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Stochastic binary synapses having 
sigmoidal cumulative distribution 
functions for unsupervised learning 
with spike timing‑dependent 
plasticity
Yoshifumi Nishi*, Kumiko Nomura, Takao Marukame & Koichi Mizushima

Spike timing‑dependent plasticity (STDP), which is widely studied as a fundamental synaptic update 
rule for neuromorphic hardware, requires precise control of continuous weights. From the viewpoint 
of hardware implementation, a simplified update rule is desirable. Although simplified STDP with 
stochastic binary synapses was proposed previously, we find that it leads to degradation of memory 
maintenance during learning, which is unfavourable for unsupervised online learning. In this work, we 
propose a stochastic binary synaptic model where the cumulative probability of the weight change 
evolves in a sigmoidal fashion with potentiation or depression trials, which can be implemented 
using a pair of switching devices consisting of serially connected multiple binary memristors. As a 
benchmark test we perform simulations of unsupervised learning of MNIST images with a two‑layer 
network and show that simplified STDP in combination with this model can outperform conventional 
rules with continuous weights not only in memory maintenance but also in recognition accuracy. Our 
method achieves 97.3% in recognition accuracy, which is higher than that reported with standard 
STDP in the same framework. We also show that the high performance of our learning rule is robust 
against device‑to‑device variability of the memristor’s probabilistic behaviour.

Spike timing-dependent plasticity (STDP), which was discovered in biological neuronal  systems1–3, has estab-
lished its position as the most fundamental synaptic update rule also in artificial neuromorphic hardware where 
spiking neural networks (SNNs) are implemented to mimic the information processing principle of the biologi-
cal  brain4–8. Many attempts have been made to implement STDP in SNN hardware systems in order to realise 
autonomous online learning which our brains are always doing with an ultimately low power of 20 W.

STDP is a synaptic update rule where a synaptic weight is depressed when a pre-synaptic spikes comes after 
the post-synaptic neuron fires, and potentiated when the post-synaptic neuron fires after an arrival of a pre-
synaptic spike. In standard STDP models, the amount of the weight change depends on tpre − tpost exponentially, 
where tpost and tpre denote the time at which the post-neuron fires and the time at which a pre-synaptic spike 
arrives,  respectively9. Thus, to implement STDP in hardware straightforwardly, we need multi-bit memories 
to store synaptic weights with high precision, computing units to calculate the weight changes, and memory 
controllers to update the memories. However, such hardware-heavy implementation would be unfavourable for 
area-efficient and low power neuromorphic chips. It is desirable to employ devices that can reproduce STDP 
operation with as few hardware components as possible.

One of the most studied devices for STDP implementation is the  memristor9–17. A memristor is a two-terminal 
passive device whose resistance changes in accordance with the polarity, amplitude and duration of the applied 
 voltage10. The variable conductance of a memristor can represent the plastic weight of a synapse. Simultaneous 
application of specifically-shaped voltage pulses to both terminals updates the resistance depending on the timing 
of the two pulses, resulting in STDP-like  behaviour9. Controlling the resistances of a population of memristors 
in an analogue fashion, however, is not an easy task. Because of the uncontrollable variability, careful pulse tun-
ing is required for each device to reproduce its designed  behaviour18, hindering practical use of memristors for 
synaptic devices.
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A solution to avoid such difficulty is to use memristors in a binary  fashion19,20. Several types of oxide-based 
memristors show binary behaviour after a forming  process21–24. When a voltage with one polarity is applied to a 
memristor, its resistance state undergoes a SET transition from a high-resistance state (HRS) to a low-resistance 
state (LRS). A voltage with the opposite polarity arises a RESET transition from an LRS to an  HRS25. Thus we need 
only consider whether the device is in an LRS or an HRS, and we do not need to consider the precise analogue 
resistance of individual devices.

A problem here is that synaptic weights are assumed to be continuous in standard STDP models. In fact, it 
is widely known that, in general, continuous or multi-bit weights are required for learning in neural networks, 
although inference tasks can be performed with binary  synapses26. For learning in neural networks with binary 
synapses, auxiliary continuous variables may be added instead of using continuous synaptic weights. For example, 
a learning algorithm proposed by Brader, et al. employs binary synapses, but each synapse has a dynamic con-
tinuous variable by which the weight, 0 or 1, is  determined27. Thus, this approach does not reduce the difficulty 
of controlling the continuous weights because the new variables merely take the place of the synaptic weights; 
another hardware mechanism to replace the auxiliary continuous variables is required.

