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Model‑based analysis of multi‑UAV 
path planning for surveying 
postdisaster building damage
Ryosuke Nagasawa1, Erick Mas2*, Luis Moya2,3 & Shunichi Koshimura2

Emergency responders require accurate and comprehensive data to make informed decisions. 
Moreover, the data should be acquired and analyzed swiftly to ensure an efficient response. One 
of the tasks at hand post-disaster is damage assessment within the impacted areas. In particular, 
building damage should be assessed to account for possible casualties, and displaced populations, 
to estimate long-term shelter capacities, and to assess the damage to services that depend on 
essential infrastructure (e.g. hospitals, schools, etc.). Remote sensing techniques, including satellite 
imagery, can be used to gathering such information so that the overall damage can be assessed. 
However, specific points of interest among the damaged buildings need higher resolution images and 
detailed information to assess the damage situation. These areas can be further assessed through 
unmanned aerial vehicles and 3D model reconstruction. This paper presents a multi-UAV coverage 
path planning method for the 3D reconstruction of postdisaster damaged buildings. The methodology 
has been implemented in NetLogo3D, a multi-agent model environment, and tested in a virtual 
built environment in Unity3D. The proposed method generates camera location points surrounding 
targeted damaged buildings. These camera location points are filtered to avoid collision and then 
sorted using the K-means or the Fuzzy C-means methods. After clustering camera location points and 
allocating these to each UAV unit, a route optimization process is conducted as a multiple traveling 
salesman problem. Final corrections are made to paths to avoid obstacles and give a resulting path for 
each UAV that balances the flight distance and time. The paper presents the details of the model and 
methodologies, and an examination of the texture resolution obtained from the proposed method 
and the conventional overhead flight with the nadir-looking method used in 3D mappings. The 
algorithm outperforms the conventional method in terms of the quality of the generated 3D model.

When a disaster such as an earthquake or tsunami strikes, obtaining a comprehensive picture of the damage 
situation is one of the most important tasks in disaster response. For instance, to assess the extensive damage 
produced by the Great East Japan Earthquake of March 11, 2011, responders relied on aerial photographs and 
satellite remote sensing to avoid delays in information collection caused by the destabilization and limitations of 
ground transportation1. Especially when the accident at the Fukushima Daiichi Nuclear Power Plant occurred, 
satellite remote sensing and unmanned aerial vehicles (UAVs) were crucial platforms to avoid human exposure 
to radiation on the premises of the power plant2. Significant progress has been made in the estimation of building 
damage in disasters using satellite remote sensing3, 4. For instance, Moya et al. (2020)5 identified damaged areas 
based on change detection algorithms, while Moya et al. (2019)6 used three dimensional texture features and sup-
port vector machine (SVM) to detect collapsed buildings with high accuracy. The proposed method were tested 
using synthetic aperture radar data, and Lidar-based digital surface model (DSM). Thus, satellite remote sensing 
provides an initial estimation for constructing damage maps in wide areas; however, the details of the damage to 
buildings typically remain unclear because of the lack of information about the condition of the buildings’ walls 
and the satellite image resolution. For this reason, increasing attention is being paid to alternative airborne remote 
sensing systems, such as UAVs. Photos taken by UAVs can be used to construct a 3D model of a particular point 
of interest (POI) using the structure-from-motion (SfM) and multiview stereo (MVS) methods7–9.

