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In order to correctly detect climate signals and discard possible instrumentation errors, establishing 
coherent data records has become increasingly relevant. However, since real measurements can be 
inhomogeneous, their use for assessing homogenization techniques is not directly possible, and 
the study of their performance must be done on homogeneous datasets subjected to controlled, 
artificial inhomogeneities. In this paper, considering two European temperature networks over 
the 1950–2005 period, up to 7 artificial breaks and an average of 107 missing data per station were 
introduced, in order to determine that mean square error, absolute bias and factor of exceedance can 
be meaningfully used to validate the best-performing homogenization technique. Three techniques 
were used, ACMANT and two versions of HOMER: the standard, automated setup mode and a 
manual setup. Results showed that the HOMER techniques performed better regarding the factor 
of exceedance, while ACMANT was best with regard to absolute error and root mean square error. 
Regardless of the technique used, it was also established that homogenization quality anti-correlated 
meaningfully to the number of breaks. On the other hand, as missing data are almost always replaced 
in the two HOMER techniques, only ACMANT performance is significantly, negatively affected by the 
amount of missing data.

Beside an increase in the frequency and intensity of extreme weather events, climate change can affect some major 
social and environmental factors, such as ecosystems, availability and quality of drinking water, agriculture and 
food production, economic development and migration, and for this reason in the last decades it has received 
an ever-growing attention1. In order to perform a reliable climate change analysis, good quality long-term time 
series are needed. In fact, if data are affected by quality issues, a consequence may be distorted and incorrect 
results2. In order to detect and eliminate errors in the data, a quality control investigation should be performed 
before analyzing observational records3. With this aim, the World Meteorological Organization (WMO) pro-
vides several documents with guidelines on quality control investigation4–6. Moreover, different quality control 
approaches have been presented in several research projects2. The problem of errors, uncertainty and validations 
is thus of major concern in the field of meteorological data homogenization. Usually, sources of uncertainty can 
be classified into two main types:
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1.	 Biases, i.e., issues related to a specific measurement method; exposure issues (e.g., temperature recorded at 
land stations before the development of louvered screens); representativeness of the site in the context of 
possible land-use or environmental change at the measurement’s location or across the grid box within which 
it is located (e.g., effects of urbanization);

2.	 Inhomogeneities, i.e., issues related to changes in site location, times of day at which measurements are made, 
changes in methods to extract daily/monthly measures from measurements, changes in instrumentation7,8.

As regards the latter point, a climate time series is considered homogeneous when its variations are caused 
only by changes in weather and climate, thus without any influence of non-climatic factors that mislead the true 
climate variation9. Homogenization and missing value reconstruction of climate records have for a long time now 
been acknowledged as necessary steps for proper climatic analysis10. Homogenization of data records is attempted 
through the detection of inhomogeneities at annual, seasonal or monthly means level, and then adjusting the cor-
responding daily values through various techniques11,12. The detection of break points, where an inhomogeneity 
takes place (e.g., an instrument is replaced, an extraction method is changed, a ground station is moved), is of 
major importance in this process13. In the last years, many homogenization methods have been proposed and 
several works concerning the detection of inhomogeneities in long-term time series were performed all over the 
world14. For example, as regards temperature data, in a data reconstruction study for the Alpine region, Eccel 
et al.15 managed to decrease standard deviation of temperature in the range of 50%; this allowed to attribute at 
least 60% of the apparent climate signal to instrument inhomogeneities. In a homogenization study performed 
at the Poznan meteorological station in Poland, after a correction of 0.5–0.6 °C was applied, the temperature 
increase over 100 years was of about 1.1 °C16. The majority of the methods proposed in literature to detect and 
remove inhomogeneities in a series generally consider the relative homogenization approach. This approach is 
based on the assumption that the same climatic signal influences neighboring stations, and thus inhomogenei-
ties can be identified considering the differences between these stations17. In relative homogeneity testing, the 
time series of the station being tested (candidate station) is compared to the ones of multiple surrounding sta-
tions (reference stations) either in a pairwise fashion or to a single composite reference time series computed 
from multiple neighboring stations18. Two well-known examples of homogeneous relative tests are the Standard 
Normal Homogeneity Test (SNHT19) and the Craddock test20.