Stochastic operation of binary synapses is one possible  solution28. Suri, et al. showed that the probabilistic SET 
and RESET of binary memristors can be used for STDP-based  learning19. In their learning rule, which we refer to 
as stochastic simplified STDP (stochastic S-STDP), the information of spike-timing is encoded as a probability 
of SET or RESET instead of continuous increment or decrement of the weight. The stochasticity of the switching 
behaviour originates from the randomness of the configuration of the ions or vacancies in the insulating film in 
a  memristor21,29,30. Despite its simplicity, the learning performance of stochastic S-STDP is not as high as that of 
a deterministic rule with continuous weights, as shown in the following section.

Weight change in standard STDP models generally depends not only on tpre − tpost but also on the present 
weight value of the target  synapse9,13,31–36. This is originated from the fact that the dynamic range of a synaptic 
weight is not unlimited and has its upper and lower bounds. When a synapse having a weight close to the upper 
bound is potentiated, the increment should be small enough so that the resulting weight value does not exceed 
the upper bound. Similarly, depression should be small enough if the present value is close to the lower bound. 
In this way, the amount of the weight update should be given depending on the present weight. Since weight-
dependence in a synaptic update rule is an effective factor for the performance and stability of  learning9,33, it 
should be considered carefully in designing a learning system for neuromorphic hardware. Asymmetric linear 
dependence, where synaptic weight change is proportional to a linear function of the present weight (hence, the 
weight increases or decreases exponentially as a function of the number of potentiation or depression), is widely 
known as a simple model. However, Park et al. proposed that a symmetric model where the weight changes 
with the potentiation or depression operations in a sigmoidal fashion improves the memory maintenance of 
the  network37.

For a binary synaptic system, however, weight-dependence does not make sense because a weight is always 
0 or 1. Our approach in this work is to focus on the expected value of a weight rather than the actual value. 
To control the expected value in a sigmoidal fashion with potentiation (depression) trials, the probability of 
switching from 0 to 1 (from 1 to 0) cannot be a constant and must be dependent on the number of trials. A 
question arising from this scenario is how to control the probability in accordance with the operation cycle. It 
would be area-expensive to implement a control system in a semiconductor chip. In this work we propose the 
use of a stochastic switch consisting of serially connected multiple binary memristors. The stochastic nature of 
such a switch can be described by a gamma distribution, which leads to a sigmoidal dependence of the expected 
weight on the number of trials. Using Brian  Simulator38, we show that our stochastic learning rule improves the 
performance in MNIST image learning tasks in a two-layer SNN.

Results
Expected weights in stochastic S‑STDP. For continuous synapses, deterministic simplified STDP 
(deterministic S-STDP) can be employed. Deterministic S-STDP increments or decrements a weight by a small 
amount η+ or η− , respectively, at the moment of a post-neuron’s firing depending on whether 0 < tpost − tpre < T 
or  not35. In contrast, stochastic S-STDP potentiates a binary synapse from 0 to 1 with a probability p in the for-
mer case, or depresses from 1 to 0 with a probability q in the latter case (Fig. 1a). It is so simple that precise 
control of the memristive resistance is unnecessary. Instead it requires binary memristors to perform switching 
with a fixed probability ( p or q ) regardless of the operation history. It should be noted that this requirement is not 
trivial because the stochastic properties of a memristor may vary from cycle to cycle owing microscopic internal 
change due to Joule  heating30,39. Fortunately, however, it is possible to find a voltage pulse condition with which 
the SET probability is kept constant independently of the voltage application  history30. We refer to stochastic 
S-STDP with constant probabilities as conventional stochastic S-STDP.

In the scheme of S-STDP, both deterministic and stochastic, when a neuron fires, only the synapses that have 
received a spike within a period T prior to the fire are potentiated and all the other synapses afferent to the neuron 
are depressed. Consequently, the sum of the synaptic weights afferent to the neuron is kept around a constant, 
depending on the balance of potentiation and  depression35. This means that synaptic normalization or synaptic 
scaling mechanism, which keeps the weight-sum at a constant and works as a homeostatic mechanism for the 
stability of the weight  distribution34,40–43, is inherent in this rule (see also the Discussion section).

To discuss the performance of synaptic update rules, we perform simulations of unsupervised learning of 
MNIST images in a two-layer  SNN34,44,45 and evaluate recognition accuracy and memory maintenance (see the 
Methods section for details). Note that unsupervised learning in a two-layer SNN is studied as a basic model of 
Bayesian computation in cortical  microcircuits45,46. Selecting p and q appropriately, we can observe relatively 
high accuracy for conventional stochastic S-STDP. Our best accuracy 85.5% is achieved with p = 0.04 and 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18282  | https://doi.org/10.1038/s41598-021-97583-y

www.nature.com/scientificreports/

q = 0.008 (Supplementary Note 1). Note that our interest is in benchmarking the performance of update rules 
as unsupervised learning algorithms in SNNs, not in the recognition task itself, much less in achieving higher 
accuracy than other machine learning methods.

