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The effect of population size 
for pathogen transmission 
on prediction of COVID‑19 spread
Xuqi Zhang1, Haiqi Liu 1*, Hanning Tang1, Mei Zhang1, Xuedong Yuan2 & Xiaojing Shen1

Extreme public health interventions play a critical role in mitigating the local and global prevalence 
and pandemic potential. Here, we use population size for pathogen transmission to measure the 
intensity of public health interventions, which is a key characteristic variable for nowcasting and 
forecasting of COVID‑19. By formulating a hidden Markov dynamic system and using nonlinear 
filtering theory, we have developed a stochastic epidemic dynamic model under public health 
interventions. The model parameters and states are estimated in time from internationally available 
public data by combining an unscented filter and an interacting multiple model filter. Moreover, we 
consider the computability of the population size and provide its selection criterion. With applications 
to COVID‑19, we estimate the mean of the effective reproductive number of China and the rest of the 
globe except China (GEC) to be 2.4626 (95% CI: 2.4142–2.5111) and 3.0979 (95% CI: 3.0968–3.0990), 
respectively. The prediction results show the effectiveness of the stochastic epidemic dynamic model 
with nonlinear filtering. The hidden Markov dynamic system with nonlinear filtering can be used to 
make analysis, nowcasting and forecasting for other contagious diseases in the future since it helps to 
understand the mechanism of disease transmission and to estimate the population size for pathogen 
transmission and the number of hidden infections, which is a valid tool for decision‑making by policy 
makers for epidemic control.

In December 2019, a new type of coronavirus pneumonia named COVID-19 spread very rapidly in the city 
of Wuhan,  China1. It swept the globe in the next few months. This outbreak of COVID-19 is now present in 
at least 180 countries and the virus has infected over 60,000,000 people with more than 1,500,000 deaths as of 
December 8, 2020. This new coronavirus has been considered to be a true global health emergency. The World 
Health Organization (WHO) announced the COVID-19 to be a global pandemic on March 11, 2020 local 
time in Geneva. Faced with the severe epidemic trend of COVID-19, many countries have declared a state of 
emergency and have instituted drastic actions and interventions to stop the spread of the virus. For example, 
China implemented unprecedented intervention strategies on January 23, 2020 to prevent further outbreak of 
COVID-19. These policies have included large-scale quarantine, strict controls on travel and extensive monitor-
ing of suspected cases which have made a huge difference in controlling the spread of the virus. Nevertheless, the 
outbreak is still continuing and having a devastating impact in Europe, USA and many other countries. Many 
scientific research groups in the world including those in China, Europe, and USA are working independently or 
together by sharing their results and experiences, including analyzing the mechanism of disease  transmission2–4 
and identifying optimal control  measures5–7 for countries where the outbreak is in its early stages. In addition, 
the prevention and control experience of the 2003 SARS  epidemic8–10, the worldwide 2009 H1N1 influenza 
 pandemic11, and the 2012 MERS-CoV12 are also being used for COVID-19.

Mathematical modeling and prediction tools are extremely important tools for decision-making by policy 
makers for epidemic control. The classical SIR, SEIR and GLEAM models are extensively  used13–19 for com-
prehending the mechanism of disease transmission, its spread and forecasting. These approaches have become 
remarkably successful in free infection and transmission patterns and predicting the temporal evolution of ongo-
ing epidemics. However, under strict control measures, the abundance of different, often mutually incompatible, 
forecasting results, suggest that we still lack a fundamental understanding of the key factors of infection and 
transmission dynamics. Recently, several epidemiological  studies20–22 show that the population size is a crucial 
transmissibility factor, which could increase or decrease the transmissibility risk. Note that the evolution of an 
epidemic is a process of gradual spread, i.e., the number of people in contact with the infected persons increase 
gradually. In particular, when strict control measures are adopted to reduce the risk of the transmission, the 

