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Reproducibility in the UK biobank 
of genome‑wide significant signals 
discovered in earlier genome‑wide 
association studies
Jack W. O’Sullivan1,2* & John P. A. Ioannidis2,3

With the establishment of large biobanks, discovery of single nucleotide variants (SNVs, also known 
as single nucleotide polymorphisms (SNVs)) associated with various phenotypes has accelerated. An 
open question is whether genome‑wide significant SNVs identified in earlier genome‑wide association 
studies (GWAS) are replicated in later GWAS conducted in biobanks. To address this, we examined a 
publicly available GWAS database and identified two, independent GWAS on the same phenotype 
(an earlier, “discovery” GWAS and a later, “replication” GWAS done in the UK biobank). The analysis 
evaluated 136,318,924 SNVs (of which 6289 reached P < 5e−8 in the discovery GWAS) from 4,397,962 
participants across nine phenotypes. The overall replication rate was 85.0%; although lower for binary 
than quantitative phenotypes (58.1% versus 94.8% respectively). There was a 18.0% decrease in 
SNV effect size for binary phenotypes, but a 12.0% increase for quantitative phenotypes. Using the 
discovery SNV effect size, phenotype trait (binary or quantitative), and discovery P value, we built and 
validated a model that predicted SNV replication with area under the Receiver Operator Curve = 0.90. 
While non‑replication may reflect lack of power rather than genuine false‑positives, these results 
provide insights about which discovered associations are likely to be replicated across subsequent 
GWAS.

Genome-wide association studies (GWAS) have resulted in the discovery of tens of thousands of genetic asso-
ciations for various traits and phenotypes. Polygenic risk  scores1, innovative drug  discovery2, and gene-editing3 
have all been enhanced, or even based on, GWAS results. Genome-wide association studies investigate the 
association of individual single nucleotide variants (SNVs) on a phenotype of interest (for example coronary 
artery diseases)4. Most GWAS identify SNVs with, individually, small  effects4. This supports the notion that most 
diseases are polygenic, rather than monogenic, in  nature5.

To observe the small effect of individual SNVs, GWAS have relied on increasingly larger sample  sizes4. Recent 
advances have seen rapidly increasing sample sizes, particularly with the establishment of large biobanks. The 
most widely used and analyzed biobank in human genetics is the UK Biobank (UKBB)6. Analyses done in the 
UKBB and other similar biobanks have the opportunity not only to identify new associations but also to replicate 
previously proposed associations that arose from other GWAS investigations. It is not unexpected that some 
SNVs that were considered to be associated with a phenotype in an earlier GWAS may not be replicated in a 
subsequent GWAS. Even if they are replicated, their effect size may change, e.g. because of the winner’s curse 
 phenomenon7, where early discoveries see attenuation of their effect size when they are replicated in subsequent 
studies. This has implications for all scientific progress, and even patient care, (i.e. polygenic risk scores) reli-
ant on GWAS results, if these scores include variants that have null effects or effects that are smaller than those 
anticipated based on their earlier discovery profile.

Although several studies have looked at SNV replication for specific phenotypes, it remains broadly unclear 
across phenotypes how often SNVs replicate, how this varies between binary and quantitative traits, at different 
P values, across varying effect sizes, and how effect sizes change between earlier, smaller GWAS and later, larger 
GWAS examining the same phenotype. A most interesting comparison would be to contrast earlier GWAS versus 

OPEN

1Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA. 2Meta-Research Innovation Center 
at Stanford (METRICS), Stanford University, Stanford, CA, USA. 3Departments of Medicine, of Epidemiology and 
Population Health, of Biomedical Data Science, and of Statistics, Stanford University, Stanford, CA, USA. *email: 
jackos@stanford.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-97896-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18625  | https://doi.org/10.1038/s41598-021-97896-y

www.nature.com/scientificreports/

the UKBB, which has become a standard, widely used resource. We set out to address these questions, and, from 
our results, built a model to predict SNV replication.