Memory maintenance, which is represented by the number of neurons holding the initial memory after extra 
trainings, is evaluated to argue the stability of learning. In general, the number of neurons holding the initial 
memory decreases with the number of extra trainings because neurons change their memory when trained with 
new samples. From the viewpoint of online learning applications, the decay should be slow enough that the 
network can retain its memory and work from its long term experience. In Fig. 1b, all the curves obtained with 
conventional stochastic S-STDP, including the curve achieving the best accuracy with p = 0.04 and q = 0.008 , 
are much lower than those obtained with deterministic S-STDP. It is desirable that those curves lie at higher 
positions with smaller decay rates.

To discuss how to improve the memory maintenance of the network with stochastic S-STDP, we focus on the 
behaviour of expected values of weights. Let us consider a binary synapse with weight w = 0 and assume that a 
probabilistic potentiation is repeated N times. Then, the cumulative probability of w = 1 (i.e., the probability of 
finding w = 1 ), P(N) , and the expected weight 〈w〉 can be expressed as

where � = −ln
(

1− p
)

≈ p (for p ≪ 1 ). Similarly, for depression from w = 1 to 0, the cumulative probability 
Q(N) and the expected weight 〈w〉 can be expressed as

where µ = −ln
(

1− q
)

≈ q (for q ≪ 1 ). As can be seen from Eqs. (1) and (2), 〈w〉 is written as an exponential 
function of N  . Note that this corresponds to a linear weight-dependent update of the continuous  weight37. 

(1)P(N) = 1−
(

1− p
)N

= 1− exp(−�N), �w� = 0+ 1× P(N) = 1− exp(−�N),

(2)Q(N) = 1−
(

1− q
)N

= 1− exp(−µN), �w� = 1− 1×Q(N) = exp(−µN),

Figure 1.  Introduction of stochastic S-STDP. (a) Schematics of S-STDP. While the synaptic weight update has 
exponential-like dependence on tpost − tpre in standard STDP (broken curves), S-STDP is characterised by a 
rectangular dependence (green line). Since an update takes place at the occurrence of a post-neuron’s fire, we 
only consider the case of tpost − tpre > 0 for S-STDP. In the scheme of stochastic S-STDP with binary weights, 
the weight change η+ and η− are read as the transition probabilities p from w = 0 to 1 for potentiation and q 
from 1 to 0 for depression, respectively. (b) Memory maintenance characteristics of learning with conventional 
stochastic S-STDP. The number of neurons that retain the digit memorised during the initial learning is 
plotted against the number of extra trainings (number of training samples presented for additional learning). 
Depression probability q is varied while potentiation p is fixed at 0.04. For comparison the characteristic 
of learning with deterministic S-STDP using continuous weights is shown as a thick line, for which we 
employ a linear weight-dependent update  model33,37, where �w = η+(wmax − w) for potentiation and 
�w = η−(w − wmin) for depression with η+ = 0.04 and η− = 0.008 , respectively. (c,d) Evolutions of expected 
weights for conventional stochastic S-STDP (c) and proposed "sigmoidal stochastic" S-STDP (d).
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Because an exponential evolution starts with a steep rise (Fig. 1c), the dominant change of 〈w〉 takes place at an 
early stage in a series of potentiation or depression stimuli. We hypothesise that such steepness is a cause of the 
memory instability. To improve the memory maintenance, we propose that the evolution of 〈w〉 should start with 
a gentle rise and be accelerated gradually after a certain period of stimulus (Fig. 1d); in other words, 〈w〉 should 
be sigmoidal with N rather than exponential.

Realisation of sigmoidal evolutions of expected weights. If an expected weight 〈w〉 evolves in a 
sigmoidal fashion with N , the potentiation and depression probabilities cannot be constant; they must start with 
small values and become larger with N. It would be area-expensive, and thus hardware-unfriendly, to prepare 
elaborate circuits to control the probabilities in accordance with N. For hardware implementation, it is desirable 
to exploit a random phenomenon whose occurrence probability increases with the number of trials automati-
cally.