OPEN

1School of Mathematics, Sichuan University, Chengdu 610064, Sichuan, China. 2School of Computer Science, 
Sichuan University, Chengdu 610064, Sichuan, China. *email: 411566818@qq.com

http://orcid.org/0000-0003-2203-137X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-97578-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18024  | https://doi.org/10.1038/s41598-021-97578-9

www.nature.com/scientificreports/

population size of pathogen transmission may decrease to a new population size of a small control region. 
Therefore, the population size should be carefully considered in an epidemic model and it is not appropriate 
to keep in a fixed population size of the city or country for making accurate predictions. Here, we assume that 
there exists a closed subsystem in a city or country when the uninfected people are in home quarantine or some 
cities are locked down. The population size of the subsystem is considered as the population size for pathogen 
transmission, which is usually much smaller than the total population of a city or county when deploying inter-
vention strategies. The total population is divided into the population for pathogen transmission and the isolated 
uninfected population (see Fig. 1).

In this paper, we use the population size Nc for pathogen transmission to measure the intensity of public health 
interventions, discuss the identifiability of the population size Nc and propose an intuitive and efficient criterion 
to select the unknown population size. Furthermore, we concentrate on three specific aims: (i) Modeling: develop 
mathematical differential equation dynamic models that account for the random variations in pathogen, society, 
and public health intervention variables etc.; (ii) Nowcasting: estimate the states and parameters as a function of 
time through nonlinear filtering with publicly available international data of COVID-19. Moreover, we analyze 
the key factor, the number of latent infections, which determines the size of the newly confirmed infections in 
the next seven to fourteen days in terms of the incubation  period4,23; (iii) Forecasting: predict local and global 
spread trends (e.g. scales, peaks and confidence intervals) of the infections under different control intensities, 
i.e., different population sizes for pathogen transmission.

Our contributions mainly lie in three aspects. First of all, we develop a stochastic epidemic dynamic model 
under public health interventions. By formulating a hidden Markov dynamic system, the model parameters and 
states are estimated in time from publicly available international data by combining an unscented filter and an 
interacting multiple model filter. Secondly, we consider the computability of the population size for pathogen 
transmission and provide a selection criterion. Here, we use it to measure the intensity of public health interven-
tions, which is a key characteristic variable for estimation and prediction of the epidemic. Finally, we provide 
comprehensive nowcasting and forecasting results of some countries, which show the effectiveness of the stochas-
tic epidemic dynamic model with nonlinear filtering. The mean of the effective reproductive number of China 
was estimated to be 2.4626 (95% CI: 2.4142–2.5111), which is consistent with what was reported in the literature.

Methods
Mathematical epidemic modeling. It is well recognized that random effects are often unavoidable in 
reality and a population is often affected by random disturbances. Due to factors such as climate change, popula-
tion density, public health intervention, and medical care capability, the parameters of epidemiological models 
may also experience random changes during transmission. Some researchers have devoted themselves to study-
ing stochastic epidemic models through stochastic differential equation models and  methods16. In this section, 
we introduce a stochastic susceptible-exposed-infectious-recovered (SEIR) model for the free propagation stage 
of the epidemic, where random variables and processes are included in the epidemiological process model to 
characterize the uncertainty associated with the propagation of the epidemic. Moreover, we develop a stochastic 
SEIR model under public health interventions.

The stochastic SEIR model. Based on the classical SEIR model proposed by Aron and  Schwartz15 that is deter-
ministic in nature. In order to account for system uncertainties, we modify the SEIR model by introducing 
random noises and random parameters in the SEIR model as follows:

(1)
dS(t)

dt
= −α(t) ·

S(t) · I(t)

N
+ wS(t),

(2)
dE(t)

dt
= α(t) ·

S(t) · I(t)

N
− β(t) · E(t)+ wE(t),

Figure 1.  The total population and its division.
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where S(t), E(t), I(t), R(t) and D(t) are the number of the susceptible, exposed, infectious, recovered and disease-
caused death cases at time t, respectively. The parameter vector p(t) = (α(t),β(t), γ 1(t), γ 2(t))T includes the 
mean contact rate, transfer rate from exposed to infective, recovery rate and disease-caused mortality. Since these 
model parameters may experience random changes in the spreading process due to different climate changes, 
population densities, public health interventions, and medical cares in different regions, we model the uncer-
tainty associated with the parameters as Brownian motions, which could be explained by a random walk with 
a small noise due to the fact that the parameters represent average random characteristics of a large number of 
members of the total  population24, and wp(t) = (wα(t),wβ(t),wγ 1(t),wγ 2(t))T is a white noise process with 
spectral density Qp(t) . Moreover, the basic reproductive number R0 = α/(γ 1