Methods
Data acquisition. To determine the reproducibility of SNVs between an earlier GWAS and the UKBB, we 
identified two, independent GWAS on the same trait, one without data from the UKBB and the second being 
done on UKBB data. To do this, we systematically searched a publically available database of genome-wide asso-
ciation studies (GWAS) (available at: https:// atlas. ctglab. nl/)8 for GWAS that had been conducted for the same 
trait (e.g. systolic blood pressure) first using data independent of the UKBB and then a second, independent 
GWAS using exclusively UKBB data. Thus a trait was eligible if there were two independent GWAS available for 
it; one not using UKBB data (hereafter referred to as: discovery GWAS) and one using UKBB data (hereafter: 
replication GWAS). All discovery GWAS occured before the replication GWAS. Further inclusion criteria was 
GWAS conducted in European subjects (or results available for exclusively Europeans) and GWAS with more 
than 50 genome-wide significant SNVs, so as to allow having a meaningful number of discoveries to be assessed 
for replication. More information on the GWAS database we searched and its accompanying  paper8 are avail-
able in the appendix. Upon acceptance, we will make all the data available and its accompanying code (https:// 
github. com/ jacko sulli vanox ford, specifically: https:// github. com/ jacko sulli vanox ford/ Repro_ GWAS/ blob/ mas-
ter/ Data_ clean ing_ meta_ analy sis_ regre ssion_ predi ction).

Determination of reproducibility. To determine the reproducibility of SNVs in the discovery and repli-
cation GWAS we performed three broad steps: (1) Determined overlap of SNVs between discovery and replica-
tion GWAS (via rsID) and only included SNVs shared between two GWAS cohorts. We then identified the SNVs 
that reached genome-wide significance (defined using the accepted significant threshold for GWAS: P < 5e−8, 
regardless of the threshold that the original authors might have used) in the discovery GWAS—these were the 
SNVs we determined the reproducibility of. (2) Aligned the effect allele between the discovery and replication 
GWAS, and consequently inverted the effect size if effect alleles did not originally match and (3) Classified SNVs 
as replicated if they reached genome-wide significant (P < 5e−8) in both discovery and replication GWAS and 
had congruent effect directions in both GWAS (e.g. odds ratio (OR) above 1 in both GWAS). All SNV effect sizes 
were converted to OR before reproducibility was determined via the Chinn  formula9. Thus, SNV effect sizes that 
were originally produced from linear models for quantitative (continuous) traits were converted to OR. Lastly, 
as a sensitivity analysis we explored the reproducibility of SNVs using the more lenient significance of P < 10e−6. 
For this analysis we tested the reproducibility of SNVs that had a P value < 10e−6 in the discovery cohort, and 
used a reproducibility P value threshold of P < 10e−6 in the reproducibility cohort. Further details appear in the 
appendix.

Calculating reproducibility. We calculated the replication rate for each included trait individually, for all 
traits collectively, and for binary (e.g. coronary artery disease) and quantitative (e.g. diastolic blood pressure) 
traits separately. To calculate replication rate for each individual trait we calculated a simple proportion (e.g. 
[number of SNVs replicated]/[number of SNVs shared between discovery and replication GWAS]). To calculate 
the replication rate for all traits collectively we constructed a inverse-variance meta-analysis10 using fixed-effects. 
Further, we constructed similar inverse-variance meta-analysis10 to determine the replication rate for binary and 
quantitative traits; including only traits recorded in a binary fashion (yes/no) or on a continuous scale, respec-
tively. To explore the replication rate across P values and odd ratios, we also performed meta-analysis assessing 
the replication of SNVs with certain P value and OR characteristics (from the discovery GWAS). We calculated 
the reproducibility of SNVs across the following discovery GWAS P value categories: 5e−8 to 5e–9, 5e−9 to 
5e−10, 5e−10 to 5e−11, and < 5e−11. We calculated the reproducibility of SNVs across the following discovery 
GWAS OR categories: 1–1.05, 1.05–1.1, 1.1–1.15, 1.15–1.2, 1.2–1.3, 1.3–1.4, > 1.4.

Quantifying the change in effect size between GWAS. To determine if a change in SNV effect size 
occured between the earlier, discovery GWAS and the later, replication GWAS in the UKBB we constructed a 
single variate linear model, with the discovery OR as the predictor variable and replication OR as the outcome 
variable. As stated above (see ‘Determination of reproducibility’), we converted all SNV effect sizes to an OR via 
the Chinn  formula9. Then, to help interpret the output from this model, we converted all OR values to above 
1 (using the formula 1/OR if the original SNV OR was < 1) Finally we combined SNVs across all traits for the 
model. From the regression model, we determined the regression coefficient for the discovery OR and inter-
preted this coefficient as the change in OR between GWAS (e.g. a regression coefficient of 0.80 would imply that 
20% decrease in OR between discovery and replication GWAS). We only quantified the change in effect size of 
SNVs that were replicated, and also for all SNVs that had reached genome-wide significance in the discovery 
GWAS, regardless of whether they were replicated or not in the replication GWAS. We performed similar analy-
ses for binary and quantitative traits individually.