The solution we propose here is to exploit serially connected stochastic switching elements as a random event 
source. Let us consider the switching device shown in Fig. 2a, which consists of k binary memristors connected 
in series. We assume that those memristors have exponential SET time statistics and thus a SET can be regarded 
as a Poissonian random event with a constant probability given by

where �t is the width of voltage pulses applied to the memristors and τ is a constant. This multiple memristor-
switching device is conductive (in the ON state) only when all the memristors are in an LRS. Otherwise, it is 
non-conductive (in the OFF state) because at least one memristor is in an HRS, and is therefore insulating. 
We initialise the device by RESETting all the memristors in an HRS and then apply voltage pulses to the left 
terminal. In this situation, only the leftmost memristor receives the effective voltage. Applying pulses several 
times eventually gives rise to a SET in the leftmost memristor. Once the leftmost memristor switches to an LRS, 

(3)p = 1− exp

(

−
�t

τ

)

,

Figure 2.  Switching device having serially connected binary memristors to realise the sigmoidal cumulative 
probability. (a) Schematics of the device. Connection nodes between two memristors are grounded through 
a resistor. The resistance R is selected to be sufficiently larger than the LRS resistance ( RLRS ) and sufficiently 
smaller than the HRS resistance ( RHRS ); RLRS ≪ R ≪ RHRS . This is possible because the ratio of RHRS to RLRS 
is several orders of magnitude in binary memristors (even if integrated with CMOS  transistors47). Voltage 
pulses are applied to the left terminal, inducing SETs in memristors serially from left to right. To initialise the 
device, all the memristors should be RESET in parallel in a deterministic fashion. Therefore, a switching device 
should be designed with multiplexers so that each memristor can be accessed independently for RESET; for 
clarity, these are not illustrated here. (b) Schematics of the binary synapse using a pair of switching devices of 
serially connected binary memristors. If the upper device is open, the output of the latch Q is high. Then the 
synaptic current flows, corresponding to w = 1 . Conversely, if the lower is open, the synaptic current does not 
flow, corresponding to w = 0 . See Supplementary Note 2) for detailed operations. c Expected weight curves 
calculated using Eq. (6), where � = 0.04.
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voltage pulses can go through it and reach the next memristor, inducing a SET there. In this way, memristors in 
the switching device undergo SETs stochastically one after another from left to right. Finally, the voltage pulses 
SET the rightmost memristor to an LRS, turning the whole switching device to the ON state.

Let x be the cumulataive duration of voltage pulses applied until the device switches from OFF to ON. Then, 
the number of applied pulses is written as N = �x/�t�+ 1 , where �a� is the largest integer that does not exceed 
a . The probability of a switching event from OFF to ON (i.e., occurrence of a SET in the k-th memristor) between 
x and x + dx is given by pk(x)dx , where pk(x) is a probability distribution function of a gamma distribution with 
a shape parameter k and a mean parameter 1/τ as

The cumulative probability Pk(N) , that is, the probability of finding the switching device in the ON sate after 
applying N pulses is given by

w here  � = �t/τ = −ln
(

1− p
)

 .  By  s e t t ing  k = 1 ,  E q.   (5)  i s  re duce d  to  E q.   (1)  as 
P1(N) =

∑

n�e
−�n ≈ 1− exp(−�N) for � ≪ 1 . This indicates that Eq. (5) can be understood as a generalisa-

tion of Eq. (1) and gives us justification to use the notations of � and p in common with Eq. (1).
Using a pair of the switching devices discussed above in combination with a synaptic  circuit48 makes it pos-

sible to build a binary synaptic device where potentiation from w = 0 to 1 is represented by a switching operation 
of one device, and depression from w = 1 to 0 is represented by the operation of the other device as shown in 
Fig. 2b (see Supplementary Note 2 for detailed information). In the case of potentiation, 〈w〉 evolves with N as

Calculating 〈w〉 evolutions for k = 1, 2, 3 and 4 , sigmoidal N dependence is observed for k ≥ 2 , while k = 1 
gives an exponential dependence (Fig. 2c). The curve is more relaxed for larger k ; in other words, the larger k is, 
the more pulses are required to SET all k memristors.

The depression proceeds in exactly the same way. For discrimination between the first and the second switch-
ing devices in a synapse, we use Qk(N) , qk(N) and q for the second switching device to denote the cumulative 
probability, the switching probability at the N-th depression and the switching probability of the memristors. 
Then 〈w〉 for depression is given by

where µ = −ln
(

1− q
)

 is a parameter corresponding to � in Eq. (6).

Learning with sigmoidal stochastic S‑STDP. Simulation results support our hypothesis that learning 
with S-STDP using a stochastic sigmoidal switching model discussed above (hereafter referred to as sigmoidal 
stochastic S-STDP) improves the memory maintenance (Fig. 3a). In the simulation, we employ an update algo-
rithm that follows the stochastic behaviour of a pair of multiple memristor-devices. The algorithm is explained 
in the Methods section. Even in the case of the smallest k (i.e. k = 2 ) the maintenance curve is clearly higher 
than that obtained with deterministic S-STDP. Excellent improvements are observed for k = 3 and 4 , where 〈w〉 
evolution curves definitely have sigmoid shapes (see Fig. 2c). Employing a sigmoidal rule only for potentiation 
and leaving the depression conventional does not improve the memory maintenance. Some improvement is 
observed in the opposite case (i.e., sigmoidal for depression and conventional for potentiation), but the reten-
tion is still worse than that obtained with the deterministic rule. Note that for all the experiments in this work, 
we tried various combination of p and q under each condition and picked up the best one for fair comparison 
among several conditions.