In order to perform a quick analysis of the data, some authors prepared and documented ready-to-use 
computer packages based on the relative homogenization approach. Some of the most used packages are the 
ACMANT21, the ProClimDB22, the HOMER23, the MASH24 the RHtests25 and the USHCN26, that allow to detect 
and remove inhomogeneities of different climatic variables at different timescales. However, it is not possible 
to know whether the whole inhomogeneous part has been correctly attributed and totally removed from the 
climate signal. Moreover, another problem of homogenization procedures lies in how good the clean reference 
station or dataset used is13.

Just like other meteorological time series, homogenized datasets’ results must be assessed. In climatology and 
meteorology, validations are usually performed through comparison metrics between data that are considered 
real (for instance, ground stations data) and data to validate. For example, reanalysis precipitation is validated 
against existent pluviometric networks. These metrics are seldom general, but they need to be tailored upon the 
examined variable, the region of concern and the specific use of the validated data. Commonly used metrics 
include daily, seasonal and monthly comparisons of mean values, RMSE, and bias, correlation functions, prob-
ability distribution functions, efficiency coefficients like the Nash–Sutcliffe coefficient, etc. One of the main 
problems of homogenization is that its quantitative performance evaluation is difficult because true values are 
not generally known, i.e., there is no reference set that can be used for validation. An alternate procedure can be 
to validate homogenization techniques in order to establish the best one to use in a certain region for homog-
enizing a certain variable. This validation can be achieved through the creation of artificially inhomogeneous 
datasets, starting from coherent datasets, also called benchmark datasets. In turn, this can be done either by 
creating artificial datasets, or by using homogeneous datasets, i.e., sufficiently reliable ones, and then adding 
artificial inhomogeneities to the datasets. Establishing a benchmark dataset and defining evaluation metrics are 
a necessary step to any validation (e.g.27).

Within this context, this paper dealt with the following main questions:

	 (i)	 What metrics can be meaningfully used to validate the best-performing homogenization technique for 
a temperature record in a region?

	 (ii)	 Does temperature homogenization techniques’ performance depend on physical features of a station 
like its geographical position, i.e., latitude, altitude above sea level (a.s.l.) and distance from the sea?

	 (iii)	 Does temperature homogenization techniques’ performance depend on the nature of the inhomogenei-
ties, i.e., the number of break points and missing data?

In order to answer these questions, in this study, two regional datasets of homogeneous maximum and mini-
mum temperature records, one in southern Sweden and one in Slovenia, have been considered. The datasets 
have been artificially rendered inhomogeneous through the introduction of break points and missing data, and 
then homogenized through the use of three different techniques: ACMANT, HOMER, and a modified HOMER 
method.

The paper is thus organized as follows: The Methodology and Areas of study and data sections describe the 
homogenization techniques that were evaluated, the evaluation metrics used (bias, absolute error, root mean 
square error, Pearson correlation and factor of exceedance), and the regions and the temperature networks used 
for the evaluation, a 100-stations network in southern Sweden and a 30-stations network in Slovenia. These are 
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followed by Results and discussion, where the evaluation results are presented along with the correlation analysis 
of station features (latitude, elevation and distance from the sea) and data characteristics (number of breaks, 
number of missing data) against evaluation metrics. The paper is finished by a Conclusions section.

Methodology
Three homogenization techniques were evaluated in this study: ACMANT (Adapted Caussinus-Mestre Algorithm 
for Networks of Temperature series21), and two versions of HOMER (HOMogenization software in R23), the 
standard, automated setup mode (Standard-HOMER), and the manual mode setup (SMHI-HOMER) performed 
by the Swedish Meteorological and Hydrological Institute (SMHI).

Moreover, with the aim to attribute differences in performance of the homogenization techniques, the rela-
tionship between uncertainties and physical features of the stations or intrinsic characteristics of the inhomoge-
neities were analysed. The metrics of the stations of each regional dataset have been compared, through the use 
of Pearson correlation coefficients, to two different types of variables: physical features of the stations (latitude, 
distance from the sea, altitude) and features of the corrupted station data (the number of breaks and missing 
data introduced).

