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Uncertainty‑induced instantaneous 
speed and acceleration 
of a levitated particle
Luca Ornigotti* & Radim Filip

Levitating nanoparticles trapped in optical potentials at low pressure open the experimental 
investigation of nonlinear ballistic phenomena. With engineered non‑linear potentials and fast optical 
detection, the observation of autonomous transient mechanical effects, such as instantaneous 
speed and acceleration stimulated purely by initial position uncertainty, are now achievable. By 
using parameters of current low pressure experiments, we simulate and analyse such uncertainty‑
induced particle ballistics in a cubic optical potential demonstrating their evolution, faster than their 
standard deviations, justifying the feasibility of the experimental verification. We predict, the maxima 
of instantaneous speed and acceleration distributions shift alongside the potential force, while 
the maximum of position distribution moves opposite to it. We report that cryogenic cooling is not 
necessary in order to observe the transient effects, while a low uncertainty in initial particle speed is 
required, via cooling or post‑selection, to not mask the effects. These results stimulate the discussion 
for both attractive stochastic thermodynamics, and extension of recently explored quantum regime.

Stochastic levitating optomechanics in vacuum is a dynamically expanding experimental platform with a unique 
potential to test and exploit strong nonlinear motional effects without any friction, and bring them close to the 
quantum domain. This uniqueness arises from the possibility to combine manipulation of the optical trapping 
potential by a spatial light modulator, inducing new unexplored nonlinearities, and fast optical measurement 
to verify rapid transient effects using modern optical detectors. At low pressure, it allows direct observation of 
stochastic underdamped mechanical  phenomena1–7, which allow access to the instantaneous particle speed not 
measurable in the overdamped  motion8,9. In the transient ballistic regime, the surrounding environment does 
not modify the statistics of the instantaneous  velocity8,10,11. Moreover, the initial uncertainty of the levitating 
particle can be controlled, by  postselection12, feedback  cooling13–16 and ultimately, by coherent scattering to the 
mechanical ground  states17–19. All these key ingredients encourage broader investigation of the fundamental 
aspects of statistical  mechanics20,21 and accelerate development of applications in mechanical  sensing5,22–24 and 
thermodynamical  engines25,26. Recently, the highly unstable motion of a levitating particle in the cubic potential 
has been  analysed27,28 and experimentally  verified29,30 in the overdamped regime. It was demonstrated that the 
mean particle position, induced by the initial position uncertainty, increases faster than that uncertainty. Atypi-
cally, the position distribution maximum shifts in the opposite direction to the mean. These investigations have 
already been stimulating experimentally verifiable thermodynamical  consequences27.

In the low pressure limit the particle is deep in the underdamped regime so that the instantaneous particle 
speed and acceleration become new transient quantities to be first explored and later exploited for applications. 
In this paper we simulate and analyse nonlinear ballistic effects for instantaneous velocity and acceleration 
induced by the initial position uncertainty, and predict the experimental regime where such phenomena are vis-
ible using parameters for current setups in  laboratories12,31–33. We observe that the only requirement for a reliable 
experimental observation is a reduction of initial velocity uncertainty. Importantly, we indicate that both the 
velocity and acceleration distributions’ maxima, stimulated by initial position uncertainty, shifts normally in the 
same direction as the velocity and acceleration mean. It is a crucial step to further accumulate such uncertainty-
induced phenomena, and later use them in the aforementioned applications.

Results
Underdamped, overdamped and deterministic nonlinear dynamics in cubic potential. To 
understand the low-pressure nonlinear effects, we must distinguish them from the already measured high-
pressure overdamped  limit27,30, and aim to achieve them close to the zero-damping deterministic limit. First, 
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we describe the properties of the stochastic motion of an underdamped Brownian particle in the unstable cubic 
potential. Second, we explore the high pressure limit in comparison to the over-damped  approximation27,30, and 
low pressure limit with comparison to the zero-damping deterministic approximation. The dynamics of the 
damped Brownian particle in the cubic potential V(x) = Kx3/3 is described by the following Langevin equation

where κ = K/m is the normalised cubic potential stiffness, γ = Ŵ/m is the medium damping with Ŵ the drag 
coefficient of the medium (e.g. air at low pressure), T is the absolute temperature, kB is the Boltzmann constant, 
and Ffluct =

√
2kBTŴξ(t) is the broadband Markov Langevin force, uncorrelated in time with zero mean and 

variance given by the fluctuation-dissipation theorem �Ffluct� = 0 , �Ffluct(t)Ffluct(t′)� =
√

2kBTγ δ(t − t′) . For 
the short transient dynamics below the re-heating times, the uncertainty of the initial position σ 2

x0
 is used, instead 

of the thermal noise, to induce the shift with well specified ratio to the standard deviation. We use Eq. (1) for 
all stochastic simulations, and also to present all the figures. The details of the simulation, comprising the re-
scaling of Eq. (1) to allow usage of real experimental numbers, are described in the Methods. In the high pressure 
limit, the instantaneous velocity and acceleration require very fast measurement to be observed in the ballistic 
 regime11, therefore we use the averaged velocity v̄ = �x/�t , and averaged acceleration ā = �v̄/�t routinely 
measured in high pressure experiments. The time �t has been adjusted to be tenfold the time-step dt to allow 
the computation of the averaged quantities. The details of the time scales, and convergence are presented in the 
Methods. Considering that v̄ and ā are still stochastic quantities, we further characterise their average motion 
by analysing their means, �v̄� , and �ā� , and standard deviations, σv̄ , and σā.