Indeed, UAVs are currently being applied in several fields, such as aerial assessment of social infrastructure, 
aerial photography, aerial surveying, and pesticide spraying. In addition, UAVs are used for disaster site surveys 
because of their low cost and low measurement time requirements. Meanwhile, SfM technology has progressed 
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by virtue of advances in computer vision. Currently, SfM techniques are able to extract many characteristic points 
from overlapping photographic images and simultaneously estimate the three-dimensional (3D) coordinates of 
elements and characteristic points of a camera image. Similarly, MVS generates high-precision 3D point groups 
or mesh models via a matching function among multiple photographic images based on the 3D geometric 
information collected through SfM. SfM and MVS are conducted simultaneously in most commercial software 
programs. Software tools such as Pix4D10 and PhotoScan11, among others, have become popular among UAV 
users. In fact, private companies and individuals can now conduct SfM surveys quite easily. However, in most 
commercial software packages, the mission planning feature is limited to a few standard configurations, such as 
grid missions with a nadir-looking camera (overhead flight) or a fly-around of a point of interest. The limited 
flexibility of these path planning algorithms means that several flights must be made to capture multiple targets 
in a complex environment12. This issue is critical in the case of disaster response, in which biases and a lack of 
information in surveys are of particular concern. Moreover, planning multiple flight missions and paths is a 
time-consuming process that can delay disaster relief activities. A precise 3D model of a complicated structure 
can be produced with the aid of commercial softwares. The method applied in these software packages combines 
the images acquired by the UAV with the images acquired on the ground10. A large body of work on 3D scan-
ning, path planning and 3D reconstruction is available in the literature, here we briefly present the most salient 
work in 3D reconstruction and Coverage Path Planning (CPP) algorithms. Then, we developed a pipeline for 
multi-objective and multi-UAV path planning. Finally, the method is compared to the conventional stripmap 
nadir-looking flight pattern (hereafter, the conventional approach) used in 3D mapping of urban areas13.

In summary, we contribute the following: (i) a simple pipeline that allows users to allocate multiple targets 
and paths for a similar number of UAVs to reconstruct possible damaged buildings in 3D after a disaster; (ii) a 
general area division method based on the clustering and balanced task approach; (iii) a pipeline that ensures 
collision avoidance among UAV units and the environment; and (iv) a comparison of the 3D reconstruction 
quality of synthetic scenes of the proposed pipeline and the conventional approach.

Motivation of the study.  The authors’ research studies have been focused on exploring methodologies 
and alternatives to grasp the damage situation of buildings and essential infrastructure in the aftermath of a dis-
aster. Satellite remote sensing technologies are used as the main tools to acquire the damage information within 
the impacted areas. We previously developed several methods to enhance building damage mapping by using 
pre- and post-disaster satellite imagery and change detection algorithms5, machine learning14 and deep learning 
methods as well15.

There is a great advantage in terms of the level of coverage of satellite images; however, there are limitations 
regarding the level of detail of the damage that can be grasped from a top-down view. In particular, there is con-
cern regarding the condition of walls, which may have collapsed or have sustained structural damage and may 
compromise the stability of the building. Thus, to acquire such detailed information a closer look at the POI is 
necessary. In addition, to avoid the deployment of human teams that might incorporate new risks and demand 
additional costs and time, UAVs are a feasible alternative for this task. Thus, one of the motivations for this study 
is to tackle the limitations posed by satellite remote sensing damage estimation by integrating the advantages of 
UAV reconnaissance capabilities within the damage mapping pipeline.

To this end, the need to speed up the acquisition of images from various damaged structures require the 
implementation of multiple UAVs into the surveying task. In addition, it is important to consider a suitable 
workflow for CPP that ensures safe flight and high quality 3D reconstruction of the POIs.

State of the art
3D reconstruction using UAVs.  Nex et al.13 showcases various 3D reconstruction models from UAV plat-
forms applied to various fields of study. They show a typical pipeline and the approximate time taken to pro-
duce a typical UAV-based photogrammetric workflow. It is suggested that “flight planning” takes only 5% of the 
whole workflow time, while “image acquisition” (20%) and “Digital Surface Model generation” (25%) are the 
tasks requiring the highest effort time. Thus, it may seem that the task of interest in this study is not significant; 
however, the estimations above refer to small areas and are based on the flight-planning of one UAV unit follow-
ing a conventional approach. On the other hand, for wide areas, when increasing the number of UAV units, the 
complexity of flight-planning increases, thus the necessary time for flight planning might become significant in 
the workflow16.