ACMANT.  ACMANT is a fully automatic homogenization tool based on the PRODIGE homogenization 
technique28. General features of ACMANT include homogenization through steps with increasing sensitivity, the 
detection of changes in seasonal cycles, and ensemble homogenization. ACMANT uses Automatic networking29 
on deseasonalised data to find appropriate references for each time series. The selection of the networks is based 
on Spearman correlation and can vary from year to year. ACMANT fills data for each station taking into account 
start date and end date for records at each station. In the current study, ACMANT v4.330,31 is used.

HOMER.  HOMER combines methods for detecting homogeneity breaks borrowed from PRODIGE28, 
ACMANT21, and a joint segmentation method originally developed for applications in genome research32. All 
the methods use maximum likelihood estimates to find optimal break points.

The correction is conducted with the ANOVA model23,28. HOMER has two modes of operation: an inter-
active and an automatic mode. In the interactive mode, HOMER suggests a number of possible break points 
identified by the different methods available. On the contrary, the automatic mode uses the breaks detected by 
the joint segmentation and the ACMANT methods but disregards the breaks detected by the PRODIGE one. In 
this study, BART, a recently developed script33, is used. BART can run HOMER automatically, either with a set 
that mimics the original automatic mode described above (standard-HOMER), or selecting automatically the 
PRODIGE seasonal and annual breaks, the ACMANT annual breaks and the joint-segmentation annual breaks 
(SMHI-HOMER).

Contrarily to ACMANT, HOMER tries to fill data in all series in a network searching for the earliest starting 
date and last ending date of the stations in the whole network.

Evaluation metrics.  In order to validate the results of homogenization techniques on climate data, some 
common evaluation metrics have been used. These metrics allowed to compare a real, homogeneous ground 
station dataset (xR) with a dataset xM created through the homogenization of an artificially constructed inhomo-
geneous dataset pertaining to the same data, or obtained through a climate model or a reanalysis. Let N be the 
number of measurements. Then, some of the most commonly use devaluation metrics will be expressed in the 
following form:

(1) Bias (B)

where N is the number of measured/modelled/homogenized value vs real value pairs (xMj , xRj ) . The bias can be 
positive or negative. Depending on its sign it shows average overestimation (+) or underestimation (−) of the 
measured/modelled/homogenized data compared to the clean ones. However, the bias does not provide any 
information regarding the number of overestimations or underestimations. A perfect model or homogenization 
algorithm would result in a 0 for this metric, though the (xMj − xRj ) values can be different from 0 even though 
their averaged sum is 0. In other words, B = 0 is a necessary, but not sufficient, condition for having a perfect 
model or algorithm.

(2) Absolute error (Babs)

Absolute error (sometimes called absolute bias) is used to provide an effective measure of the difference 
between the validated series and the validation set. In this case, Babs = 0 is a necessary and sufficient condition 
for having a perfect model or algorithm. However, there is no information regarding the average sign of the dif-
ference (overestimation/underestimation).
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The factor of exceedance is a percentile measure that indicates how many values of the validated series exceed 
the corresponding values in the validation set. The term K(xM>xR) is the number of coupled values where an 
exceedance takes place. The factor goes from F = − 50% (all the values of the validated series are underestimations 
of the reference set) to F = + 50% (all the values of the validated series are overestimations of the reference set). 
If F = 0% then the sets are identical (perfect modelling/homogenization/measurement).

(4) Root Mean Squared Error (RMSE)

The Root Mean Square Error (RMSE) is defined as the square root of the mean squared error, i.e., the average 
squared difference between the estimated values and the actual value. In this case, each difference term is replaced 
by the difference between the validated value and the corresponding value in the validation set.

RMSE provides us with information about an average deviation of the validated data from the validation set 
but, like all metrics that are absolute values, it does not provide information about over- or under-estimation. 
There is no intrinsic upper limit to the RMSE, but huge errors (say, several K or more for temperature) can indi-
cate a broken instrument, an inadequate model or a wrong technique is being used.

(5) Pearson’s correlation coefficient (CC)

In the equation, xM and xR are calculated as:

Pearson correlation coefficient is a measure of the linear relationship between two variables or datasets. 
CC can vary from − 1 (perfect anticorrelation or negative correlation) and + 1 (perfect correlation or positive 
correlation), while 0 means there is no correlation at all. In this study, the best result is the perfect positive cor-
relation between the validation set and the validated dataset, i.e. CC = 1. In literature, generally values from 0.4 
to 0.6 are said to yield weak correlation, values from 0.6 to 0.8 to yield correlation, and values above 0.8 to yield 
strong correlation.