Colour intensity maps of the plastic synaptic weights provide us with visual insights into the neurons’ memory 
behaviour. Here weight maps of 25 excitatory neurons (out of 400) are shown. Each of 5× 5 patterns consisting 
of 28× 28 pixels corresponds to a neuron’s memory. The memorised patterns become sharper but do not show 
drastic change during additional learning in the case of sigmoidal stochastic S-STDP. In contrast, more than 
half of the neurons alter their patterns after being presented with new samples in the conventional case. The 
deterministic case is in-between: some of the initial patterns are rewritten to other similar patterns (’8’ to ’3’, ’3’ 
to ’5’, ’9’ to ’4’, and ’0’ to ’8’) during training. It is interesting to see that weight maps of deterministic S-STDP 
appear vivid to the human eye. Patterns with binary weights appear somewhat dull, but this does not necessarily 
lead to degradation of recognition performance, as shown below.

To demonstrate the memory maintenance further, we perform another experiment. We first initialise the 
network by presenting 6,000 images of the digit ’1’. After initialization, the network is trained with 3000 images 
of ’5’, followed by further training with 3,000 images of ’9’. Weight maps after each phase are compared in Fig. 3b. 
Whereas all the neurons’ memories are overwritten with ’9’ after training with ’9’ in both the deterministic and 

(4)pk(x) =
xk−1

Ŵ(k)τ k
exp

(

−
x

τ

)

.

(5)

Pk(N) =

∫ (N−1)�t

0
pk(x)dx ≈

1

Ŵ(k)τ k

N−1
∑

n=0

(n�t)k−1exp

(

−
n�t

τ

)

�t =
�k

(k − 1)!

N−1
∑

n=0

nk−1exp(−�n),

(6)�w� = 0+ 1× Pk(N) =
�
k

(k − 1)!

N−1
∑

n=0

nk−1exp(−�n).

(7)�w� = 1− 1× Qk(N) = 1−
µk

(k − 1)!

N−1
∑

n=0

nk−1exp(−µn),
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conventional cases, patterns of ’1’ and ’5’ coexist with those of ’9’ in the sigmoidal case. This result indicates that 
the robustness of a neuron’s memory increases when trained with sigmoidal stochastic S-STDP.

In addition to memory maintenance, recognition accuracy is also evaluated to confirm the performance 
of sigmoidal stochastic S-STDP as a learning rule (Fig. 4a). The recognition accuracy obtained in the cases of 
stochastic S-STDP ( k = 3 and 4) is apparently higher than that obtained in the conventional case ( k = 1 ), and is 
comparable to, or rather slightly better than that obtained in the deterministic case. In fact, we observe that the 
recognition accuracy in the cases of sigmoidal stochastic S-STDP reaches 90%, which was never achieved with 
deterministic S-STDP in our simulations. Even higher accuracy is achieved if we use more neurons in the second 
layer (Fig. 4b). In all the cases of 400, 1,600 and 6,400 neurons, we observe higher accuracy than that reported in 
the literatures using standard STDP with continuous  weights34 and conventional stochastic S-STDP with binary 
 weights44. In particular, we achieve the accuracy of 97.3% with 6,400 neurons using sigmoidal stochastic S-STDP, 
exceeding the reported value 95% for standard STDP in the same  network34 (Table 1).

Using sigmoidal stochastic S-STDP as a learning rule, both excellent memory retention and high recognition 
accuracy are observed simultaneously, indicating the compatibility of memory stability and inference accuracy 
with this algorithm. In fact, a scatter plot between recognition accuracy and memory maintenance under various 
conditions shows a clear relationship between the two (Fig. 4c). Such a positive correlation is desirable towards 
practical use of sigmoidal stochastic S-STDP, because the trade-off between the two would otherwise narrow 
the opportunities for application of this algorithm in self-learning SNN hardware.