In addition, Zheng et al.17, 18 developed a multi-UAV route planning methodology for 3D building model 
reconstruction. They focused on the use of multi-UAV for the reconstruction of a single building and used an 
initial model based on information extruded from the building footprint data of the POI. The created volumetric 
is then use to estimate the drone location to obtain sufficient coverage of the building. The idea is extendable 
to multiple POIs, and in the case of postdisaster environments, based on the damage mapping conducted from 
satellite remote sensing, as presented in the previous section, the footprint information can be updated to produce 
a more reliable initial map. Notice that at this point we are clearly ignoring other features and infrastructure in 
the urban environment that might pose a collision risk for drones (e.g. poles, electric cables, antennas, ad bill-
boards, etc.). In addition, Hepp et al.12 proposed trajectory optimization to obtain high-quality 3D reconstruction 
of large buildings. First, a low-precision model of the area is generated using an overhead flight pattern. Then, 
they suggest an optimization of viewpoints to obtain the final path that will generate a suitable camera position 
constellation for sufficient coverage of the POI. A similar approach uses semantic segmentation from an initial 
flight to optimize the route and ensure a safe flight plan19.
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Coverage path planning.  The problem of planning multiple tasks for multiple UAVs can be addressed 
as a ’divide-and-conquer’ approach20, in which the tasks are divided or allocated to each UAV unit and the 
subproblems are solved individually. In this case, the task is similar to a multiple traveling salesman problem 
(MTSP). Thus, first, a clustering of the visiting points (drone camera locations) is necessary. Jain et al.21 describes 
data clustering best practices, such as K-means. Previously, Barrientos et al.22 used a path planning algorithm 
to survey farms. They transformed the farm into a low-resolution, two-dimensional grid and then divided the 
area equally between the drone units. Next, a search algorithm with backtracking was used to find the paths that 
minimize the number of turns. Similarly, Bouzid et al.23 applied rapidly exploring random tree star fixed nodes 
(RRT*-FN) combined with the genetic algorithm (GA) by assuming that the CPP issue emulates a vehicle rout-
ing problem (VRP). In addition, Gao et al.24 used spanning tree coverage (STC) with ant colony optimization 
(ACO). On the other hand, Ju et al.25 applied a distributed swarm control algorithm to show that the perfor-
mance of the multi-UAV system is significantly superior to the single-UAV system. They considered the fol-
lowing seven performance metrics: total time, setup time, flight time, battery consumption, inaccuracy of land, 
haptic control effort, and coverage ratio. Similarly, Ge et al.26 studied path planing for oilfield inspection within 
a 3D environment. Here, the cost function includes metrics such as: distance, height, time and electricity con-
sumption. They proposed a combined use of metaphor-inspired metaheuristic algorithms like pigeon-inspired 
optimization (PIO) and fruit fly optimization algorithm (FOA). FOA is applied to account for dynamic obstacles 
and to increase computation speed. In recent years, Cabreira et al.27 presented a survey of studies focusing on 
CPP approaches in UAVs. Unfortunately, the CPP problem presented in their review is focused on 2D mapping 
representations where cellular decomposition is common. Such methods are conventionally used for area map-
ping; however, their resulting quality is limited by the flight pattern, which is basically a back-and-forth flight 
along parallel lines while keeping the camera position on a nadir looking angle.

Various CPP methods have been tested when clustering is applied. For instance, Zhao et al.28 studied task 
clustering and planning using K-means and simulated annealing (SA) to ensure balance in the task assignment. 
Later, Botteghi et al.29 confirmed that K-means performs well when the priority is to balance the distance and 
time among UAVs. Similarly, Mansouri et al.30 applied K-means as the clustering method for a collaborative CPP 
focused on single complex 3D infrastructure. Furthermore, Kong et al.31 proposed a fusion of the K-means and 
Dijkstra algorithms to allocate offline stores for sale staff and optimize the visiting path. This is a traveling sales-
man problem (TSP) solved by using clustering and shortest path calculations. The algorithm can evenly distribute 
the workload to differently sales staff. In our case, if a sales staff member is understood to be a UAV unit and an 
offline store is a camera location, then the algorithm can be transferred to our problem. However since points 
are in space, special care is needed when applying shortest path because trajectories may cross physical objects.

In addition, Bouras et al.32 developed a two-scale algorithm to plan a fleet of UAVs visiting various points of 
interest to scan an area for 2D ortho mapping. Similar to Bouzid et al.23, they set the CPP task assuming a VRP 
solved with SA. Here, UAV units consider a hovering time to take measurements and the flight is set to go to 
the POI and back to the station. Since their purpose is to map the area of interest without paying attention to 
specific POIs, these are not given and are calculated from an iterative process of voronoi tessellation and centroid 
selections. On the other hand, similar to the case we will present here, Xiao et al.33 focused on the CPP problem 
considering that the 3D reconstruction will be generated by an available software program. They focused on 
ensuring image overlap and reducing energy consumption. In contrast, they assume flight with a nadir angle 
and splitting the task of one model building among the available UAV units.