Prediction model for SNV replication. First we constructed a multivariate logistic regression model to 
examine the association of our predictors (odds ratio, P value, P value category (as above), and trait characteris-
tic (binary vs. quantitative) on replication. We initially split our data into test and train sets (split, randomly, by 
half). Using the train set, we constructed a logistic regression model using the following predictors: odds ratio 
(numeric, not category), P value category, trait characteristic (binary vs. quantitative), minor allele frequency 
(taken from the discovery cohort), INFO score (to reflect imputation quality—taken from replication cohort), 
and a sample size ratio (ratio of replication cohort sample size divided by discovery cohort sample size). We then 
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tested the constructed model on the test set. We report the model’s predictive accuracy via the following metrics: 
sensitivity, specificity, and area under the curve (AUC) all with 95% confidence intervals. We further assessed 
model fit via McFadden’s  R2; a measure of explained variation in logistic regression models, defined as the differ-
ence between the the (maximized) likelihood value from the fitted model and that of the null model – the model 
with only an intercept and no covariates.

Results
We analysed 136,318,924 SNVs from 4,397,962 participants across nine different phenotypes (from 18 GWAS, 
9 pairs) (Table 1). The traits included were: asthma, systolic blood pressure (SBP), eczema, body mass index 
(BMI), waist circumference, hip circumference, coronary artery disease (CAD), resting pulse rate, and diastolic 
blood pressure (DBP). Of the 136,318,924 included SNVs, 6,289 reached genome-wide significance (P < 5e−8) 
in the discovery GWAS (Table 1 and eTable 1).

Replication rate. Of the 6289 SNVs that were genome-wide significant in the discovery cohort, 5343 were 
replicated in the replication cohort (85.0%, 95% Confidence Interval (CI): 84.1% to 85.8%) (eFigure 1). Results 
varied substantially between binary and quantitative traits; the replication rate for exclusively binary phenotypes 
was 58.1% (95% CI 55.7% to 60.4%) (eFigure 2), compared with 94.8% (95% CI 94.2% to 95.4%) for quantita-
tive traits (eFigure 3). The replication rate varied across the included phenotypes from 52.7 to 99.6% (Fig. 1). 
Using more lenient, Bonferroni-corrected P value thresholds (calculated by P = 0.05/N, where N is the number 

Table 1.  Replication across phenotypes. Total sample size is the sample size of the discovery and replication 
GWAS collectively.

Disease Total sample size
Number of genome-wide significant 
SNVs

Number of SNVs that are replicated 
(%)

Asthma 225,309 889 494 (56%)

SBP 430,797 110 107 (97%)

Eczema 330,142 640 337 (53%)

BMI 613,900 1835 1756 (96%)

Waist Circumference 618,033 937 827 (89%)

Hip circumference 598,925 1083 1043 (96%)

Coronary Artery Disease/IHD 387,786 159 149 (94%)

Resting Heart rate/Pulse Rate 447,198 549 547 (99%)

DBP 430,806 87 83 (95%)

Figure 1.  Replication of SNVs across traits.
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of significant SNVs in discovery GWAS, used of using 5e−8), the replication rate improved for all phenotypes, 
particularly the binary phenotypes (eTable 3). However, the opposite was appreciated when using the P value 
threshold of < 10e−6 (i.e. reproducibility decreased across all phenotypes (eTable 4).

Furthermore, the replication rate varied across discovery GWAS P values and OR (Figs. 2, 3, eFigure 4 and 
eFigure 5). As is expected, the replication rate increased as the discovery GWAS SNV P value decreased (Table 2); 
the highest replication was observed with a P value < 5e−11 (94% (95% CI 93% to 95%). A less consistent pattern 
was observed with discovery GWAS OR, almost all OR > / = 1.2 were replicated (Table 2), however a similarly 
large number of SNVs with a discovery OR of > 1 to < 1.05 were replicated (94.3% (95% CI 93.5% to 95.0%)). 
This is likely due to the fact that all SNVs > 1 to < 1.05 were for quantitative traits, with no SNVs corresponding 
to binary traits (Fig. 4).