Effect of variability. One of the inevitable issues in practical use of memristive devices is their variability. 
Employing stochastic two-level memristors saves us from the variability and uncertainty worries in resistance 

Figure 3.  Memory maintenance characteristics of learning with sigmoidal stochastic S-STDP. (a) Memory 
maintenance curves obtained with sigmoidal stochastic S-STDP in the cases of k = 2 and 3 (with p = 0.13 and 
q = 0.03 ) and k = 4 (with p = 0.2 and q = 0.08 ). For comparison, those obtained with conventional ( k = 1 ) 
and deterministic S-STDP are shown (taken from Fig. 1b). Furthermore, the memory maintenance curves in the 
case where the sigmoidal rule of k = 3 with p = 0.13 is applied only for potentiation (depression is performed 
with the conventional rule with q = 0.008 ), and in the opposite case (with p = 0.04 and q = 0.03 ) are also 
plotted. Colour intensity maps of synaptic weights afferent to 5× 5 = 25 excitatory neurons out of 400 in the 
second layer are shown after the initial training and 50,000 and 100,000 additional trainings. Each pixel in the 
map correspond to a weight. Thus, each panel contains 28× 28× 25 = 19, 600 pixels. White and red indicate 
0 and 1, respectively. The intermediate values for continuous weights are represented by yellowish colours. (b) 
Colour intensity maps showing the results of the benchmark test of memory maintenance (described in the 
text).
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control, but another concern arises: variability of the probability itself from device to device. Referring to Eq. (3), 
the device-to-device variability of a SET probability p should be ascribed to that of τ . We assume that the scat-
tering of τ follows a log-normal distribution because the kinetics of memristive switching phenomena exponen-
tially scales with physical  parameters49,50. Then, τ of an arbitrary memristor is given by

(8)τ = τ0exp(σ r),

Figure 4.  Recognition accuracy. (a) Evolutions of recognition accuracy obtained using sigmoidal stochastic 
S-STDP with the number of learnings for k = 3 (with p = 0.13 and q = 0.03 ) and 4 (with p = 0.2 and q = 0.08 ) 
as well as those using conventional S-STDP ( k = 1 with p = 0.04 and q = 0.008 ) and deterministic S-STDP. 
The horizontal broken line indicates the 90% accuracy level. (b) Comparison of the accuracies achieved in this 
work with previously reported  values34,44. (c) Relationship between the recognition accuracy and the number of 
neurons retaining their initially memorised digits after training with 150,000 samples. Data are obtained with 
various combinations of k , p and q . The broken line is a visual guide.

Table 1.  Recognition accuracy of MNIST test images using a two-layer SNN.

Structure Synapse STDP Update Recognition accuracy (%)

Diehl  201534

784–6400–6400

Continuous Standard Deterministic 95

Srinivasan  201944 Binary Simplified Stochastic 92.1

This work Binary Simplified Sigmoidal stochastic 97.3
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with τ0 , σ and r being a constant, a standard deviation, and a random variable following the standard normal 
distribution, respectively. We incorporate Eqs. (3) and (8) to perform simulations of learning and recognition 
with several σ values for k = 3 and 4.

First, we discuss the memory maintenance characteristics (Fig. 5a). Although degradation in memory main-
tenance is observed with increasing σ , the decay rate (i.e., slope) stays unchanged except for the initial stage of 
the additional learning. In the case of σ ≤ 1.0 , in particular, sigmoidal stochastic S-STDP always outperforms 
the deterministic method. With regard to the recognition accuracy, no degradation is observed up to σ = 1.0 , 
followed by a sharp drop at σ = 1.5 (Fig. 5b). To summarise these results, it is reasonable to presume the upper 
limit of acceptable σ to be 1.0.

The literatures show that the variability of SET times in oxide-based memristors ranges by about four orders 
of magnitude, including both device-to-device and cycle-to-cycle  effects51,52. With regard to cycle-to-cycle effects, 
SET times scatter in a range of 50 times in a single memristor exhibiting an exponential SET time  distribution30. 
Taking that into account, the contribution of the device-to-device variability to the total scattering range of 104 
is calculated to be 104/50 = 200 . Assuming that the 3σ section of the device-to-device distribution covers the 
range of 200 , we obtain σ = 0.88 , which is an acceptable range, as discussed above. The results and discussion 
in this section convince us that implementing stochastic synapses with multiple-memristor switching devices 
is a realistic choice.

Discussion
So far, we have focused on S-STDP. The biggest advantage of this scheme is its simplicity toward hardware 
implementation. In standard STDP, in contrast, an elaborate mechanism is required to realise exponential-like 
dependence of the weight update on the spike-timing. Furthermore, synaptic normalisation have to be carried out 
in every neuron whenever any of the synapses afferent to the neuron is  updated34,40–43. For synaptic normalisation, 
a neuron needs to monitor all connected synaptic weights, and when an update occurs, it needs to read them 
all, sum up the results and divide each weight by the sum. What is more complicated is that division itself does 
not make sense for a binary weight because a weight can take only 0 or 1. Thus, a highly sophisticated circuitry 
system would be required to realise synaptic normalisation in hardware. In the scheme of S-STDP, on the other 
hand, synaptic normalisation is inherent in the algorithm and hence explicit implementation is unnecessary (Sup-
plementary Note 3)35. Therefore, it is convenient to employ S-STDP in particular for a binary weight system if it 
does not underperform standard STDP, which we have shown to be possible by introducing the sigmoidal model.