In the high pressure limit, Eq. (1) can be approximated by the over-damped equation of  motion28,

comprising a change of mean position �x(t)� ≈ −(Kσ 2
x0
t + 2KkBTt

2Ŵ−1)/Ŵ , for initial Gaussian position dis-
tribution with �x0� = 0 , evolving with standard deviation σx(t) ≈

√

σ 2
x0
+ 8(K/Ŵ)2σ 4

x0
t2 + 2kBTt/Ŵ , and gen-

erating a SNRx ≈ (K2σ 2
x0
t2 + K2kBTt

3Ŵ−1)/Ŵ28. The direct integration of Eqs. (1), (2) unveils short transient 
uncertainty-induced effects experimentally measurable, beyond linearised systems. The Gaussian statistics of 
the initial state, however, allows to describe the non trivial effect using only first and second Gaussian moment 
with different powers for different nonlinearities.

At the time scale of this experiment t = 0.1 ms, three orders of magnitude shorter than the previous over-
damped experiments t = 1s29,30, the mean �x(t)� ≈ 0 and standard deviation σx(t) ≈ σx0 of position do not change 
in time, resulting in a negligible SNRx as can be observed in Fig.1 for the high pressure regime (a). However, 
the average velocity �v̄� already feels the initial uncertainty evolving linearly with the latter as shown in Fig. 1c 
by the green line. The statistics of the average velocity v̄ , for short time �t and Gaussian position and velocity 
distributions with �x0� = 0 and �v̄0� = 0 , approaches

For small environmental temperature, kBT ≪ K2/Ŵ , Eq. (3) generates a constant SNRv̄ ≈ 1/
√
2 . On the other 

hand, in the experiments at room temperature and Ŵ = 10  Hz29,30 the second term in the standard deviation of 
average velocity σv̄ reduces the SNRv̄ to that of Eq. (3). The latter can be qualitatively observed in Fig.1c by the non 
constant azure halo as a function of initial position uncertainty. However, velocity uncertainty does not increase 
as quickly as in particle position, for the same short time scale. The statistics of the average acceleration ā , as 
shown in Fig.1e, do not change neither for the mean �ā� (green), nor for the standard deviation σā (blue–green 
halo) for the short time dynamics and range of parameters we are interested in, and their approximate char-
acterisation is therefore omitted. By numerically simulating Eq. (1) for values of Ŵ ≥ 10 Hz, the position and 
average velocity statistics, obtained from Eq. (2) for the over-damped approximation, can be retrieved fully. A 
quantitative comparison is shown in Fig. 2(a,c, green dots).

The aim of the low-pressure regime is to (i) reach the statistics of instantaneous speed, as compared to average 
speed in Eq. (3), and (ii) obtain instantaneous acceleration statistics, both not achievable in the high pressure 
regime without very fast measurements. We consider such a short-time regime characterised by no change in 
initial particle position, as depicted in Fig. 1. For better and clear visualisation, the scale bar for increasing initial 
uncertainty σ 2

x0
 changes within, while conserving the information about the profile of the probability density, up 

to the normalisation factor.
Such short transient regime when the particle does not move defines the time scale of such effect.
The goal in this regime is to reach the ideal classical limit of the zero-pressure regime, approaching deter-

ministic dynamics for Ŵ = 0 , where Eq. (1) becomes

(1)ẍ + γ ẋ + κx2 =
√

2
kBTγ

m
ξ(t), �ξ(t)� = 0, �ξ(t)ξ(t′)� = δ(t − t ′)

(2)ẋ = −
K

Ŵ
x2 +

√

2
kBT

Ŵ
ξ(t),

(3)

�v̄� =
〈

�x

�t

〉

≈ −
K

Ŵ
σ 2
x0
, σv̄ ≈

√

2

(

K

Ŵ

)2

σ 4
x0
+

2kBT

Ŵ
, SNRv̄ =

|�v̄�|
σv̄

≈
1

√

2

(

1+ kBTŴK−1σ−2
x0

)

.

(4)ẍ + κx2 = 0,
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yielding deterministic trajectories from initial position and velocity statistics. In this nonlinear ballistic regime, 
the Gaussian initial distribution of particle speed has �ẋ0� = 0 and σ 2

ẋ0
= 0 . The initial position and speed are 

statistically independent. In such regime, the initial position statistics is the only thermal energy resource that 
can be used in the nonlinear ballistics. For short time dynamics, from �x0� = 0 , the quantitative description of 
the zero-damping approximation for instantaneous acceleration gives

Notice that both mean and standard deviation are advantageously independent of initial speed statistics. This 
helps to distinguish the nonlinear ballistics in the experiment. The evolution of mean instantaneous acceleration 
�ẍ� , and its standard deviation σẍ , grow comparably with σx0 keeping a constant SNRẍ ≈ 1/

√
2 . In Fig.2e,f, Eq. (1) 

has been simulated (black dots), for damping Ŵ = 10−2 Hz, to generate �ẍ� , and SNRẍ . At such small pressure, 

(5)�ẍ� ≈ −κσ 2
x0
, σẍ ≈

√
2κσ 2

x0
, SNRẍ =

|�ẍ�|
σẍ

≈
1√
2
.

Figure 1.  Uncertainty-induced position, velocity and acceleration statistics of a levitated particle in cubic 
potential, for high pressure limit, corresponding to a pressure of p = 10−2 mbar, (left column) and low pressure 
limit, corresponding to a pressure of p = 10−5 mbar (right column). At initial time t = 0 ms, the Gaussian 
distributions of particle position has �x0� = 0 , while σ 2