Furthermore, among recent studies, Ali et al.34 proposed a self-organization, collective motion and control 
of a UAV swarm. They used Particle Swarm Optimization (PSO) and Multi-agent System (MAS) to design an 
algorithm towards self-synchronization among UAVs. Similar to this study, they handle the problem in a 3D 
space and the verification of their method was conducted on a simulation-based approach. PSO, is one of the 
most used optimization algorithms in swarm research, in this regard, Shao et al.35 improved the PSO algorithm 
by introducing a chaos-based particle initialization method and adaptive parameter adjustments to improve 
optimallity and rapidity of the algorithm. The improvement proved to outperformed other similar PSO methods. 
In contrast to our study, Shao et al.35 focuses on simple trajectory with start-to-end points without intermediate 
goals, however similar to our case, they also used a simulated-based verification of their method.

In summary, clustering methods, such as K-means, have been applied to the CPP of multiple UAVs and solved 
for sub-trajectories as TSP or VRP problems using optimization algorithms. Unfortunately, most scholars applied 
this to a single structure with multiple UAVs. In contrast, we will explore the application of multiple structures 
with multiple-UAVs since a damage assessment requires the inspection of multiple targets.

UAV for disaster mapping.  Disaster situation awareness can be significantly improved by using UAV 
imagery. UAVs can be small, light-weight and easily deployed quickly. Thus, search and rescue, damage map-
ping and recovery monitoring are some of the tasks suitable for UAVs to perform. Moreover, UAV imagery has 
higher resolution than satellite and airborne photos; these are a significant data-set to map building damage7. 
For instance, Nex et al.7 focused on real-time damage mapping using UAVs. However, the flight plan is proposed 
for one UAV unit and with the purpose of exploring an unknown area. The photos obtained are used to detect 
damage through machine learning algorithms. In contrast, in this paper, we focus on a second stage of damage 
mapping, where essential infrastructure require greater details for assessment and a 3D reconstruction of each 
building is necessary. In this case a strip-map with the nadir-looking angle is not sufficient to obtain a detailed 
3D reconstruction. Previous research has focused on 3D reconstruction of damaged buildings by using com-
mercial off-the-shelf UAV units36.
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Methodology
We summarized the workflow in Fig. 1. Based on the information obtained from building damage mapping 
using satellite remote sensing an initial 3D map is constructed based on the extrusion of building geometries, 
as suggested in Botteghi et al.29. Another alternative would be to obtain the initial map through a low resolution 
and real-time reconstruction to, then, proceed to the CPP model. The CPP model will be the focus of this paper. 
To inspect all damaged buildings in the area, the necessary camera locations are generated as if a unique path is 
required (“Generation of camera location points” section). Next, based on the number of available UAVs (user 
setting), a cluster algorithm (i.e., K-means or Fuzzy C-means) is executed to calculate one path per UAV (“Clus-
tering camera location points” section). The clustered points are joined to generate a unique path per UAV using 
the nearest neighbor (NN) and are improved with the 1.5-opt approximation algorithm (“Route optimization” 
section). Final routes are verified for collision avoidance and are corrected using the A* algorithm to overcome 
obstacles (“Obstacle avoidance” section).

For the purpose of evaluating the method, we built a virtual urban environment using NetLogo3D37 (Fig. 2). 
A demo video can be found in the supplementary data. The configuration is set randomly and the structures to 
be surveyed are visualized in red. Here, the camera locations and flight paths are calculated.

Generation of camera location points.  First, camera locations separated every 2.5 m horizontally and 
5 m vertically were generated around the objects of interest. The camera was presumed to face the center of the 
nearest object. In addition, locations satisfying any of the following conditions were deleted from the candidate 
list: (i) the distance to the object of interest is less than a certain user-defined value (7.5 m in this case); (ii) a 
structure exists between the object and the camera; and (iii) the coordinates of the candidate are inside of a 
structure. We selected a camera visibility angle of 90◦ horizontally; additionally, the camera aspect ratio was set 
to 4:3, and the distance between the camera and the object was set to 7.5 m. Moreover, the images taken at each 
location were required to have a forward overlap ratio of at least 80% and a side overlap ratio of over 50% to 
ensure sufficient multiplicity.