Areas of study and data
Southern Sweden.  The climate in Southern Sweden (Fig. 1) is dominated by mild and humid south-west-
erly winds from the Atlantic Ocean. The maritime climate is characterized by cool summers and mild winters, 
especially along the west coast. In the central part of the region, a highland area, with the altitude of around 
200–300 m above sea level, has a slightly more continental climate. The annual average temperature for the nor-
mal period 1961–1990 is 6–7 °C along the coast and 5–6 °C in the highland. The annual precipitation is highest 
in the western part of the region adding up to about 1000 mm. The lowest annual precipitation is found in the 
south east part of the region with 500 mm34.

Slovenia.  Slovenia is a European country located at the transition of the Alps to the Dinaric range and at the 
transition of the Mediterranean to the Pannonian Basin (Fig. 1). Its transitional climate is driven by the inter-
action between maritime and continental masses, with local conditions strongly influenced by the diversity in 
terrain and altitude35.

Three climate types characterize this region, according to the Köppen–Geiger classification36: the temperate 
humid climate with hot summers, the temperate humid climate with warm summers, and the mountainous 
climate. Mean annual air temperature presents a high spatial variability, dropping from 15 °C in south‐western 
part to below 0 °C in north‐western part of the county37.

Data.  To perform the study, a region with a network of high-quality, quasi-homogeneous station temperature 
datasets with long time series was needed. Two such regional networks were readily available from the INDECIS 
Project data repository to use: one consisting of 100 ground stations in Sweden (Fig. 1b), the other of 30 stations 
in Slovenia (Fig. 1c), compiled from reanalysis data performed by KNMI38,39. Both datasets regard maximum 
(Tmax) and minimum monthly (Tmin) temperature at the monthly scale for the 1950–2005 time period. The inho-
mogeneous datasets were created through the introduction of artificial breaks and missing data, with a different 
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setup for each station. There can be 0 to 7 breaks both in Slovenia and southern Sweden stations for both vari-
ables; missing data for southern Sweden stations are up to 256 (with 111 on average) for Tmax and up to 250 (with 
104 on average) for Tmin; while for Slovenia stations they are up to 229 (with an average of 98) for Tmax, and up to 
214 (with an average of 117) for Tmin.

At this stage, the three homogenization techniques were applied to each artificially inhomogeneous (i.e., cor-
rupted) set. A sample from the corruption and homogenization of one of the stations (maximum temperature, 
from the Swedish dataset), is shown in Fig. 2. In order to perform the validation, the mean values of the metrics 
for the whole dataset have been calculated. Given a generic metric M, where M can be B, Babs, RMSE, CC, or F, 
then the regional mean metric is:

where S is the number of ground stations in the regional dataset (S = 100 for southern Sweden, S = 30 for Slovenia), 
while the small s refers to each individual station.

(8)M =

∑S
s=1(Ms)

S

Figure 1.   Localization of the study areas (a) and of the stations on a Digital Elevation Model (DEM) of 
southern Sweden (b) and Slovenia (c).
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The same metrics were also applied to study the differences and errors between the inhomogeneous datasets 
and the clean data; in this way, it was possible to evaluate quantitatively the improvements obtained by the use 
of homogenization techniques.

Results and discussion
Tables 1 and 2 show the results of the regional mean metrics calculated for the corrupted dataset and the three 
homogenized datasets, for southern Sweden and Slovenia respectively. Results are considered significant at the 
95% statistical level.

It is clear from the metrics results that homogenization improves the correspondence of the dataset to the 
real data on all accounts except for the bias. RMSE, Babs and F all allow to evaluate quantitatively meaningful 
improvements in the homogenized datasets. For instance, for maximum temperature, mean RMSE in Sweden is 
reduced from 0.71 (corrupted dataset) to 0.50 (standard HOMER), 0.51 (SMHI-HOMER) and 0.46 (ACMANT); 
for minimum temperature, mean RMSE was reduced from 0.9 to 0.6, 0.61 and 0.53 respectively. In both cases, 
there was an improvement of about 30% with respect to the corrupted dataset. In Slovenia, improvements are 
even bigger in absolute terms, as the Slovenian corrupted dataset has much worse RMSE to start with: RMSE is 2.1 
for maximum temperature and 1.31 for minimum temperature, while the homogenized RMSEs are respectively 
0.8 and 0.87 (standard HOMER), 0.79 and 0.83 (SMHI-HOMER), 0.77 and 0.76 (ACMANT).