x0
 triggers the nonlinear dynamics. In all cases, the 

Gaussian distribution of particle instantaneous speed has �ẋ0� = 0 and σ 2
ẋ0

= 0 . The initial position and speed 
are statistically independent. In the top panel, for both high pressure limit (a), and low pressure limit (b), the 
mean of particle position 〈x〉 (green, black) does not develop at short time scales, with increasing initial position 
uncertainty σx0 , but its standard deviation σx increases with it (green-blue halo). The maximum of position 
distribution xmax (red) does not develop either with increasing initial position uncertainty. In the middle 
panel, for the high pressure limit (c), the shift of the maximum of average velocity v̄ = �x/�t distribution 
(red) increases alongside the mean of average speed �v̄� (green). While the maximum of instantaneous velocity 
ẋ = dx/dt distribution, in the low pressure regime (d) does not increase compared to its high pressure 
counterpart, the mean of instantaneous speed �ẋ� (black), produces a larger uncertainty-induced shift than in the 
high pressure regime (green). Simultaneously, the standard deviation σẋ (green-blue halo) and the uncertainty 
around the maximum σẋmax are significantly reduced (yellow area). The bottom panel shows the evolution of 
particle’s acceleration statistics in both high pressure (e) and low pressure (f) limits. For the high pressure limit 
(e) neither the maximum of average acceleration ā = �ẋ/�t distribution (red), nor the mean of averaged 
acceleration (green), �ā� , display any uncertainty-induced shift. On the other hand, in the low pressure limit 
(f), the statistics exhibits a substantial uncertainty-induced shift in the maximum of instantaneous acceleration 
ẍ = dẋ/dt distribution (red) alongside the mean of instantaneous acceleration �ẍ� (black). To generate all the 
density plots, Eq. (1) has been simulated using κ = 6kBTµm

−3 kg−1,T = 300 K, t = 0.1 ms, dt = 2× 10−5 
ms. Nt = 104 trajectories where generated with 5000 samples each. To calculate the instantaneous quantities, 
ẋ = dx/dt , ẍ = dẋ/dt , the time interval used is given by the time-step dt = 2× 10−5 ms, whereas for the 
average quantities v̄ = �x/�t , ā = �v/�t , the time interval, multiple of the time-step, has been used 
�t = 10× dt.
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the dominant dynamics observed can be already described by the zero-damping approximation introduced in 
Eq. (4), resulting in a linear evolution of �ẍ� with σ 2

x0
 as showed in Eq. (5) (black line). Simultaneously, the SNRẍ 

(black dots) generated with Eq. (1), converges quickly to the zero-damping approximation depicted in Eq. (4), 
resulting in a constant SNRẍ as obtained in Eq. (5). By formally integrating Eq. (4) ẋ(t) ≈ ẋ0 − κ

∫ t
0
x20(t

′)dt′ 
with �x0� = 0 , the short-time evolution of instantaneous velocity unfolds as

considering the initial conditions �ẋ0� = σ 2
ẋ0

= 0 . The mean �ẋ(t)� of instantaneous velocity evolves linearly 
with initial position variance σ 2

x0
 , growing comparably with its standard deviation σẋ(t) , ultimately leading to 

the constant SNRẋ ≈ 1/
√
2 shown in Eq. (6). Simultaneously, by second time formally integrating Eq. (4) with 

�x0� = 0 , the position approaches x(t) ≈ x0 +
∫ t
0
ẋ0(t

′)dt′ −
∫ t
0

∫ t′

0
κx20(t

′′)dt′′dt′ , while its statistics for short 
time dynamics evolves as

(6)�ẋ(t)� ≈ −κσ 2
x0
t, σẋ(t) ≈

√
2κσ 2

x0
t, SNRẋ(t) =

|�ẋ(t)�|
σẋ(t)

≈
1√
2
.

(7)

�x(t)� ≈ −
1

2
κσ 2

x0
t2, σx(t) ≈

√

σ 2
x0
+

1

2
κ2t4σ 4

x0
, SNRx(t) =

|�x�|
σx

≈
1

√

2

(

1+ 2k−2σ−2
x0 t−4

)

.

Figure 2.  Uncertainty-induced effect for initially steady particle in position x (a,b), instantaneous velocity 
ẋ (c,d), and acceleration ẍ (e,f), driven by variance σ 2

x0
 of initial position. All simulations (dots) have been 

performed based on Eq. (1). In the top panel, for a short time scale up to t = 0.1 ms, the position statistics is 
trivial for all damping values, as the mean 〈x〉 (a) does not develop with increasing initial uncertainty of position. 
Similarly, the SNRx (b), is dominated by the noise spread and therefore vanishes. In the middle panel, (c), the 
evolution of the mean of instantaneous velocity is displayed for different values of damping. At low damping, 
Ŵ = 10−2 Hz (black dots), the deterministic limit (black line), as derived in Eq. (6), can be reached. On the 
other hand, for higher damping, namely Ŵ = 10 Hz (green dots), the over-damped limit (green line), described 
by the mean of average velocity �v̄� ≈ −(K/Ŵ)σ 2

x0
 is approached. The middle case of Ŵ = 1 Hz (purple dots), 

shows the sensitivity of mean of instantaneous velocity, �ẋ� , to the damping coefficient γ . Simultaneously, in (d) 
the evolution of the SNRẋ depicts the role of the environmental temperature T for different pressures, showing 
a regime dominated by the latter (purple dots) denoted by a linear increase of the SNRẋ as discussed in Eq. (9). 
In the bottom panel, (e), the mean of instantaneous acceleration is depicted for different pressures. While for 
small damping Ŵ = 10−2 Hz (black dots), the shift of mean instantaneous acceleration, �ẍ� , is visible and close 
to the deterministic limit (black line), given in Eq. (5). It vanishes for larger damping Ŵ = 10 Hz (green dots), 
where no instantaneous acceleration exists, (f) depicts, by contrast, the role of the environmental temperature T 
recognisable in the SNRẍ by the linear dependency in σ 2

x0
 of initial position, to be less present even at damping 

Ŵ = 1 Hz, in comparison to the case for velocity, as shown in Eq. (10). Eq. (1) has been simulated using 
κ = 6kBTµm