Clustering camera location points.  Since the generated candidates for camera locations are shared 
among all UAVs, a clustering method for allocating specific locations to specific UAV units is necessary. Clus-

Figure 1.   Workflow and scope of this study. Satellite remote sensing generates a 2D damage map. Volume 
extrusion from building geometries provides an initial 3D map, and the current model calculates the paths for 
each available UAV unit. Source: This study. The maps and virtual environment were developed in ArcGIS Pro 
and NetLogo3D, respectively.

Figure 2.   Virtual urban environment created in NetLogo3D. Here, the red volumes represent damaged 
buildings in need of inspection. Source: This study.
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tering is among the most studied problems in machine learning. Methods like SVM or Deep Learning models 
require training data, however the K-means method does not rely on training data.

K‑means.  The K-means method is an algorithm for non-hierarchical clustering. Clustering is the process of 
grouping a series of data. As a type of unsupervised learning method, non-hierarchical clustering is a method for 
directly classifying similar data into groups using an evaluation function. The K-means method follows a simple 
algorithm; therefore, it is a typical clustering method that is widely used21. Consider a set of camera locations xi 
( i = 1, . . . , n ) to be partitioned in k sets Sj ( j = 1, . . . , k ), where each set is to be allocated to a unique UAV unit. 
First, a random partition is used to initialize the algorithm by allocating the data into one cluster, thus, creating 
k clusters. Then, we find the centroids mj ( j = 1, . . . , k ) of each cluster and update it as the new mean. The dis-
tance between each observation xi and each centroid mj is calculated to re-sort the data into their closest clusters.

The assignment and update of means can be represented as Eqs. (1) and (2), where t denotes the step which 
continues until convergence.

Next, if the change in mj is less than a predetermined threshold value, the operation is terminated, otherwise 
a new assignment of clusters is conducted until convergence occurs.

In mathematical terms, the process described above is applied to minimize the following objective function:

The performance of this method is known to strongly depend on the positions of the initial clusters. There-
fore, the first application of this method might not yield the best sorting results. In addition, it is assumed that 
the clusters are spherical and that the number of clusters into which the data should be classified is known, thus 
classification is difficult if these assumptions are violated.

Fuzzy C‑means.  When each observation xi is sorted into just one cluster, such clustering is referred to as 
hard clustering. By contrast, when data are partially sorted into multiple clusters, such ambiguous clustering 
is known as a fuzzy clustering. The K-means method belongs to the former type of clustering, while the fuzzy 
C-means (FCM) method belongs to the latter. The FCM method provides each xi with an attribution degree wi 
( 0 ≤ w ≤ 1 ) with respect to each cluster based on the distance to the centroid cj.

The algorithm starts at t = 0 with a random assignment of attribution degree coefficients. While there is no 
convergence (the change in coefficients’ values between two iterations is lower than a threshold), the algorithm 
loops on computing the centroid of each cluster c(t)j  ( 1 ≤ j ≤ c ). In the FCM method the centroid is the weighted 
mean of the camera location points with the degree of attribution to the cluster as the weight [Eq. (4)]. In addi-
tion, a hyper-parameter m is defined to control the fuzziness of clusters. Next, the partition matrix or attribution 
degree matrix wij is calculated from Eq. (5).

The value of m is usually set to a real number between 1.3 and 2. In the limit m = 1 , this method reduces to 
the K-means method of hard clustering. In mathematical terms, this method aims to minimize the following 
objective function:

Route optimization.  With camera locations clustered and sorted to each UAV unit, the next step is to 
create optimum paths for each UAV within its clustered points. Then, the multiple traveling salesman problem 
(MTSP) is solved in this study. Here, each UAV visits all camera location points in its cluster only once and then 
returns to the starting point. For all UAVs, the starting point and the end point after the flight were assumed to 
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be the same based on practical considerations. The MTSP for the UAV routes was solved to select one solution 
for which the cost was minimal and uniform across all devices.