Change in effect size between GWAS. When considering SNVs that were replicated in both cohorts, 
we found a 9.6% (95% CI 8.9% to 10.2%) decrease in replicated SNV OR between discovery and replication 
cohorts (Fig. 3), for all phenotypes collectively. This decrease in effect size was larger for binary traits (18.0% 
(95% CI 16.0% to 20.0%), eFigure 6), however for quantitative traits an increase in effect size was observed 
(12.0% (95% CI 11.0% to 13.0%), eFigure 6). The change in effect size varied substantially across phenotypes 
(eFigure 7).

Figure 2.  Replication of SNVs across P values.

Figure 3.  Replication of SNVs across odds ratios.
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When considering SNVs that reached genome-wide significance in the discovery cohort (and weren’t nec-
essarily replicated), we found a 16.4% (95% CI 82.8% to 84.4%) decrease in SNV OR between discovery and 
replication cohorts, for all phenotypes collectively. For binary traits this decrease was 13.6% (95% CI 11.4% to 
15.9%), whereas we observed a 10.9% (95% CI 9.9% to 11.9%) increase for quantitative traits.

Predicting SNV replication. First, from our training model the following predictors were significantly 
associated with SNV replication: discovery cohort SNV odds ratio (Fig. 4), discovery cohort trait (binary or 
quantitative), discovery cohort SNV P value < 5e−10 & > 5e−11, and discovery cohort SNV P value < 5e−11 (both 
categorical variables with P value < 5e−8 & > 5e−9 as reference) (eTable 2). P value as a continuous variable and 
P value < 5e−9 & > 5e−10 were not significant (eTable 2).

When we applied our training model to our test data set, we found an area under the Receiver Operator Curve 
(ROC) of 0.90 (95% CI 0.88 to 0.91) corresponding to a sensitivity and specificity of 82.1% (95% CI 77.5% to 
93.8%) and 82.7% (95% CI 70.2% to 87.7%) respectively. We found a McFadden’s  R2 of 0.36, reflecting a modest 
explanation of the variation.

Discussion
We analysed 136,318,924 SNVs from 4,397,962 participants across nine different phenotypes (18 GWAS). Of 
these 136,318,924 SNVs, 6,289 SNVs reached genome-wide significance in the respective discovery GWAS, of 
which 5,343 were replicated in their replication GWAS (85.0%, 95% Confidence Interval (CI): 84.1% to 85.8%). 
Replication rate varied substantially between binary and quantitative phenotypes and it was lower in the former. 
Further, replication rate varied across P value and OR of discovery GWAS SNV. We also found that SNV odds 
ratios (OR) decreased between discovery and replication GWAS for binary phenotypes, but increased for quan-
titative phenotypes. Lastly, we developed and then validated a model to predict SNV replication, and found it to 
be accurate (0.90 (95% CI 0.89 to 0.91)).

Table 2.  Replication across P values and odds ratios. *Paucity of data prevented formal meta-analysis.

Metric Category Replication rate (95% CI)

P value

5e−8 to > 5e−9 72% (69% to 74%)

5e−9 to > 5e−10 78% (75% to 80%)

5e−10 to > 5e−11 81% (77% to 83%)

 < 5e−11 94% (93% to 95%)

Odds ratio

1–1.05 94.3% (93.5% to 95.0%)

1.05–1.1 70.0% (66.8% to 72.9%)

1.1–1.15 62.5% (59.4% to 65.6%)

1.15–1.2 69.3% (64.3% to 73.9%)

1.2–1.3 98.7% (91.0% to 99.8%)

1.3–1.4 100%*

 > 1.4 100%*

Figure 4.  Replication of SNVs across odds ratios between Binary and Quantitative traits.
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Implications. Our results have implications for the GWAS results. First, the SNV replication rate for quan-
titative phenotypes is very high; implying that quantitative GWAS in the UKBB had likely reached sufficient 
power to accurately detect all SNVs that were truly associated with a phenotype and that had been discovered by 
earlier GWAS efforts. We also quantified, using non-stimulated data, the concept of winner’s curse; the change 
in effect size between our smaller discovery cohort and larger replication cohort may be a useful comparison for 
future studies that aim to quantify winner’s curse. The high replication rate observed for quantitative traits may 
also reflect the precision and relative ease in which quantitative traits can be measured. The converse of this, the 
likely measurement error and ultimate definition heterogeneity of binary phenotypes, may be one explanation 
for the relatively low rate of replication in binary phenotypes. For instance, binary phenotypes often represent 
complex clinical diseases that can have (a) broad diagnostic criteria (e.g. angina, and myocardial infarction are 
often captured under “Coronary Artery Disease”) and (b) are defined via an array of data sources, of varying 
quality. The UKBB, for instance, defines their phenotypes with ICD codes based on linked electronic health 
records (EHR)6. While this probably represents the best current method to define phenotypes in large cohorts, 
EHR data is messy and likely to include some administrative and clinical  error11. An improvement in the pheno-
typing in data used for GWAS of binary phenotypes is likely to result in improved SNV replication. This may be 
even more crucial for phenotypes where we saw low replication rates, e.g. eczema.

