.68 269.08 9.07 11.21

Figure 4.   Evolution of the fracture energy as a function of f and v. 
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Taking into account this brief explanation, it can be understood that the simplicity of the model is not taking 
into consideration all the parameters that influence the chip formation for this alloy. However, this first approxi-
mation of the model fits well to high feeds but not to low feeds. Therefore, the numerical model can be improved 
in this aspect. It can be identified in the simulations that, for the lower f of 0.05 mm/r, the chip tends to have a 
serrated shape with an increase in vc. For 125 m/min and 0.05 mm/r, the chip has a more pronounced wavy shape 
than for lower vc, but does not create a serrated shape. The same happens, less obvious, for f = 0.10 mm/r. In this 
case, the wavy effect disappears. This effect depends, in this case, on the mesh implemented. For f = 0.10 mm/r 
it seems that there are not enough elements to appropriately represent the chip shape. For f = 0.05 mm/r, the 
distortion of the mesh is such that some spaces and jumps between elements appear. This behavior, although is 
not well represented, follows the behavior presented by the alloy during the experimental tests. In the lowest feed 
rate range (0.05–0.10 mm/r), the chip was continuously helical and showed a tendency to create chip nests for 
0.05 mm/r. This could be understood with the less serrated morphology of the chip obtained during simulation.

The geometrical data obtained from the experimental tests are shown in Table 11 28 and the comparison 
between the average hp and hv is presented in Fig. 5 and Table 12. This is only shown for 0.20 and 0.30 mm/r 
because, as shown in Table 10, for the other f, the chip geometry does not present a serrated shape. The aver-
age results of hp and hv present a larger error compared with the ones obtained from the experimental tests 
(Table 12). Considering the spread in the experimental measurements (maximum and minimum experimental 
values, as shown in Fig. 5 as “min” and “max”) and not only the average value (“exp”), but it can also be observed 
that the results obtained from the simulation are in general within the range of the experimental results. The 
maximum error is 43.5% for vc = 30 m/min and f = 0.20 mm/r and the minimum is 8.5% for a vc = 60 m/min and 
a f = 0.30 mm/r. It can be estimated that with an increment of the vc and the f, the error % is reduced, except for 

Table 10.   Chip geometry comparative between experimental tests and FEM model.

Vc (m/min)

f (mm/r)

0.30 0.20 0.10 0.05

30
    

 

65

125
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125 m/min, where the trend changes. This can be attributed to the same mechanism explained in relation to 
Table 10. As an average the model presents an error of 12% and for the valley values and 30% for the peak values.

It can be concluded that the initial model provides reasonably good fit to the experimental results regarding 
the obtained cutting forces. For the chip geometry analysis, the model can be valid for a feed range between 
0.20 and 0.30 mm/r. Thus, it is necessary to develop the model further to better adapt to the low feed range (0.05 
and 0.10 mm/r).

As a model control, the energy balance, which must be identified, quantified and minimized to prevent 
erroneous findings, is analyzed, presenting a 5% of error, intended to be improved in future work. To control 
that the numerical model adhere to the basic physical laws (conservation of energy), the global energy of the 
model is checked to analyze that there are no major inconsistencies in the energy of the system, e.g. keeping the 
sum of internal, kinetic, sliding, hourglass, system damping, and rigid wall energies within an acceptable range. 
According to the literature consulted, this acceptable range should be around a 5% of the total global energy45,46.

Nevertheless, the developed model is presented as a preliminary study for the range of values studied. It would 
require a more in-depth study to analyse and incorporate the fracture mechanism mentioned, by which the chip 
generation can be closer to reality. A mixed-mode fracture criterion with different fracture energies in tension/
peel and shear should be implemented and tested to further evaluate the model.

Conclusions
In this work, a 2D FEM model for the analysis of the machining process of the Ti6Al4V alloy with adapted 
fracture energy values for each cutting parameter set has been developed. Additionally, an empirical equation 
to obtain the optimum fracture energy is presented. This involves maintaining the simulation parameters fixed 
and adapting Gf depending on the cutting parameters. A validation of the FEM model with experimental results 
obtained in previous studies has been made in order to establish the methodology and select the optimal values. 
This shows the advantages and disadvantages of the analysis. For this comparison, the Fc, hv and hp are selected 
to analyze the model mechanical and geometrically.

Implementing the Gf obtained from the empirical equation developed, the simulation model shows results in 
good agreement with the experimental tests. The main comparison is made with the cutting forces, presenting a 
value error lower than 10% for most of the cutting parameters studied. For a vc of 125 m/min the data evolution 
presents a higher error, but only for a f of 0.05 mm/r this percentage is over 10%. This is due to the mechanical 
behavior of the Ti6Al4V at higher vc (low thermal conductivity, high chemical reactivity and high hardening) 
and the simplicity of the equation.

As for the chip geometry, the model is able to represent the serrated characteristic chip for high f (0.30 and 
0.20 mm/r). However, this shows an average error between peaks and valleys of 12% and 30% correspondingly. 
For lower f, the model is not able to obtain a serrated chip, due, again, to the simplicity of the initial model. The 
fracture mechanism changes depending on the f implemented and the model is not developed to implement 
these variables in the first stages of the study.

This work attempts to highlight the necessity of adapting the fracture energy to the machining process param-
eters during FEM simulations, due to the influence that this parameter has upon the mechanical behavior of 
the material being machined. The aim is not to obtain the value from previous literature works or complicated 
experimental methods, which hardly represent the mechanism behind the machining process analyzed.

It is necessary to point out that this work is only the first stage of the cutting forces and chip morphology 
analysis of the Ti6Al4V alloy by FEM. The study and results are established for the specified cutting conditions 
but with an appreciable adjustment to the experimental values presented. Other mechanical and geometrical 
parameters, such as the temperature, shear stresses, chip segmentation ratio or shear angle, will be addressed in 
further works. In addition, the generality of the empirical equation should be tested in a wider range of cutting 
speed and cutting depth.

Table 11.   Chip geometrical average data, being hp the heights of peaks, hv the heights of valleys, tc the 
equivalent chip thickness and S the segment width in mm.

Vc (m/min)

30 65 125

hp hv tc S hp hv tc S hp hv tc S

f (mm/r)

0.05 0.054 0.044 0.06 0.014 0.050 0.021 0.059 0.01 0.040 0.025 0.061 0.02

0.1 0.095 0.072 0.114 0.029 0.110 0.074 0.122 0.05 0.100 0.055 0.138 0.04

0.2 0.202 0.106 0.264 0.116 0.200 0.117 0.261 0.09 0.190 0.100 0.247 0.09

0.3 0.290 0.138 0.365 0.116 0.290 0.122 0.361 0.13 0.320 0.175 0.353 0.15
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Figure 5.   Evolution of hp and hv for the experimental and FEM tests.
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