Figure 2.   Maximum temperature sample for station no. 98 in the S Sweden network, for years 1960–1975. (a) 
Original clean data vs corrupted data; (b) Original clean data vs three different homogenized data.
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However, the Pearson correlation coefficient (not shown) didn’t prove a good metric to assess the quality of 
the process. First of all, it didn’t improve much in either region or for either variable. The reason is that, even 
though artificially manipulated, the corrupted data still show a very high linear correlation with the real one, as 
is expected in the case of inhomogeneities to the instrumental sensitivity or the re-positioning of an instrument 
that are simulated by the introduction of artificial break points. For what concerns to the bias, it is true that 
homogenization not always improves this metric: for example, the southern Swedish maximum temperature 
corrupted dataset has a mean bias of − 0.03, while standard HOMER’s bias is − 0.03 and SMHI-HOMER’s − 0.04. 
However, taking into account both the bias and the absolute error (which shows reductions from 0.38 to 0.30 and 
0.31 respectively), it is clear that the biases in the maximum temperature cancel out and the value goes towards 
zero, but this masks the true signal of the error. Validating the techniques through the bias, thus, can be used to 
assess if homogenization changes the sign of the bias, but it is not really suggested as a way to assess quantitatively 
whether there are improvements in the quality of the data.

According to the results, ACMANT is the best performer with regard to RMSE and absolute error for both 
regions and both variables; in these instances, the two HOMER techniques are almost equivalent, with very small 
differences for both of these metrics. For what regards the factor of exceedance, the two HOMER techniques 
perform best, with standard HOMER being slightly the better one (Tmax Sweden: − 21.4% vs − 22.2%;Tmin Sweden: 
− 19.5% vs − 22.6%; Tmax Slovenia: − 7.3% vs − 14.0%; Tmin Slovenia − 19.7% vs − 20.1%).

Comparing results in southern Sweden and Slovenia, it is also clear that the homogenization produces differ-
ent outcomes depending on the variable and on the region. For example, while in Sweden the factor of exceedance 
(F) goes from the − 28.4% (for the corrupted dataset Tmax) and − 29.0% (for the corrupted dataset Tmin) to − 21.4% 
and − 19.5% respectively for the homogenized values Tmax and Tmin by means of standard HOMER, in Slovenia 
the factor of exceedance is − 21.3% and − 29.3%, for the corrupted dataset Tmax and Tmin respectively, and − 7.3% 
and − 19.7%, for the corresponding homogenized values with standard HOMER. That is to say that in Slovenia 
the homogenization improves much more than in southern Sweden according to this metric.

In Fig. 3, a sample breakdown of the metrics for the individual stations is shown; in particular, the sample 
for maximum temperature in Southern Sweden. The improvements from Table 1 are well represented for RMSE 
(where stations below the red diagonal indicate an improvement of homogenized data RMSE compared to cor-
rupted data), absolute bias (stations under the red diagonal) and factor of exceedance (stations above the red 
diagonal). No significant pattern emerges from the bias, proving once again the little usefulness of this metric 
to evaluate homogenization results.

Latitude.  As regards southern Sweden, a huge difference in the values of the five metrics for each station 
belonging to the two regional sets was detected (Fig. 4).

Table 1.   100-station average of five metrics of corrupted dataset and homogenization techniques for Southern 
Sweden compared to the clean data.

Method Variable Corrupted Standard HOMER SMHI HOMER ACMANT

RMSE
Tmax 0.71 0.50 0.51 0.46

Tmin 0.89 0.60 0.61 0.53

B
Tmax − 0.03 − 0.03 − 0.04 − 0.01

Tmin − 0.04 0.00 − 0.03 − 0.01

Babs
Tmax 0.38 0.30 0.31 0.25

Tmin 0.48 0.36 0.36 0.28

F
Tmax − 28.4% − 21.4% − 22.2% − 23.1%

Tmin − 29.0% − 19.5% − 22.6% − 23.9%

Table 2.   30-station average of five metrics of corrupted dataset and homogenization techniques for Slovenia 
compared to the clean data.