+ γ 2) is defined as the average 
number of secondary infections caused by an infected individual in a completely susceptible population, and the 
effective reproduction number Re is defined as the average number of secondary infections caused by an infected 
individual in the population after there is some immunity or interventions have been put in  place25,26. Besides, 
the birth rate, natural death rate and other uncertainties are considered as a zero mean white noise process ws(t) 
with spectral density Qws (t) , which is defined as follows:

Since the epidemic happens in a closed community, we further assumed that the total population size remains 
constant in a short epidemic period, which is commonly used in stochastic epidemic  models16,27,28, and

The stochastic model (1)–(6) is suitable for the free propagation of epidemic without control measures. It also 
characterizes the uncertainties of parameters and states in the propagation process.

The stochastic SEIR model under public health interventions. When there are public health interventions and 
the infections are isolated, we extend the stochastic SEIR model as follows:

where Sc and Nc are the susceptible and the population size under public health interventions, respectively. Ec(t) 
and Ic(t) are redefined as the number of latent infections, and confirmed infections at time t, respectively. The 
reason is that the confirmed infections can be observed each day and it is convenient to estimate the model 
parameters and forecast the number of confirmed and latent infections by nonlinear filtering methods. Moreover, 
the infectious I(t) in (1) are replaced by Ec(t) in (8), which means that the susceptible are not infected by isolated 
infections. The parameters wsc (t) = (wSc (t),wEc (t),wIc (t),wRc (t),wDc (t))

T , wpc (t) and pc(t) are similarly defined 
as that in the stochastic model (1)–(6).

It is worth noting that under public health interventions, we assume that there exists a closed subsystem 
in a city or country when the uninfected people are in home quarantine or some cities are locked down. The 

(3)
dI(t)

dt
= β(t) · E(t)− (γ 1(t)+ γ 2(t)) · I(t)+ wI (t),

(4)
dR(t)

dt
= γ 1(t) · I(t)+ wR(t),

(5)
dD(t)

dt
= γ 2(t) · I(t)+ wD(t),

(6)
dp(t)

dt
= wp(t),

ws(t) = (wS(t),wE(t),wI (t),wR(t),wD(t))
T .

(7)S(t)+ E(t)+ I(t)+ R(t)+ D(t) = N .

(8)
dSc(t)

dt
= −αc(t) ·

Sc(t) · Ec(t)

Nc
+ wSc (t),

(9)
dEc(t)

dt
= αc(t) ·

Sc(t) · Ec(t)

Nc
− βc(t) · Ec(t)+ wEc (t),

(10)
dIc(t)

dt
= βc(t) · Ec(t)− (γ 1

c (t)+ γ 2
c (t)) · Ic(t)+ wIc (t),

(11)
dRc(t)

dt
= γ 1

c (t) · Ic(t)+ wRc (t),

(12)
dDc(t)

dt
= γ 2

c (t) · Ic(t)+ wDc (t),

(13)
dpc(t)

dt
= wpc (t),
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population size of the subsystem is considered as the population size for pathogen transmission Nc , which is 
usually much smaller than the urban or national population when deploying intervention strategies. The total 
population is divided into the population for pathogen transmission and the isolated uninfected population 
(see Fig. 1). In fact, the population size Nc plays a key role in nowcasting and forecasting epidemic trends and 
measures of control intensity. Herein, we assumed that Nc satisfies (7) as well. This paper aims to analyze the 
data of COVID-19 epidemic when the population size Nc is unknown.

For simplicity, the subscript c of Nc , Sc ,Ec , Ic ,Rc ,Dc , pc ,wpc and wsc is omitted when there is no confusion. 
Specifically, the population size N refers to the population size for pathogen transmission in the rest of this paper.

Nowcasting and forecasting methods. In this section, we provide the observation model for the sto-
chastic SEIR dynamic system (8)–(13) as well as methods for nowcasting, forecasting and the selection criterion 
of the population size for pathogen transmission N.