The concept of a sigmoidal evolution seems to be analogous to the deterministic weight update model pro-
posed by  Park37. However, we emphasise that the point of our proposal is that it exploits the probabilistic char-
acteristics of random events following a gamma distribution or negative binomial distribution (Supplementary 
Note 4). To realise a sigmoidal weight evolution in a deterministic fashion, a weight should change depending 
on its present value, and it may be area-expensive and power-consuming to implement such a mechanism in 
each synapse. In our proposal, however, there is no need to read the present value or to count N , because the 
potentiation and depression probabilities at the N-th trial, pk(N) and qk(N) , are inherently N-dependent for 
k ≥ 2 (see Eq. (3)). All we have to do is to apply constant pulses to a multiple-memristor device for synaptic 
updates, whatever its state is. This is the benefit of exploiting probabilistic events following a gamma or negative 
binomial distribution, leading to simplification of the synaptic circuit system.

Although neither elaborate pulsing system nor precise pulse tuning is required to realise sigmoidal stochastic 
S-STDP, using too many memristors just for a single synapse would be a disadvantage for hardware implementa-
tion. To simplify the synaptic circuit, k should be as small as possible. Then a question arises: what is the best k ? 

Figure 5.  Effect of variability on memory maintenance and recognition accuracy. (a) Memory maintenance 
characteristics obtained with sigmoidal stochastic S-STDP in the case of k = 4 (with p = 0.2 and q = 0.08 ), 
with σ being varied from 0 to 2.0 as well as that obtained with deterministic S-STDP as a reference (taken from 
Fig. 1b). (b) Recognition accuracy after training with 150,000 samples as a function of σ for k = 3 and 4.
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We have already observed excellent learning performance with k = 3 and 4 . Because no significant difference has 
been found between the two, we do not expect drastic improvement by increasing k further. In fact, we tried a 
simulation of k = 5 with p = 0.29 and q = 0.12 , and the memory retention and recognition accuracy were very 
close to those of k = 4 , with p = 0.2 and q = 0.08 (parameters used for Fig. 5). Of course, it might be possible 
to obtain better results by tuning p and q carefully, but that is merely a matter of parameter optimization; we 
conclude that k = 3 or 4 is sufficient.

However, pursuing the optimum k is not meaningless from the viewpoint of practical design. Because the 
learning speed scales with pk or qk , roughly speaking (see Eqs. (6) and (7)), large k slows down the learning speed. 
Conversely, large k may be employed if it is convenient to use large p and q for some technical reason. In practi-
cal use of memristors, it sometimes happens that, depending on the RESET condition, the simple exponential 
function of Eq. (3) is no longer valid for a very short  pulse53. In such a case, it is realistic to apply longer pulses, 
hence larger p and q with larger k , so that Eq. (3), which is the fundamental principle in the theory of this work, 
can be applied to control the SET probabilities.

Finally, we point that implementation of sigmoidal stochastic S-STDP is possible not only with multiple-
memristor switching devices but also with other nano-devices whose stochastic operation is described by gamma 
distribution (or other probabilistic distribution having a sigmoidal cumulative distribution function), such as 
magnetic tunnel junction  devices54, although further studies are necessary to bring that into practice.

Conclusion
We have proposed sigmoidal stochastic S-STDP with binary synaptic weights, where the probabilities of poten-
tiation and depression depend on the number of repeated trials such that the expected weight 〈w〉 evolves in a 
sigmoidal fashion with the potentiation or depression operations, which can be implemented using a pair of 
switching devices consisting of serially connected multiple binary memristors. As a benchmark test, we per-
formed simulations of MNIST image learning and recognition tasks in two-layer SNNs with binary synapses and 
showed that learning with the proposed rule outperforms those with deterministic and conventional stochastic 
S-STDP in memory maintenance and recognition accuracy. Furthermore, we achieved recognition accuracy 
of 97.3%, exceeding the 95.0% reported for the same two-layer SNN with continuous weights using standard 
STDP with a synaptic normalisation mechanism. We have also shown that the high performance of sigmoidal 
stochastic S-STDP holds even if the device-to-device variability of memristors is taken into account. Thus, we 
conclude that sigmoidal stochastic S-STDP is promising as a local synaptic update rule to be implemented in 
SNN hardware for unsupervised online learning.