The UAV routes are created using the nearest neighbor (NN) method and are improved with the 1.5-opt 
algorithm (hereafter NN method). Next, we select the UAVs with maximum and minimum distance cost ( UAVmax 
and UAVmin in Fig. 3) using Eqs. (7) or (8) when optimizing by distance or flight time, respectively. When the 
difference in the distance costs exceeds a given threshold ( θ ), the camera locations of UAVmax are inspected. 
Among them, the maximum attribution degree point w.r.t UAVmin ’ cluster is re-assigned to UAVmin . 

where fi is the cost function in step i; notice that this can be the flight distance or flight time. When optimizing 
by flight distance, dk denotes the distance between camera locations k and k + 1 . When optimizing by flight time, 
tk denotes the flight time between camera locations k and k + 1 , and th denotes the hovering time at a point of 
acquisition. In both cases, n is the total number of acquisition points. Since each UAV is presumed to accelerate 
to its maximum speed with uniform acceleration and to hover at the camera location, tk can be calculated as 
Eq. (9), where vmax is the maximum speed of a UAV, and a represents the uniform acceleration of a UAV.

Obstacle avoidance.  The routes found through the procedure presented in the preceding subsections may 
pass through obstacles when connecting the home location to the first camera location of each path. Thus, the 
A∗ algorithm was implemented for obstacle avoidance in the cases where such a situation is present. We selected 
the A∗ algorithm for finding a path between two points because it is more efficient than the Dijkstra method. 
Therefore, when two connected points of a path cross an obstacle, adjacent intermediate points are generated 
between these two and an alternative route is constructed for that segment.

Finally, through the steps described above, the CPP for multiple UAVs is generated. Figure 4 presents an 
example of the output of the UAV flight routes of our example case of a virtual urban environment. Each point 
represents a camera location, and the edge color corresponds to the particular UAV to which that point is 
assigned. The points are linked by edges in accordance with the flight progression.

Model‑based analysis
Analysis of clustering methods.  To confirm the benefits of the FCM sorting method used in the pro-
posed approach, it was compared to the K-means method. The environment shown in Fig. 2 was used for the 
comparative analysis. Five UAVs were used to survey 10 randomly selected structures at the site. After camera 
location points were generated for each structure, these were clustered using the K-means and FCM, optimiz-
ing the distance or flight time as explained in “Obstacle avoidance” section. In the K-means clustering case, the 
camera location points did not have attribution degree matrices, therefore, the cost of the TSP was minimized 
instead for each UAV. After a 100 trials of the above-described procedures, the results were examined for com-
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parison. The cost functions provided in both Eqs. (7) and (8) were considered. The parameters were as follows: 
the constant m in the FCM method was set to 2, the UAV hovering time th was assumed to be 2s, the maximum 
UAV speed vmax was 5m/s, and the uniform UAV acceleration a was 2m/s2 . The total cost F was given as shown 
in Eq. (10). In addition, as another measure to evaluate clustering methods, the subtour averaging coefficient ρ 
is considered, as shown in Eq. (11).

Figure 5 shows the cost functions for each UAV in the FCM method. Figure 5—left shows the cost function calcu-
lated using Eq. (7), whereas Fig. 5—right shows the results with Eq. (8). These results suggest that the redistribu-
tion of the camera location points among the UAVs based on the attribution degree function of the FCM method 
drives the cost functions for all UAVs to approach the average value. Tables 1 and 2 present the average values 
of the cost functions given by Eqs. (7) and (8), respectively. These tables show that the FCM method yielded a 
smaller subtour averaging coefficient and more uniform solutions, whereas the K-means method found a slightly 
lower total cost. One reason for this result is that with the hard clustering of the K-means method, long paths 
between structures might not be generated. Another is that fmin increased more rapidly than fmax decreased with 
redistribution based on the attribution degree, as shown in Fig. 5. However, the max fi column in Table 2 shows 
that the K-means method resulted in a cost of approximately 20 min on average, whereas redistribution with 
the FCM method reduced the cost to less than 15 min. The current capacity limit of UAV batteries is typically 
10–30 min, depending on the equipment. The termination of UAV operation is determined by the UAV with the 
maximum cost. Therefore, it is better to have a smaller maximum cost. From the discussions presented above, 
we can conclude that the clustering of the camera location points in accordance with the FCM method is quite 
effective in making the costs for multiple UAVs minimal and uniform when solving the MTSP.