Continuous‑discrete dynamic system. It is worth to note that the stochastic SEIR model (8)–(13) satisfies the 
linear equality constraint (7) as well, which can be used to reduce the system model parameterization. By sub-
stituting S = N − E − I − R − D in the model (8)–(13), we have the following equivalent reduction model:

where S(t) is determined from the equality constraint (7). Moreover, we denote the state vector and process 
noise as

where w(t) is a white noise process with spectral density Q(t) . On the basis of the state x(t) defined in the model 
(14)–(18) and the prevalence data that can be obtained, we model the observation equation as follows:

where zk is the measurement of the system state x(tk) , which includes the number of the cumulative confirmed 
infections Mc

k , cumulative recovered cases Rc
k and cumulative disease-caused death cases Dc

k at time tk . The 
statistical error associated with the measurements is modeled as a Gaussian white measurement noise vk with a 
small covariance Rk , and H is a linear measurement matrix defined as follows:

As a consequence, we have the following unconstrained continuous-discrete dynamic system:

where f (·) is a simplified expression of the drift function corresponding to (14)–(18). The process noise w(t) , 
measurement noise vk , and initial state are assumed to be mutually independent.

Nowcasting and forecasting. For the nonlinear system (20)–(21), the optimal Bayesian state estimation is usu-
ally intractable. There are several strategies to approximate the optimal estimation, such as the unscented Kalman 
filter (UKF)29,30, particle filter and cubature Kalman  filter31,32 etc. For the system under consideration, we employ 
the continuous-discrete  UKF29,30 to estimate the posterior expectation of the random state and parameters 
recursively by the daily data zk . Specific steps of the continuous-discrete UKF are shown in supplementary infor-
mation, where the continuous state model is implemented by the fourth order Runge-Kutta  method33.

(14)
dE(t)

dt
= −α(t) · E(t) ·

E(t)+ I(t)+ R(t)+ D(t)

N
+ (α(t)− β(t)) · E(t)+ wE(t),

(15)
dI(t)

dt
= β(t) · E(t)− (γ 1(t)+ γ 2(t)) · I(t)+ wI (t),

(16)
dR(t)

dt
= γ 1(t) · I(t)+ wR(t),

(17)
dD(t)

dt
= γ 2(t) · I(t)+ wD(t),

(18)
dp(t)

dt
= wp(t),

x(t) = (E(t), I(t),R(t),D(t), p(t)T )T ,

w(t) = (wE(t),wI (t),wR(t),wD(t),wp(t)
T )T ,

(19)zk �(Mc
k ,R

c
k ,D

c
k)

T
= Hx(tk)+ vk ,

H =

(

0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

)

.

(20)
dx(t)

dt
= f (x(t),w(t)),

(21)zk = Hx(tk)+ vk ,
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Remark 1 Since there are sudden changes in the states and parameters, e.g., the scheme to designate the con-
firmed infections in China was revised on February 12, 2020 so that the number of cumulative confirmed infec-
tions had a drastic increase of 15152  persons34. The transfer rate β(t) should be modeled differently before and 
after February 12, 2020. Moreover, the classical interacting multiple model (IMM) filter in maneuvering target 
 tracking35 can be used to enhance the stability of the algorithm and improve the performance of the nowcasting 
and forecasting methods.

Furthermore, the prediction probability density of the state x(t) is derived by the model prediction step of 
UKF through the model (14)–(18) with posterior parameters. In this paper, we adopt the expectation of the 
predicted state as the prediction result. Let mi+j|i = (Ii+j|i ,Ri+j|i ,Di+j|i)

T denote the vector consisting of the 
expectation of the confirmed infections, recovered cases and disease-caused death cases predicted from time ti 
to ti+j , where Mc

i+j|i = Ii+j|i + Ri+j|i + Di+j|i represents the expectation of the cumulative confirmed infections 
predicted from time ti to ti+j , and σi+j|i is the standard deviation of the error of Mc

i+j|i . Then, the approximate 
95% confidence intervals (CIs) are calculated as follows:

Based on the proposed stochastic SEIR model under public health interventions (14)–(18), the nowcasting 
and forecasting methods described above, the local and global spread trends of the epidemic are analyzed under 
public health interventions and different control intensities, respectively.