Methods
Assignment of memorised digit and derivation of recognition accuracy. In this work, we per-
form simulations of unsupervised learning and recognition tasks of MNIST images to benchmark the perfor-
mance of synaptic update rules, following the method of Diehl, et al.34. We use a two-layer SNN having 784 input 
nodes in the first layer and 400 pairs of excitatory and inhibitory neurons in the second layer (in some cases 1600 
and 6400 pairs are used, as shown in Fig. 4b). Each input node corresponds to a pixel in the MNIST image, and 
receives a train of Poisson-distributed spikes whose spiking rate is proportional to the intensity of the pixel. The 
duration of the spike train is 350 ms per image. The pixel intensity of the MNIST image, which is represented by 
256 levels (from 0 to 255), is converted to the spiking rate in Hz by being divided by 4 (i.e. the spike rate ranges 
from 0 to 63.75 Hz).

The input nodes in the first layer and the excitatory neurons in the second layer are connected in an all-to-all 
fashion via plastic excitatory synapses, which are updated in accordance with the S-STDP rule. When an excita-
tory neuron fires, the corresponding inhibitory in the pair neuron provides a lateral inhibition to all the other 399 
excitatory neurons, resulting in a winner-take-all function. Note that synaptic connections between excitatory 
and inhibitory neurons are all non-plastic. The neuron models and hyper-parameters employed in our simula-
tions are also the same as those used by Diehl, et al.34, unless otherwise described in the text.

In our simulations, learning and recognition phases are separate; synaptic changes take place only in the 
learning phase and recognition accuracy is evaluated with fixed synapses. Whereas a subset of sample images 
out of 60,000 images in the training set are presented to the input nodes for learning, images picked up from 
the test set are used to evaluate the memory maintenance and recognition accuracy. In the recognition phase, 
firings of each excitatory neuron are counted during each presentation. A neuron’s ’memorised digit’ is defined 
as the label of the image by which the neuron fires most frequently among the presented images. In this way, all 
the excitatory neurons have their own digit assignments.

To evaluate the memory maintenance, we first train the network with 10,000 samples for initialization and 
perform a recognition task to assign a memorised digit to each neuron. Then extra training samples are presented 
to the network for additional learning. After the additional learning, digits are assigned to the neurons again. We 
count the number of neurons that retain their initial memorised digits as an index of the memory maintenance.

Several neurons can fire during the presentation of an image. Among them, the one that fires most frequently 
is the representative neuron of the image. If the digit assigned to the representative neuron is equal to the label 
of the image, the recognition is successful. The recognition accuracy is derived by counting the number of suc-
cessful recognitions.

Synaptic update algorithm for sigmoidal stochastic S‑STDP. To realise sigmoidal potentiation and 
depression of 〈w〉 in the simulation algorithm, we introduce parameters m1,m2, · · · ,mk for potentiation and 
n1, n2, · · · , nk for depression, corresponding to the states of the memristors in a pair of multiple-memristor 
switching devices. The synaptic update runs as Algorithm 1. If a post-synaptic neuron fires under a potentiation 
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condition, 0 < tpost − tpre < T , all n1, n2, · · · , nk are reset to 0. Then, m1 is switched to 1 with probability p , cor-
responding to a SET operation of the first memristor, and regardless of whether the switching is successful, the 
system goes back to standby. In the case where m1 is already 1, a switch operation is performed for m2 and the 
system goes back to standby. If m2 is also already 1, then we proceed to m3 , and subsequent processing proceeds 
in the same manner. In this algorithm, we set w = mk . When mk switches to 1, this results in potentiation from 
w = 0 to 1 . Otherwise w = 0 holds. For depression, the algorithm is exactly the same except for mi and ni being 
exchanged.

Algorithm 1 (Synap�c update)

Input: post-synap�c neuron’s fire
Output: 
1: if 0 < − < then
2: ← 0 (for all )
3: ← 1

4: while ( < + 1) do
5: if = 0 then
6: ← 1 with probability 
7: ←

8: end if
9: ← + 1

10: end while
11: ←

12: else
13: ← 0 (for all )
14: ← 1

15: while ( < + 1) do
16: if = 0 then
17: ← 1 with probability 
18: ←

19: end if
20: ← + 1

21: end while
22: 
23: end if

←

Strictly speaking, this algorithm can reproduce a negative binomial distribution, but not the gamma distri-
bution described by Eqs. (4)–(6). But we can show that a negative binomial is a discrete version of a gamma 
distribution and can well reproduce the stochastic behaviour of the multiple-memristor switching device (Sup-
plementary Note 4).

Data availability
The data that support the findings of this study are available from the authors upon reasonable request.
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