(10)F =

5
∑

i=1

fi

(11)ρ =
max fi −min fi

max fi

Figure 4.   Final UAV routes produced using the proposed method. The green square at the center of the area 
indicates the home point for the UAVs. Source: This study, using NetLogo3D.
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Analysis of the route optimization method.  To examine the effectiveness of the proposed workflow 
including the NN method, the precision of the path solution is compared with that achieved using the genetic 
algorithm (GA). We use the same virtual environment presented in Fig. 2. The GA parameters used here are 
presented in Table 3. Because both methods use random numbers, to ensure a fair comparison, 100 trials were 
conducted using both methods. The cost function given in Eq. (7) was used here.

The results are presented in Table 4. Figure 6 illustrates the convergence of the cost function for both methods. 
Figure 6—left shows the case with the maximum converged value of the cost function among the 100 trials for 
each method, whereas Figure 6—right shows the case with the minimum converged value. Table 4 shows that the 
NN method produced more precise results. Basically, the time for one step is shorter in the 1.5-opt method than 
in the GA method. Ultimately, the method proposed in this study is approximately five times faster than the GA 
method. Figure 6—right demonstrates that even the initial solution provided by the NN method is more precise 

Figure 5.   Changes in the cost functions fi given by Eq. (7) (left) and Eq. (8) (right) with the redistribution of 
camera location points based on the degree of attribution.

Figure 6.   Convergence processes of the NN and GA methods resulting in convergence to the maximum cost 
value (left) and the minimum cost value (right).

Table 1.   Average values of evaluation functions when the flight distance is used as the cost function.

F ρ max fi min fi

K-means 3236 0.545 902 405

Fuzzy C-means 3633 0.022 735 719

Table 2.   Average values of the evaluation functions when the flight time is used as the cost function.

F ρ max fi min fi

K-means 4167 0.626 1218 455

Fuzzy C-means 4275 0.015 861 847
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than the final solution of the GA method. Moreover, with the 1.5-opt method, convergence was attained in 20 
steps, whereas the GA method took 600 steps to reach convergence. Therefore, the combination of the NN and 
1.5-opt methods is superior to the GA method in terms of both precision and convergence speed. The reason 
might be that the combination of the NN and 1.5-opt methods may be particularly well suited to the current 
problem under examination, in which the camera location points are distributed regularly but with some devia-
tions. A method in which the initial solution is obtained via the NN method but the subsequent improvement 
is achieved using the GA method requires more time for convergence than the current method. Improving the 
initial solution using the 1.5-opt method might be more compatible with the NN method than improvement 
via the GA method.

Analysis of the 3D reconstruction output quality.  The proposed path generation method was exam-
ined in terms of its ability to enhance a more precise 3D model than that produced by a conventional overhead 
flight. We develop another virtual urban environment, as shown in Fig. 7, which was also generated using the 
Unity3D game engine38, as shown in the right panel of the same figure. The red oval indicates the object to be 
surveyed. A flight route for one UAV was designed using the proposed method, including the coordinates of the 
camera location points, the camera orientation, and the order of the camera location points to be visited. The 
routes are shown in Fig. 8.

These flight routes were used in Unity3D to photograph the structure. The UAV took pictures at every camera 
location point on the flight path. The camera parameters are presented in Table 5. Jiang et al. (2020)39 evaluated 
the performance of six SfM software packages. Among them, Pix4D demonstrated the highest accuracy and, 
therefore, is used in this study to generate our 3D models for both flights, and their respective results are com-
pared. Table 6 presents the parameters applied in Pix4D. In addition, as a comparative examination, the graffiti 
and damage details are illustrated in Figs. 9 and 10 to examine the precision of their reproduction.

For the drawings of the walls shown in Fig. 9 both methods produced similar results, however, our results 
show better quality for the details, such as the window and the edge of the roof. This is expected since the over-
head flight cannot acquire images of those spaces. Our results in the second case (Fig. 10) show even greater 
enhancement than the standard approach. Even on a shady side where only a few tie points could be extracted, 
the proposed method precisely reproduced cracks and graffiti.

Table 3.   Parameters of the GA.

Parameter Value

Crossover design One-point crossover

Number of genomes 300

Tournament rate 1%

Mutation rate 10%

Table 4.   Precision of the TSP solutions obtained using the NN and GA methods.