Method Variable Corrupted Standard HOMER SMHI HOMER ACMANT

RMSE
Tmax 2.14 0.80 0.79 0.77

Tmin 1.31 0.87 0.83 0.76

B
Tmax 0.14 0.15 0.01 0.02

Tmin 0.09 0.05 0.02 − 0.03

Babs
Tmax 1.34 0.49 0.48 0.42

Tmin 0.67 0.48 0.48 0.37

F
Tmax − 21.3% − 7.3% − 14.0% − 20.3%

Tmin − 29.3% − 19.7% − 20.1% − 28.4%
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No significant correlations were found between the latitude of the stations and the five metrics for Tmax. The 
weak correlations of the Bias metric (B) with latitude are also not relevant, considering the diminished role of 
the B metric determined in the analysis above.

For what regards Slovenia (Fig. 5), the only relevant results seem to be those for RMSE in Standard HOMER, 
where CC = − 0.38 for Tmax and CC = 0.37 for Tmin have been found. As the difference in latitude range is much 
smaller than in Sweden, it is difficult to establish whether this is truly a standout result. In general, there seems 
to be no major discernible pattern in the correlation coefficients depending on variable (Tmax or Tmin) or region 
(southern Sweden or Slovenia).

Distance from the sea.  Very weak correlations were found between the distance from the sea of the Swed-
ish stations and the five metrics (Fig. 6). The weak correlations of the Bias metric (B) with distance from the sea 
are also not relevant, considering the diminished role of the B metric determined in the analysis above. On the 
other hand, the weak but significant negative correlation between Factor of exceedance (F) and the minimum 
temperature in Sweden for the HOMER homogenization techniques is more interesting. In fact, CC values of 
− 0.24 and − 0.23 have been detected for the standard HOMER and the SMHI HOMER, respectively. As all three 
methods were found to underestimate the values of the validated series, from these results it seems that increas-
ing the station distance from the sea, the number of underestimated data increases slightly as well.

Station altitude (a.s.l.).  Like in the case of latitude, no significant correlations were found between sta-
tion altitude and homogenization metrics for the maximum temperature (Fig. 7). On the other hand, a signal 
emerged linking altitude and minimum temperature for factor of exceedance (− 0.29 for standard HOMER and 

Figure 3.   Sample statistics for metrics of the individual stations in the S Sweden dataset. Comparisons 
are between corrupted data and homogenized data for (a) RMSE; (b) bias; (c) absolute bias; (d) factor 
of exceedance. Comparison of RMSE, factor of exceedance, bias and absolute bias in corrupted data vs 
homogenized data for maximum temperature in the S Sweden database.
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− 0.30 for SMHI HOMER). In particular, the negative correlations in RMSE and F that show up in the HOMER 
homogenizations of minimum temperature suggest that the temperature at stations with higher altitude might 
be slightly underestimated than that of stations at lower altitude. Since this effect is weaker both in magnitude 
and significance in ACMANT homogenization results, this might indicate that the latter technique is more apt 
to correctly infer minimum temperature data in southern Sweden.

Number of breaks.  Results show that there is a moderate correlation between the number of breaks and the 
skill of the homogenization techniques (Figs. 8, 9).

It must be noted that in all these instances, the best performing technique will be the one where the relation-
ship is least relevant. In the case of RMSE and Babs, a positive correlation means that the magnitude of errors 
increases with the number of breaks. In the case of the exceedance factor, a strong correlation, whether negative 
or positive, will mean that with the increase of break points, underestimation or overestimation increase too, 
respectively.

Last but not least, the bias does not show any correlation: this is probably related to the intrinsic nature of 
the bias metric, as it is not adjusted for magnitude like the absolute error. Absolute error results prove that there 
is in fact a correlation between bias and number of breaks, but that correlation does not show when the sign of 
the bias is not accounted for.

Figure 4.   Correlation coefficients between the five metrics of homogenized temperature datasets and the 
station latitude, for the 100 southern Sweden stations. Values highlighted in red are at least 95% significant.
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The metric that shows the strongest correlation with the number of breaks is the exceedance factor F, rang-
ing from 0.30 (ACMANT maximum temperature in southern Sweden) to 0.57 (standard HOMER minimum 
temperature in Slovenia).