On the one hand, it is encouraging that much scientific progress has been accomplished with current binary 
GWAS. For instance, polygenic risk scores based on current binary GWAS have been shown to accurately predict 
complex, common  phenotypes12,13. With improved phenotyping, it seems plausible that these scores will continue 
to improve. Nevertheless, in the meantime there may be other ways to enhance current binary GWAS results 
for polygenic risk scores. First, our results clearly show a superior replication rate with quantitative phenotypes. 
These quantitative phenotypes are often more in line with physiological processes (e.g. systolic blood pressure) 
than clinical diseases (e.g. coronary artery disease). As such, future GWAS that directly use metabolomic data 
as outcomes (such as protein expression) are likely to, similarly, have higher accuracy than clinical disease phe-
notypes. Future research merging metabolomic outcomes and GWAS may be a useful addition to our scientific 
knowledge. For instance, some evidence suggests that the use of ‘intermediate’ phenotypes—between the geno-
type and the disease-based phenotype—may improve disease  prediction14. For example, a 2021 study showed 
that the integration of polygenic risk scores for both disease-associated biomarkers and polygenic risk scores for 
the disease itself showed enhanced prediction over the polygenic risk score for the disease  exclusively14. Second, 
almost all SNVs for binary traits with an OR > / = 1.2 were replicated, whereas the majority of SNVs with an OR 
below 1.2 were not replicated and this may reflect lack of power in the replication dataset. Of note, many of the 
replication UKBB datasets that we considered here did not use the full UKBB data, and power is likely to improve 
as complete biobank data are used and many biobanks are combined.

Limitations in comparison to previous literature. We were surprised to find only nine phenotypes 
where two GWAS had been conducted in truly independent participants and where inclusion or not of UKBB 
data was a distinguishing feature. It is plausible that further independent GWAS on the same traits exist, although 
this seems unlikely given the thorough and systematic search we performed of the GWAS  atlas8. It is, however, 
likely that more GWAS are available, but they contain overlapping samples between GWAS (i.e. two GWAS of 
the same phenotype are not truly independent as they contain similar cohorts of participants), aren’t of sufficient 
quality to be included in the GWAS Atlas, are conducted in a non-European population, or have not made their 
summary statistics available. An earlier  study15 reports building a model for SNV replication using GWAS for 
over 50 phenotypes, although it is unclear what, if any, measures were taken to determine if these numerous 
GWAS were truly independent i.e. did not include overlapping participants. Also, this study validated their 
model in two, small GWAS of one trait. Furthermore, this study didn’t actually quantify a SNV replication rate, 
nor did they stratify their results by binary and quantitative phenotypes. A further limitation of our study is that 
we didn’t include other SNV features, ideally we would have liked to include, for instance, LD as predictors in our 
model. However, this data was sparsely available. Lastly, it should be acknowledged that large disease-specific 
consortiums generally qualitatively describe the replication of SNVs as their consortium increases. Our study 
quantifies this formally and, importantly, quantifies replication across more than one phenotype.

Future research. We have identified a number of future research priorities. First, improving the phenotyp-
ing of binary phenotypes seems to be a priority for GWAS. Second, to facilitate an assessment of SNV replication, 
future independent cohorts are likely required. Many efforts to do this are already underway (e.g. AllofUs cohort 
and Millions Veteran Program).

Conclusions. The replication of SNVs discovered from GWAS was high for quantitative phenotypes. 
Genome-wide Association Studies appear to be entirely sufficient to detect SNVs associated with quantitative 
traits. For binary traits, however, the replication rate is modest. We have built a simple prediction model that can 
accurately ascertain SNV replication in later GWAS. It may be of use for researchers and clinicians that utilize 
GWAS results.

Data availability
All data used is publicly available from https:// atlas. ctglab. nl/.
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