−3Kg−1,T = 300 K (ambient temperature), �x0� = 0 , �ẋ0� = 0 , σẋ0 = 0 , t = 0.1 ms, dt = 2× 10−5 
ms. 104 trajectories where generated with 5000 samples each. To compute the average quantities, v̄ , ā , the 
multiple time-step has been used, δt = 10× dt.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18185  | https://doi.org/10.1038/s41598-021-97663-z

www.nature.com/scientificreports/

For the large time scale, starting at t = 0.9 ms, the mean position evolves as in Eq. (7), while the standard devia-
tion is dominated by the second term, ultimately leading to a constant SNRx ≈ 1/

√
2 . At this scale, the dynam-

ics already makes the particle moving farther by initial position uncertainty. At the short time scale, t = 0.1 ms 
however, the position at average does not move, while its standard deviation remains equal to σx0 . The resulting 
uncertainty-induced dynamics produces a SNRx ≈ 0 . At such a short time scale, the result is similar to the 
over-damped regime described by  (2). This behavior can be observed in Fig.1b by the black arrow for the mean 
position, and with the azure halo for the standard deviation. The behavior of the SNRx can be observed in Fig.2(b, 
black line), holding true for small pressure (black dots), as well as for high pressure (green dots).

Robustness of the uncertainty‑induced instantaneous speed and acceleration. Role of envi-
ronmental temperature T. The instantaneous speed and acceleration stimulated by the initial position uncer-
tainty, can be affected by room temperature of external environment. Generalising the above results for non-zero 
damping γ , and environmental temperature T, assuming initial Gaussian distribution both in x and ẋ with 
�x0� = �ẋ0� = 0 , and vanishing variance σ 2

ẋ0
= 0 , the role of environmental noise can be discussed using the 

approximate formulae obtained from Eq. (1)

The main significant difference, noticeable from Eqs. (8) to  (10), is the time scale at which the environmental 
temperature T becomes relevant. Notice how advantageously the SNRẍ of Eq. (10) is time independent, compared 
to Eqs. (8), and  (9). In Eq. (8) for position statistics, T plays a negligible role for short time scales (up to t = 0.1 
ms), as the SNRx ≈ 0 is independent of the chosen T, as visible from Fig.2b for the range of Ŵ from overdamped 
to zero-damping limit. For longer time scales (from t = 0.3 ms) the environmental temperature competes against 
the uncertainty-induced effect when T ≥ 3mκ2tσ 4

x0
/(4kBγ ) ( T ≈ 800σ 4

x0
 K, for Ŵ = 10−2 Hz), realising a grow-

ing SNRx slowly converging to SNRx = 1/
√
2 for the higher environmental temperature T. Given the high 

temperature requirement, such regime is not visible for the parameters of the experimental set-up we  used12. In 
Eq. (9), the standard deviation of instantaneous velocity σẋ(t) is not affected by ambient temperature T = 300 
K at low pressure, as the required condition to reduce the SNRẋ(t) is T ≥ mκ2σ 4

x0
t/kBγ ( T ≈ 125× 102σ 4

x0
 for 

Ŵ = 10−2 Hz (black dots). Differently is the case at higher pressures, Ŵ = 1 Hz (Fig.2d, purple dots), where 
the condition softens to T ≈ 140σ 4

x0
 , reducing the SNRẋ(t) at small initial uncertainty σ 2

x0
 . The condition, for 

environmental temperature T, in the standard deviation of instantaneous acceleration in Eq. (10) σẍ , is much 
harder to fulfill. As can be glimpsed from Fig.2f, for the low pressure limit (black dots) the environmental noise 
is negligible even at ambient temperature T = 300 K, leaving the SNRẍ(t) ≈ 1/

√
2 unmodified. To be able to 

witness the effect of the environmental noise at such low pressures Ŵ = 10−2 Hz, Eq. (10) provides a condition 
T ≥ mκ2σ 4

x0
/kBγ ( T ≈ 150× 102σ 4

x0
 K, for Ŵ = 10−2 Hz) showing the high temperature requirement, index of 

high robustness against environmental noise. For higher pressures, Ŵ = 1 Hz (purple dots), the condition softens 
to T ≈ 144× 102σ 4

x0
 K, allowing, for small σ 2

x0
 to witness a reduction of the SNRẍ(t) (purple dots).

Role of initial particle velocity. Thus far we have considered the case of an initially steady particle with �x0� = 0 . 
Assuming we have infinitely precise control over the choice of initial speed, σ 2

ẋ0
= 0 , one can observe the uncer-

tainty-induced effect for moving particles, rendering the experimental test broad. Generalising Eq. (7) for non-
zero �ẋ0� , and introducing �x = x(t)− ẋ0t , to exclude deterministic position change, one obtains

As visible from Fig.3a,b, Eq. (11) holds true for particles moving at different initial speed (blue, green and red 
dots), showing that even quickly moving particles at the considered short time scale t = 0.1 ms do not move 
on average.

For moving particles, the equation for instantaneous velocity reads ẋ(t) = ẋ0 − kx20 t . From the latter, the 
velocity difference �ẋ = ẋ(t)− ẋ0 is introduced, and its statistical evaluation comes as follows

(8)

�x(t)� ≈ −
1

2
κσ 2

x0
t2, σx(t) ≈

√

σ 2
x0
+

2kBTγ

3m
t3 +

1

2
κ2σ 4

x0
t4, SNRx(t) =

|�x�|
σx

≈
1

√

2

(

1+ 2kBTγ
3mκ2σ 4

x0
t
+ 2

κ2σ 2
x0
t4

)

(9)

�ẋ(t)� ≈ −κσ 2
x0
t, σẋ(t) ≈

√

2κ2σ 4
x0
t2 + 2

kBTγ

m
t, SNRẋ(t) =

|�ẋ�|
σẋ

≈
1

√

2

(

1+ kBTγ
mκ2σ 4

x0
t

)

,

(10)

�ẍ(t)� ≈ −κσ 2
x0
, σẍ(t) ≈

√

2κ2σ 4
x0
+ 2

kBTγ

m
, SNRẍ(t) =

|�ẍ�|
σẍ

≈
1

√

2

(

1+ kBTγ
mκ2σ 4

x0

)

.