Selection criterion of the population size N. When the epidemic spreads freely in a city, the urban population 
can be chosen as the population size N. However, under public health interventions, the value of N should be 
selected carefully, and we use N to measure the intensity of interventions. In this section, we investigate the iden-
tifiability of population size and provide the selection criterion.

Lemma 1 Considering the deterministic SEIR model (i.e., neglecting the random noises and randomness of the 
deterministic parameters in (1)–(5)), if the states E, I, R, D and model parameters have a perturbation O( 1

N ) which 
is infinitesimal of the same order of 1N  , and the population size N = S + E + I + R + D is large enough, then the 
forecast results in finite time interval derived by Runge‑Kutta integration are with perturbation O( 1

N ) as well.

Proof See supplementary information.   �

Note that the E, I, R, D are integer valued in practical applications, based on Lemma 1, we conclude that the 
prediction results are the same almost everywhere when the population size N is large enough. Moreover, we 
have the same results on forecasting and filtering as follows:

Proposition 1 If the current state estimation and covariance at time tk have a perturbation O( 1
N ) which has a 

compatible dimension and the population size N = S + E + I + R + D is large enough, then the state prediction 
x̂(t) and covariance P(t) in finite time derived by the model prediction step of the continuous‑discrete UKF via 
Runge‑Kutta integration are with perturbations O( 1

N ) as well.

Proof See supplementary information.   �

Proposition 2 If the state estimation and covariance at time tk are with perturbations O( 1
N ) which has a compat‑

ible dimension and the population size N = S + E + I + R + D is large enough, then the state update of x̂(t) and 
P(t) in finite time through continuous‑discrete UKF via Runge‑Kutta integration are still with perturbations O( 1

N ).

Proof See supplementary information.   �

Based on the recursive method, Propositions 1-2 show that N cannot be estimated since the state estimates 
are the same almost everywhere for different N when they are large. Thus, it is unnecessary to consider a very 
large N, especially under strict control measures or early on in an outbreak. On the other hand, it is not difficult 
to show that N can be estimated when it is not too large since E(E+I+R+D)

N  is not infinitesimal (see the analysis 
in supplementary information). Moreover, we provide a selection criterion for the value of N by solving the fol-
lowing optimization problem, i.e., we select the population size by minimizing the average relative prediction 
error of the cumulative confirmed infections in the next J time steps:

where J is a constant, e.g., 7 days. N is the variable over which optimization is to be carried out, Nu may be half 
of the regional population or other values based on prior data, which depends on the intensity of the control 
measures etc., and the ej(N) is calculated as follows:

(Mc
i+j|i − 2σi+j|i , M

c
i+j|i + 2σi+j|i).

(22)
min
N

1

J

J
∑

j=1

ej(N)

s.t.N ≤ Nu,
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where Mc
i+j and Mc

i+j|i(N) are the observations of the cumulative confirmed infections and the prediction of 
the cumulative confirmed infections based on the population size N through time ti to ti+j for j = 1, . . . , J  , 
respectively.

Results. Based on the proposed stochastic SEIR model under public health interventions (14)–(18) and the 
nowcasting and forecasting methods, the spread trends of COVID-19 epidemic in several countries such as 
China, India, Iran, Russia and USA are analyzed under different control intensities (i.e., different population size 
for pathogen transmission N). All the data are collected from daily reports of National Health Commission of 
the People’s Republic of China (NHC) and Tencent News real-time epidemic  tracking36,37, including the num-
bers of cumulative confirmed infections, recovered cases and disease-caused death cases.