There are some slight differences between the metrics in southern Sweden (Fig. 8) and Slovenia (Fig. 9) in 
both variables: as the results for maximum temperature in Sweden are greater in magnitude and more robust 
statistically for RMSE and Babs, probably the different size of the sampling (100 stations against 30) means that 
the correlation is highlighted as the number of stations in the regional dataset increase. On the other hand, the 
correlation between maximum temperature exceedance factor and the number of breaks is stronger in the Slo-
venian case than in the southern Swedish one (in Slovenia 0.49 for standard HOMER, 0.44 for SMHI-HOMER 
and 0.39 for ACMANT, versus 0.42, 0.33 and 0.30 respectively in southern Sweden), so maybe in the former 
instance the correlation might be overestimated, again because of the difference of sampling size.

On the other hand, there are some differences between maximum temperature homogenization and mini-
mum temperature homogenization. While in the case of RMSE and Babs the increase in number of stations 
from Slovenia to Sweden results once again in stronger correlation, i.e., the increase in number of breaks yields 
worse results, this also happens for F, contrarily to the maximum temperature case. Moreover, the correlation 
between homogenized minimum temperature and the clean dataset is less influenced by the number of breaks 
in southern Sweden (− 0.31, − 0.34 and − 0.29) than in Slovenia (− 0.39, − 0.40 and − 0.38), contrarily to results 
with maximum temperature.

Figure 5.   Correlation coefficients between the five metrics of homogenized temperature datasets and the 
station latitude, for the 30 Slovenia stations. Values highlighted in red are at least 95% significant.
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It is possible to conclude that a higher number of break detections generally lowers the error, but it might 
be justified to use some caution when handling real data without any validation data set. This becomes clear by 
looking at the percentage of estimation of true breaks in the homogenization, calculated and shown in Fig. 10. 
Here, negative percentages indicate an underestimation of breaks, i.e., less breaks than true ones were detected; 
while positive percentages indicate overestimation, i.e., more breaks were detected than there really are. From the 
figure, it is possible to see that while standard-HOMER and ACMANT perform better in evaluating breaks than 
SMHI-HOMER for Southern Sweden (maximum temperature: 249, 279 and 149 breaks respectively compared 
to 280 true breaks; minimum temperature: 221, 261 and 146 breaks respectively compared to 258 true ones), 
this is not true of Slovenia, especially for the maximum temperature scenario (104, 113 and 69 respectively 
compared to 78 true breaks).

Missing data.  With regard to missing data, it is important to note that HOMER and ACMANT have differ-
ent approaches. HOMER fills-in missing data much more drastically than ACMANT (see Table 3): for instance, 
for maximum temperature, there are on average 111 missing data in southern Sweden stations and 98 missing 
data in Slovenia stations. These missing data are completely replaced in the HOMER homogenization, while 
with ACMANT 63 and 53 missing data respectively remain on average per station.

Figure 6.   Correlation coefficients between the five metrics of homogenized temperature datasets and the 
station distance from the sea, for the 100 southern Sweden stations. Values highlighted in red are at least 95% 
significant.
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Figures 11 and 12 show the results of the correlation between the missing data for each station and each metric 
used in this study. Since HOMER replaces the missing values almost entirely, it is clear that, as can be expected, 
the number of missing data is not significant for the metrics. It might be that, with much more missing data, the 
skill of the homogenization method to repair the dataset could break down, but it might happen at a number of 
missing data so big to make the actual dataset de facto useless.

On the other hand, for what regards the ACMANT technique, since much fewer missing data are replaced, the 
number of missing data bears an impact on the skill of the homogenization. Especially Babs and F are significantly 
affected, for both regional datasets in both variables.

The one exception to this pattern happens for minimum temperature in Slovenia. Here, there is no significant 
relationship between missing values and ACMANT performance, while some significant, albeit weak, correla-
tion between HOMER and missing data have been identified, especially for the Standard-HOMER technique. 
It is very difficult to pinpoint to an explanation for this difference, as the magnitude in the number of missing 
data remains the same.