(11)��x� ≈ −
κσ 2

x0
t2

2
, σ�x ≈

√

σ 2
x0
+

k2t4σ 4
x0

2
, SNR�x =

|�x|
σ�x

≈
1

√

2
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As noticeable from Fig.3c,d, the mean instantaneous velocity of Eq. (12) holds true only for values of initial 
velocities �ẋ0� = ±0.5 (blue dots). However, for particles initially moving at higher speed (green and red dots), 
the approximation in Eq. (12) fails to describe the motion now modified by higher order nonlinear terms, as the 
particle obtains more negative mean instantaneous velocity for smaller σ 2

x0
 . This high order nonlinear effects 

can only be investigated by numerical stochastic simulations. The SNRẋ (middle panel, right column), although 
affected by the change in initial velocity (green and red dots), for larger σ 2

x0
 converges to its constant value 

SNRẋ = 1/
√
2 of Eq. (12).

To visualise the effect of initial velocity ẋ0 on instantaneous acceleration ẍ , one needs to explore the second 
order approximation to Eq. (4). We rewrite Eq. (4) to a set of dynamical equations for the position x and speed 
ẋ . Substituting a short-time solution x ≈ x0 + ẋ0t of the equation for the position x, to the right side of the equa-
tion for the speed ẋ , we obtain a solution for the acceleration ẍ(t) ≈ −κ(x20 + 2x0ẋ0t + ẋ20 t

2) . Introducing the 
quantity �ẍ = ẍ(t)+ κ ẋ20 t

2 , a pure effect of σ 2
x0

 on acceleration can be described, for �x0� = 0 , non vanishing 
�ẋ0� , and σ 2

ẋ0
= 0 as follows

(12)��ẋ� ≈ −κσ 2
x0
t, σ�ẋ ≈

√
2κσ 2

x0
t, SNR�ẋ =

|��ẋ�|
σ�ẋ

≈
1√
2
.

(13)��ẍ� ≈ −κσ 2
x0
, σ�ẍ ≈

√
2κσ 2

x0
, SNR�ẍ =

|��ẍ�|
σ�ẍ

≈
1√
2
.

Figure 3.  Uncertainty-induced effects for initially moving particle in position statistics (a,b), instantaneous 
velocity statistics (c,d), and instantaneous acceleration statistics (e,f). All simulations (dots) have been 
performed based on Eq. (1) using σ 2

ẋ0
= 0 . For mean particle position (a) the dynamics remains unchanged 

from that of Eq. (11) (black line) independent of the chosen initial velocity �ẋ0� , while the SNR�x (b, dots) 
remains small (close to zero), as the standard deviation increases faster than the mean. For mean instantaneous 
velocity (c,d), the approximation introduced in Eq. (12) (black line) holds true for values of initial velocity 
up to �ẋ0� = ±5 . Within this frame, stochastic speeding (for �ẋ0� > 0 ) and stochastic breaking (for �ẋ0� < 0 ) 
are witnessed when ��ẋ� = −|�ẋ0�| . Specifically, for �ẋ0� = ±0.5 (blue dots), the initial position uncertainty 
induced stochastic speeding/breaking is met at values of ��ẋ� = −0.5 (blue dashed line). For values |�ẋ0�| > 5 
(green, and red dots) the dynamics can no longer be described by Eq. (12), as higher order nonlinear terms 
become relevant. As a result, the slope remains similar to that of the black line, but the curve is shifted to a non-
zero value at σ 2

x0
= 0 . The resulting SNR�ẋ display a slower convergence to the black line as the initial velocity 

becomes larger in magnitude. Particle acceleration (e,f) displays a solid robustness against the initial velocity 
�ẋ0� < 20 in both mean (e), and SNR�ẍ (f). However, for values of �ẋ0� ≥ 20 (red dots), the evolution of mean 
instantaneous acceleration ��ẍ� deviates from the approximation of Eq. (13) (black line). In this regime, the 
SNR�ẍ presents an initial decrease, index of highly unstable dynamics, followed by a slow convergence towards 
the black line. Eq. (1) has been simulated using κ = 6kBTµm

−3Kg−1 , T = 300 K, Ŵ = 10−2 Hz, t = 0.1 ms, 
dt = 2× 10−5 ms. 104 trajectories where generated with 5000 samples each.
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Evidently, in Fig.3e,f, for a particle with small non-zero initial speed ẋ0 , the acceleration does not deviate from 
the approximation introduced in Eq. (13), but when ẋ0 increases, the mean acceleration gets closer to zero and 
SNR�ẍ approaches 1/

√
2 much slower for larger σ 2

x0
 , as visible in Fig.3(e,f, green). For even larger initial speed 

(red dots), the particle obtains less negative average acceleration for smaller σ 2
x0

 , producing an initially decreasing 
SNR�ẍ . Decreasing the time scale tenfold t = 0.01 ms brings the red dots closer to the zero-damping approxima-
tion (black line), indicating that the shift is generated by higher order nonlinear terms beyond the approximate 
result introduced in Eq. (13). The larger σ 2

x0
 , the more the particle accelerates, resulting in an increase of the 

SNR�ẍ , slowly approaching 1/
√
2.

Fig.3 demonstrates that the uncertainty-induced shift of particle position (a,b), instantaneous velocity (c,d) 
and instantaneous acceleration (e,f) can be observed also for slowly and deterministically moving particles 
(black, and blue, and green dots). Moreover, for �ẋ0� > 0 stochastic breaking induced by initial uncertainty can 
be witnessed where the particle breaks at average �ẋ� = 0 for sufficiently large initial position uncertainty σ 2

x0
 . 

Similarly for �ẋ0� < 0 stochastic speeding is observed, where the particle gains velocity for sufficiently large initial 
position uncertainty σ 2

x0
 . The latter can be observed even during the short time period, and it is noticeable by the 

sign flip of mean instantaneous velocity ��ẋ0� = −|ẋ0| (Fig.3c,d, dashed blue line).