In order to make predictions of epidemic spread, we need to estimate the parameters α(t),β(t), γ 1(t), γ 2(t) 
accurately. By implementing continuous-discrete UKF, the posterior expectation of the parameters in the model 
(14)–(18) are derived. α(t) is the contact rate representing the average rate of transmission for the susceptible to 
latent infections, and we choose the initial value of α(t) between 0.1-0.26. β(t) is the average transfer rate from 
exposed to infective and 1

β(t) represents the incubation period. Because the incubation period of the COVID-19 
has been reported to be between 0 to 24  days4, we choose 7–14 days, i.e., the initial value of β(t) is between 1

7
 and 

1
14

 . And γ 1(t) is the average rate of recovery (i.e., γ 1(t) = 1
D , where D is the average duration of the infection), 

we choose the average duration of the infection between 10 days to 20 days, i.e., the initial value of γ 1 is between 
0.05 and 0.1. Here we use the disease-caused mortality 0.1%-3%38. Additionally, the initial values of I, R, D are 
set as the number of confirmed cases, recovery cases and disease-caused death cases reported on the day of the 
first confirmed infections was found, respectively.

The selection of the population size N and estimation of the effective reproductive number. Figure 2a shows the 
prediction trends of the confirmed infections I(t) based on the data through January 20 to February 24 of Hubei 
Province, China under different intensities of public health interventions, i.e, maintaining the control intensity 
and the population size N = 1, 000, 000 , relaxing the control intensity and the population sizes N = 2, 000, 000 , 
and N = 3, 000, 000 , respectively. The results indicate that relaxing the Hubei quarantine would lead to a second 
epidemic peak, and the larger the population size N, the higher the peak, which will lead to the selection of 
different control measures. It also illustrates the effect of the population size N, due to the prediction trends of 
confirmed infections in hospitals are completely different when using different population sizes in the model. 
Thus, the selection of the population size for pathogen transmission is a key factor for the forecasting of the 
epidemic and N is identifiable for this case. Figure 2b shows the prediction for Beijing City. It indicates that 
when N is greater than 100,000, the predicted values are the same, i.e, N is unidentifiable. This is consistent with 
Propositions 1-2. In fact, early on in the epidemic, Beijing took very strict control measures so that the effective 
reproductive number Re is very small, the small number of infections cannot spread to a larger population.

Therefore, for global prediction, it is required to select the population size carefully. Through the selection 
criterion (22) and setting J = 7 , we select the population size for pathogen transmission of China and the globe 
except China (GEC) based on the prevalence data of COVID-19  epidemic36,37. The selected population size N 
of China is about 1,220,000 derived by using data from January 21, 2020 to March 18, 2020 when there were no 
local newly confirmed  cases36. And the selected population size N of GEC is about 224,000,000 derived by using 
data from January 21, 2020 to December 8, 2020. It indicates that both the selected population sizes of China 
and GEC are far less than the total population.

(23)ej(N) =
1

k − j

k−j
∑

i=1

∣

∣

∣

∣

∣

Mc
i+j|i(N)−Mc

i+j

Mc
i+j

∣

∣

∣

∣

∣

,

Figure 2.  The forecasting of the epidemic trend of I(t) with different population sizes.
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Figure 3a shows the estimation of the effective reproductive number Re of China from January 21, 2020 to 
March 18, 2020 using the selected population size N = 1, 220, 000 . It shows that the effective reproductive num-
ber Re increases monotonically early on in the outbreak, then monotonically decreases with a sharp infection 
point. This is consistent with the policy decision in which Chinese government implemented unprecedented 
public health interventions to prevent the spread of the epidemic and the incubation period is about 7–14  days4. 
The reason for monotonic increase in the early stages of the epidemic may be that, in a limited local city, the 
density of infections increases as a result of the infections increasing exponentially. It results in a quick growth of 
the contact rate α(t) . The recovery rate is very low due to the recovery cycle. The reason for monotonic decrease 
is that the public health interventions (e.g. scales of quarantine, strict controls on travel, hand hygiene, and use 
of face masks etc.39) significantly decrease the contact rate α(t) and the recovery rate gradually increases, which 
results in a monotonic decrease of the effective reproductive number Re . In Fig. 3b, it can be seen that the curve 
of the effective reproductive number Re of GEC reached its first peak later than that of China, due to the fact that 
the coronavirus has been detected in many countries since February, 2020 and the response measures of these 
countries were later than China. Due to the implementation of strict public health interventions in European 
countries and USA in March to contain the pandemic, the spread of the virus has been curbed to a certain extent 
so that the effective reproductive number Re of GEC declined. However, the effective reproductive number Re 
had a second peak. The reasons may be that the isolation control measures have been relaxed in many countries, 
and the epidemic in some other countries such as Brazil, India, Russia became serious from May. The current 
effective reproductive number Re of GEC is still high and fluctuates around 3.