Conclusions
The main aim of this study was to develop a general method to validate homogenization techniques for a tem-
perature record in a region. In order to determine which common metrics could provide meaningful results, 
an evaluation of the skill of various homogenization techniques in detecting and correcting inhomogeneities 

Figure 7.   Correlation coefficients between the five metrics of homogenized temperature datasets and the 
station altitude, for the 100 southern Sweden stations. Values highlighted in red are at least 95% significant.
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in monthly temperature data for two regional datasets (southern Sweden and Slovenia, made up of 100 and 
30 climatological stations respectively) was conducted for 1950–2005. Techniques used were ACMANT and 
two different HOMER setups (the standard setup and a customized setup). It is important to note that these 
techniques were used as their homogenization results were readily available for Sweden and Slovenia through 
the INDECIS Project, but that the study can be replicated for any possible set of homogenization techniques. 
Maximum and minimum temperature were used as test variables. The skill was tested through the use of five 
evaluation parameters: Pearson correlation, root mean square error (RMSE), bias, absolute error and factor of 
exceedance. Results showed that RMSE, absolute error and factor of exceedance are the most useful metrics for 
evaluating homogenization techniques’ performance.

Secondarily, an evaluation of the influence of physical features (i.e., latitude, altitude, and distance from the 
sea) and artificial features (i.e., number of breaks, number of missing data) of the station data was performed 
through Pearson correlation. Regardless of the technique used, the quality of homogenization anti-correlates 
meaningfully to the number of breaks. Missing data do not seem to have any impact on HOMER homogeniza-
tion in southern Sweden for both variables, and for maximum temperature in Slovenia, while a very weak, albeit 
significant, negative impact emerges between standard setup HOMER performance and number of missing 
data for minimum temperature in Slovenia. The reverse is true about ACMANT: the number of missing data 

Figure 8.   Correlation coefficients between the five metrics of homogenized temperature datasets and the 
number of breaks introduced in the corrupted set, for the 100 southern Sweden stations. Values highlighted in 
red are at least 95% significant.
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significantly affects homogenization performance in a negative way, with the exception of minimum temperature 
homogenization for the Slovenia dataset.

Very weak, significant negative correlations are detected between station distance from the sea and factor of 
exceedance (F) and between station altitude and both RMSE and F for minimum temperature homogenization 
results obtained with the two HOMER techniques. This suggests that temperature at stations further from the 
sea and at higher altitude might be very slightly underestimated when homogenized with HOMER rather than 
with ACMANT. Latitude of the stations do not seem to have an impact on how well a technique homogenizes 
temperature data.

In general, the nature of the datasets (i.e., number of breaks and missing data) seems to have a more important 
role in yielding good homogenization results than physical parameters associated to the stations (i.e., latitude, 
elevation and distance from the sea).

Even though from this point of view, the skill of HOMER to replace most missing data give it the upper hand 
over ACMANT, the actual metrics show that ACMANT still performs better for these variables in these regions 
for what concerns RMSE and absolute error Babs, while HOMER performs better with regard to the factor of 
exceedance F.

Figure 9.   Correlation coefficients between the five metrics of homogenized temperature datasets and the 
number of breaks introduced in the corrupted set, for the 30 Slovenia stations. Values highlighted in red are at 
least 95% significant.
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Figure 10.   Percentage of detected breaks compared to true breaks, i.e., artificial breaks introduced in the series, 
using the three homogenization methods (HOMER, SMHI-HOMER and ACMANT), for Tmax and Tmin in 
Sweden and Slovenia. Positive percentages indicate overestimation of breaks, while negative percentages indicate 
underestimation of breaks.

Table 3.   Missing data in South Sweden (S Sweden) and Slovenia corrupted and homogenized datasets: 
maximum and mean number of missing data in the stations set.

Corrupted dataset Standard HOMER SMHI HOMER ACMANT

S Sweden Slovenia S Sweden Slovenia S Sweden Slovenia S Sweden Slovenia

Tmax

Max 256 229 19 9 19 9 167 156

Mean 111 98 0 0 0 0 63 53

Tmin

Max 250 214 97 28 97 28 168 168

Mean 104 117 2 4 2 4 63 71
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Figure 11.   Correlation coefficients between the five metrics of homogenized temperature datasets and 
the number of missing data introduced in the corrupted set, for the 100 southern Sweden stations. Boxes 
highlighted in grey mean the value is at least 95% significant.
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