Sensitivity to velocity uncertainty. Complementary to the previous section, here we investigate how sensitive 
the uncertainty induced effect is to an increase of initial velocity uncertainty σ 2

ẋ0
 , for strictly zero initial velocity 

�ẋ0� = 0 , and �x0� = 0 . Assuming negligible γ , as witnessed already in Fig.2 for the short time dynamics, Eq. (1) 
can be studied to describe the effect of initial statistics of velocity. Due to non-zero initial velocity uncertainty, 
Eqs. (5)–(7) modify to

At short time scale, the mean position 〈x(t)〉 does not move, resulting in a vanishing SNRx independent of the 
value of the initial velocity uncertainty, as visible in Fig.4a,b. For time larger than t = 0.3 ms, when the nonlin-
ear terms in Eq. (14) are prominent and SNRx approaches 1/

√
2 , the initial velocity uncertainty can modify the 

statistics of position if σ 2
ẋ0

≫ κσ 2
x0
t2/

√
2 ( σ 2

ẋ ≈ 10−2σ 2
x0

 , at t = 0.3 ms, Ŵ = 10−2 Hz). The statistics of instanta-
neous velocity, as described in Eq. (15) are more affected by increasing initial velocity uncertainty at short time 
scales. For values of σ 2

ẋ0
≫ 2κ2t2σ 2

x0
≈ 4× 10−2σ 2

x0
 (at t = 0.1 ms, Ŵ = 10−2 Hz), the statistics of SNRẋ slowly 

approaches the constant 1/
√
2 value, and rather approaches that of Eq. (15) as shown in Fig.4(d, purple dashed 

line). As can be seen directly from Eq. (16), instantaneous acceleration bears the ability to be driven both by 
initial, velocity uncertainty σẋ20 , dominating in the long time scale, and initial position uncertainty σx20 , dominat-
ing in the short time scale. As can be seen in Fig.4e at timescales of t = 0.1 ms the term σx20 dominates over the 
dynamics (black and purple dots), retrieving the zero-damping approximation results (black dashed line). At 
larger values of σẋ20 (orange dots) the enhancing effects of initial velocity uncertainty becomes visible as the mean 
instantaneous acceleration becomes more negative than the zero-damping approximation (black dashed line). 
Simultaneously the SNRẍ (e) quickly converges to 1/

√
2 independent of the choice of initial velocity uncertainty.

Coherent motion of maximum of distribution. To complete the analysis, the dynamics of a levitated 
particle in cubic potential needs to be characterised also by means of the most-likely position, speed and accel-
eration. The maxima of the respective distribution are not only a directly measurable characteristic of unstable 
motion, but they also open a new local use of Maxwell’s deamon in stochastic  thermodynamics27. Both mean and 
maximum of instantaneous quantities, stimulated by initial uncertainty, should ideally increase coherently (typi-
cal motion in the same direction) with a constant signal-to-noise ratio. Fig.5 shows the dynamics of maximum 
of position distribution(a,b, red dots), in both high friction regime (a), as well as in low friction regime (b). The 
latter shifts more pronouncedly, while maintaining its atypical feature observed  in27,30 for over-damped dynam-
ics. A new feature arises for the-most-likely speed, where both in high and low friction regime, the maximum of 
average and instantaneous velocity distribution shifts alongside the potential force as seen by the red arrow in 
Fig. 1 (c,d). A more quantitative dynamics of the latter is shown in Fig.5c showing that the deterministic limit 
(red line) is reached at damping of Ŵ = 10−2 Hz. Contrarily to the mean instantaneous velocity, shown in Fig.4, 
the maximum of velocity distribution does not succumb to increasing initial velocity uncertainty. The curvature 
on the other hand is responsible for the reduction of the SNRẋmax , as it becomes larger with increasing initial 
velocity uncertainty σ 2

ẋ0
 , slowing down the convergence of the SNRẋmax as shown in Fig.6d.

(14)
�x(t)� ≈ −

κσ 2
x0
t2

2
, σx ≈

√

σ 2
x0
+ σ 2

ẋ0
+

1

2
κ2σ 4

x0
t4, SNRx ≈

1

√
2

√

2σ 2
x0
+2σ 2

ẋ0
t2

κ2σ 4
x0
t4

+ 1

(15)
�ẋ(t)� ≈ −κσ 2

x0
t, σẋ ≈

√

σ 2
ẋ0
+ 2κ2t2σ 4

x0
, SNRẋ ≈

1

√
2

√

σ 2
ẋ0

2κ2σ 4
x0
t2
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σ 4
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The shift of the most-likely acceleration is alongside the potential force, as shown in Fig.1(f, red arrow). It 
becomes evident only at low pressures, and disappears towards the high friction limit. The sharp shape of the 
acceleration distribution, displayed in the inset of Fig.5d shows a large shift of mean of instantaneous acceleration, 
but a small shift of its maximum, although larger compared to the shift of the maximum of velocity distribution. 
Despite the negligible role that the uncertainty of the initial velocity state displays in the evolution of the maxi-
mum of acceleration distribution, as shown in Fig.6e,f, it is of notice the convergence of the SNRẍ to the 1/

√
2 , 

denoted by the dashed black line in Fig.6f.
The minimal requirement to observe a shift of the maximum in the acceleration distribution, is a non-zero 

uncertainty in the initial velocity state, which mediates from the sharp tail on the right of the distribution, making 
its maximum hard to identify. Moreover we report that the most-likely acceleration, when the dynamics starts 
at different initial position �x0� �= 0 , shifts atypically for small values of initial position uncertainty. This is due 
by a pure deterministic drift in a regime dominated by inertia when the trajectory explore region away from the 
plateau. Moreover, their distribution shows no visible light tails, contrary to the position distribution in the over-
damped  regime27, where the fast and unstable dynamics of x drags all the trajectories quickly to the divergence.