NN method GA method

min fi 410.9 428.2

max fi 411.7 522.0

Processing time (s) 29.3 146.7

Figure 7.   Left—Paths are generated to survey the red building from the NetLogo3D environment. Right—
Blocks generated with Unity3D for quality assessment. Source: This study, using NetLogo3D and Unity 3D.
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Discussion and future work
There is room for improvement of the proposed method, in particular when generating camera location points 
and redistributing those using the attribution degree. Regarding the former, the authors have proposed a rule-
based camera location points generation method with sufficient overlap and sidelap ratios to achieve fast gen-
eration of camera location points. As a result of this method, erroneous extraction of tie points can occur. 
Additionally, a tendency toward very poor estimation of the camera position and orientation for short distances 
and multiple photographs is apparent. Therefore, the optimal photography points for the target objects must be 
generated after solving the network designing problem12. Regarding the redistribution of camera location points, 
the results show that the UAV costs when applying FCM are more uniform than those achieved by the K-means 
method. However, the K-means method is superior in terms of the total and average costs. In the examination 
performed above, the redistribution of the camera location points was performed for five UAVs. If camera loca-
tion points are to be sorted among more UAVs, groups of clusters that are not mutually close will tend to appear, 
and long paths might be generated through redistribution using the same cost function and degree of attribution 
settings used in the present study. To avoid this pitfall, one might renew the centroid m of the clusters in the 
algorithm used for the MTSP by providing a weight coefficient wi for the Euclidean norm of the K-means method 
depending on the cost calculated for the MTSP. In this way, the method proposed herein could be extended to 
more UAVs, allowing it to yield better results in terms of the total and average costs compared to the method 
for solving the TSP for each UAV in the K-means clustering. Another shortcoming of the present proposal is 
the practical problem that it cannot respond quickly to a cost greater than the threshold cost. This shortcoming 
derives from the fact that a long computation time is necessary to achieve convergence of the UAV costs. Only 
in the final stage of processing can it be known whether the cost exceeds the threshold cost. To overcome this 
difficulty, one might predetermine the number of UAVs corresponding to the generated number of camera loca-
tion points. However, if the converged cost value exceeds the threshold value, then the calculations must still be 
repeated for an increased number of UAVs.

A method that can uniformly minimize the costs for several tens of UAVs would be useful for developing 
methods for surveying much wider areas. The ability to provide highly precise 3D information about disasters 
over a wide area is expected to contribute greatly to the preparation of countermeasures to mitigate the effects 
of future disasters. In addition, the present study provides a model-based analysis using a virtual environment, 
however, real experiments should be performed in future work to further evaluate the application of the pro-
posed workflow.

Concluding remarks
We have proposed a path planning method for multiple UAVs to aid in 3D building damage surveys or disaster 
situations. The proposed methodology combines the fuzzy C-means method for assigning camera location points 
to each UAV with a route optimization algorithm for calculating the visit order of the camera location points 
for each UAV by solving the multiple traveling salesman problem. Finally, the selected paths are corrected to 
avoid obstacles between the camera location points using the A* algorithm. To assess the effectiveness of the 
proposed method, a comparative study of the quality of 3D reconstruction models was conducted, where the 
enhanced results confirm the superiority of our proposed approach over a conventional overhead flight mapping 
technique. We believe, the proposed method can improve reconnaissance capabilities in increasingly complex 
urban disasters.

Figure 8.   Left—Overhead flight route. Right—The path generated by this study. Source: This study, using 
NetLogo3D.
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Figure 9.   Comparison of two graffiti drawings. The top panel in each pair of images shows the results from the 
method proposed in this study, while the bottom panel shows the results of the overhead flight method. Source: 
This study, using Unity 3D.
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Figure 10.   Comparison of the extraction of six damage features. The top or left panels in each pair of images 
shows the results from the method proposed in this study, while the bottom or right panel shows the results of 
the overhead flight method. Source: This study, using Unity 3D.

Table 5.   Camera parameters.

Parameter Value

Visibility (vertical) 70

Size of sensor x 70

Size of sensor y 51

Focal length 36.418

Aspect ratio 4:3

Resolution 1440× 1080

Table 6.   Parameters of Pix4D.

Parameter Proposed method Conventional method

Number of images 145 144

Quality Standard Standard

Coordinate system Orthogonal Orthogonal

Horizontal accuracy (m) 0.01 0.01

Vertical accuracy (m) 0.02 0.02
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