Conclusion for experimental tests
We have demonstrated the uncertainty-induced instantaneous speed and acceleration of a levitated particle in the 
highly unstable cubic potential. Moreover, all the simulations have been performed using parameters of current 
underdamped  experiments12, together with the parameters of cubic optical  potential29,30 directly motivating our 
predictions to be experimentally tested to witness these new nonlinear mechanical phenomena. However, the 
analysis of the presented regime is also applicable to other underdamped  experiments31–33. The first point worth 
experimentally verifying, shown in Figs. 1 and 2, is how the uncertainty-induced effect turns to instantaneous 

Figure 4.  Robustness of initial uncertainty-induced effect to initial velocity uncertainty σ 2
ẋ0

 for position 
statistics (a,b), instantaneous velocity statistics (c,d), and instantaneous acceleration (e,f). All simulations 
(dots) have been performed based on Eq. (1) using �x0� = �ẋ0� = 0 . In the top panel, for particle position, the 
increasing initial velocity uncertainty σ 2

ẋ0
 does not modify the statistics of both mean position (a), and SNRx 

(b). In the middle panel, for instantaneous velocity, the uncertainty-induced feature is still observable for 
increasing initial velocity uncertainty σ 2

ẋ0
 , at the cost of high ensemble size requirements for mean instantaneous 

velocity computation (c). The SNRẋ (d) still shows the uncertainty induced effect, increasing with initial 
position uncertainty, but its statistics gets modified, according to Eq. (15) (purple and orange dots), to a linearly 
increased SNRẋ The bottom panel, (e,f) for instantaneous acceleration, displays a small sensitivity to initial 
velocity uncertainty σ 2

ẋ0
 . As obtained from Eq. (16), the condition the initial position uncertainty must fulfill 

to overthrow the initial velocity uncertainty, σ 2
x0

≫ γ σẋ0/
√
2κ ≈ 5× 10−3σẋ0 , is quite trivial, rendering the 

impact of σ 2
ẋ0

 negligible upon the statistics of instantaneous acceleration, never reaching, for the parameters of 
the experiment used, the regime introduced in Eq. (16) for SNRẍ . The case of large initial velocity uncertainty 
σ 2
ẋ0

= 20 (orange dots) introduces enhancement of mean instantaneous acceleration (e), that can be described 
by �ẍ� ≈ −κ(σ 2

x0
+ σ 2

ẋ0
t2) as introduced in Eq. (16). Eq. (1) has been simulated using κ = 6kBTµm

−3 kg−1 , 
T = 300 K, Ŵ = 10−2 Hz, t = 0.1 ms, dt = 2× 10−5 ms. Nt = 104 trajectories where generated with N = 5000 
samples each.
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velocity and acceleration, reaching the zero-damping approximation described in Eqs. (5) to  (7) at pressures of 
p = 10−5 mbar, and room temperature. Then, the experiment can proceed to investigate how robust the previous 
result was when the particle, instead of being initially steady at the plateau, possessed nonzero initial velocity 
�ẋ0� as showed in Fig. 3. The latter unveiled an interesting feature, observable in the cubic potential, consist-
ing of stochastic breaking and speeding induced by initial position uncertainty σ 2

x0
 . Moreover, remarkably the 

uncertainty-induced effect can be observed even for slowly moving particles (see blue and green dots in Fig. 3). 
A parameter that needs to be kept under control is the initial velocity uncertainty, which although can drive 
the shift of instantaneous acceleration (Fig. 4 orange dots), is disruptive for the measurement of instantaneous 
velocity (purple and orange dots Fig. 4). Last, but not least, we showed that the maxima of the instantaneous 
speed, and acceleration distributions shift normally, alongside their respective mean in contrast to the position 
maximum which maintains its atypical shift as previously observed in the over-damped  regime27,30 (Fig. 5). The 
sensitivity of maxima towards increasing initial velocity uncertainty, as shown in Fig. 6, displays a worsening 
of the accuracy which in turns demands increasing ensemble size. We report that imperfections to the cubic 
potential, i.e., V(x) = k2x

2 + k3x
3 , do not mask the uncertainty-induced effect for small initial uncertainty, 

provided that k2 is small enough to not dominate the dynamics at transient times around the origin. For single 
well Gaussian potential in  experiment12 however, the uncertainty-induced effect is not visible, contrarily to a 
tilted double well potential (as  in34) where the uncertainty-induced effect with increasing SNR can be observed. 
It enlarges the possibility of upcoming experimental tests with diverse nonlinear potential landscapes.

All these experimental tests will verify new underdamped transient effects of a particle living at the edge of 
instability, paving the way to explore highly nonlinear stochastic phenomena. Future targets comprise of quantum 
mechanical analysis of deeply underdamped and highly cooled particles in the unstable cubic potential, initially 
close to the mechanical ground state.

Figure 5.  Initial uncertainty-induced shift of maximum of position xmax , for high (a) and low (b) pressure 
limit, maximum of instantaneous velocity ẋmax (c), and acceleration ẍmax (d). All simulations (dots) have been 
performed based on Eq. (1) using �x0� = �ẋ0� = 0 , and σ 2

ẋ0
= 1 . The top panel highlights the atypical evolution 

of maximum of particle position xmax (a, red dots) retrieved  in27,30 for over-damped dynamics (a, red line), 
and witnessed again in the low pressure limit (b, red). To make the shift in maximum more visible, Eq. (1) has 
been simulated with t = 0.3 ms. The maximum of instantaneous velocity ẋmax , in the low pressure limit (c), 
introduces a new effect comprising of a coherent shift of ẋmax (red) alongside the potential force (black) The 
inset, showing snapshots of the P(ẋ at different σ 2

x0
 , highlights the instability (heavy tails on the left), with a 

clear shift of the maximum alongside. Similarly, the maximum of instantaneous acceleration ẍmax (d, red), shifts 
coherently with its mean �ẍ� (black), corroborated by the inset picture, showing the left shift of ẍmax for different 
values of σ 2

x0
 . By comparing the shift of ẋmax , and ẍmax , we notice that the latter is comprised of a larger shift 

induced by initial position uncertainty σ 2
x0

 . Moreover, comparing the P(ẋ) , and P(ẍ) (inset a,b), with the P(x) 
(inset c,d), we notice the absence of light tail in the former, that is visible in  position27. To produce the figure on 
the bottom panel, Eq. (1) has been simulated with t = 0.1 ms. The other parameters used to produce this graph 
from Eq. (1) are κ = 6kBTµm

−3kg−1, T=300K , dt = 2× 10−5 ms. Nt = 104 trajectories where generated with 
N = 5000 samples each.
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Methods
Numerical simulation with experimental numbers. To numerically simulate the Langevin dynamics 
described in Eq. (1) using real experimental values, one has to re-scale the equation of motion. Usually, for lin-
ear dynamics, the equation is re-scaled using the mechanical Q-factor. With nonlinear systems this is not valid 
anymore, and a different route must be followed. In the case of Eq. (1), it is useful to re-scale position and time 
as follows

with q being the dimensionless position, l the position re-scaler, t̄  the dimensionless time, and τ the time re-
scaler. It naturally follows from Eq.  (17) that q̇ = τ ẋ/l , and q̈ = τ 2ẍ/l . In order to determine the values of the 
re-scaler, one can use, for the position ̄l = 5× 10−6 which is the length of the potential used in  experiment30, and 
then focus attention on the positive part of the potential, of length l̄/2 . Subsequently choose a point, P belonging 
to it, with coordinate (xp, yp). With this point one can build a straight line passing through the origin and the 
chosen point, and notice that it forms a triangle containing the piece of potential up to point P chosen. The angle 
between the origin and the hypotenuse is then given by the stiffness k of the potential. Subsequently, the position 
re-scaler can be calculated as l = 2

√
A/k , where A denotes the area of the triangle previously built, and the factor 

2 comes from the fact that we extend the calculation to the whole domain of the cubic potential. The re-scaler 
l calculated, now has a clear dependence on the stiffness of the potential K ≈ kBTµm

−3 , and subsequently on 
the chosen temperature T, and it varies between 10−3µm < l < 10−2µm . The time re-scaler, τ is calculated by 
numerically computing the first passage time for the selected parameters.

Following the re-scaling procedure explained before, the Langevin equation can be transformed into

(17)q =
x

l
, t̄ =

t

τ
,

(18)q̈ = −γ τ q̇− k̄τ 2lq2 +
τ 2

l

√

2D

τ
ξ̄ (t),

Figure 6.  The uncertainty-induced effect in the maxima of distribution for position, instantaneous velocity 
and acceleration to the uncertainty of the initial velocity state, σ 2

ẋ0
 (a,b), the evolution of the maximum of 

position distribution is not modified by increasing initial uncertainty of the velocity state, σ 2
ẋ0

 , similar to its 
global counterpart 〈x〉 (c,d), the evolution of maximum of velocity distribution is investigated, showing on 
(c), almost no sensitivity to small changes in initial velocity uncertainty, but increase requirement of ensemble 
size. Simultaneously , the SNRẋ on (d) slowly converges to the SNRẋ = 1/

√
2 (black dashed line) value but 

its convergence is reduced with increasing initial velocity uncertainty σ 2
ẋ0

 (e,f), the local characteristics of 
instantaneous acceleration, ẍmax (e), displays little to no sensitivity to increasing initial velocity uncertainty, 
while its SNRẍ requires a high ensemble size to be simulated ( Nt = 106 ). The convergence of the SNRẍ (f) is 
not modified by increasing initial velocity uncertainty σ 2

ẋ0
 . The black dashed line correspond to the evolution 

of maxima of distribution for the zero-damping-limit, shown in Fig.5. Equation (1) has been simulated using 
κ = 6kBTµm

−3kg−1, T = 300K, �x0� = 0, �Px0� = 0, t = 0.1ms, dt = 2× 10−6 ms. Nt = 106 trajectories where 
generated with N = 5000 samples each.
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where k̄ = κ/l3 , and the mass m has been absorbed by κ = K/m , γ = Ŵ/m , D = kBTγ /m , and ξ̄ (t) =
√
τ−1ξ(t) . 

The term k̄ = κ/l3 comes from the re-normalisation of the potential stiffness, done to render the dimensions of 
the new stiffness, k̄ = [1/(ms2)] , such that the potential term, k̄τ 2lq2 becomes a-dimensional in the re-scaling.

Uncertainty‑induced effects for non vanishing initial position. Throughout the paper we have 
always assumed to have a particle initially positioned at the inflection point �x0� = 0 . It becomes natural to 
ask how different 〈x0〉 affect the uncertainty-induced effect described. As evidenced in Fig. 7, for small nonzero 
�x0� = 1 (blue dots), Eqs. (14)–(16) still describe the dynamics for position (a,b), velocity (c,d), and acceleration 
(e,f), where their SNR (b,d,f) show no deviation from 1/

√
2 . A different case is the large non zero 〈x0〉 (green 

dots) for which Eqs. (14)–(16) no longer holds. In this case, the particle already feels strong nonlinear terms, 
which require more terms in the time expansion from  (4). While the respective SNR undergo an initial decrease 
(for velocity and acceleration), they all converge to 1/

√
2 for increasing initial position uncertainty σ 2

x0
 . To pre-

serve the short time dynamics at such nonlinear positions, a decrease of the time scale seems necessary (a tenth 
of t = 0.1 ms is sufficient for the parameters used in Fig. 7 to produce the green dots).
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