We also present the estimated mean values and 95% CI of the key epidemiological parameters of GEC and 
China in Table 1. The mean of the effective reproductive number of COVID-19 in China is 2.4626 (95% CI: 
2.4142–2.5111). This finding aligns with other recent estimates of the effective reproductive number for this 
time  period5,40–44.

Moreover, we select the population size of several countries such as India, Iran, Russia and USA based on 
the prevalence data of COVID-19  epidemic37 from the date of the first confirmed infection to December 8, 2020 
under the same selection criterion. Table 2 gives the selected values of N and national  populations45 of several 
major epidemic affected countries. Here, we restate that N is the population size for pathogen transmission. 
The total national population is divided into the population for pathogen transmission and the isolated unin-
fected population. It shows that the selected N under public health interventions are far less than the national 
population.

Figure 3.  Estimation results for the effective reproductive number.

Table 1.  The estimated mean and 95% CI of parameters.

Parameters GEC China

Contact rate α 0.1055 (0.0927, 0.1182) 0.0714 (0, 0.2260)

Transfer rate β 0.0937 (0.0683, 0.1191) 0.0554 (0, 0.1841)

Remove rate r1 + r
2 0.0453 (0.0418, 0.0488) 0.0584 (0, 0.1221)

Effective reproductive number Re 3.0979 (3.0968, 3.0990) 2.4626 (2.4142, 2.5111)

Table 2.  The selected N and national population.

Country India Iran Russia USA

Population 1,298,041,000 82,083,918 143,436,145 327,167,434

Selected N 54,000,000 4,300,000 6,600,000 67,000,000
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To validate the selected population sizes N, Fig. 4 shows the reported confirmed infections from the date of 
the first confirmed case to December 8, 2020, daily prediction of one time step, the corresponding 95% CIs and 
the relative error between daily prediction of one time step and reported confirmed infections for several major 
epidemic affected countries, respectively. Due to the large amount of data, in order to show the results more 
clearly, we only draw the data with an interval of seven days in Fig. 4 and the following pictures. It indicates that 
the 95% CIs can cover the true confirmed infections, even in the outbreak phase (see Fig. 4a–d). Figure 4e–h 
shows that all of the relative error curves converge after several days and have a small error, which show that 
our model, selected population size N and the parameters estimated through nonlinear filtering can accurately 
predict the real data in a short period, qualifying it for making nowcasting and forecasting. Furthermore, more 
prediction results of 1-7 days are updated and available on https://github.com/SCU-Bigdata/2019-nCoV-Forecast 
in time since February 7, 2020.

The nowcasting and forecasting results. Under the selected population size N, the number of latent infections 
E(t) can be estimated in time again by UKF. Figure 5 shows the reported cumulative confirmed infections, the 
estimate of the actual infections and corresponding 95% CIs, where the difference between the two lines repre-
sents E(t). It indicates that the situation in USA is the most serious one and it has 2,295,026 latent infections on 
December 8, 2020. The latent infections account for a large fraction 12.99% of the total number of infections and 
based on the incubation period of 7–14  days4, we infer that the pandemic will continue for a long time in USA, 
unless more stringent public health interventions are taken to reduce the spread of COVID-19. Similar results 
are anticipated for India, Russia with 327,922 and 273,583 latent infections, respectively. Compared with the 
other three countries, Iran has relatively few hidden infections, about 121,817 cases.

Figure 6 shows that the reported number of confirmed infections in hospitals of some major countries, the 
fitted number using the selected population size N through nonlinear filtering, and the forecast results includ-
ing the number, corresponding 95% CIs, peak and arrival time of the infections in hospitals under different 
control measures by changing the population size for pathogen transmission and for fixed contact rate, e.g., 1) 
maintaining the selected population size N for pathogen transmission, 2) relaxing the control intensity and the 
population size N has a 50% increase, 3) strengthening the control intensity and the population size N has a 
50% reduction. As shown in Fig. 6, the fitted values are accurate and the 95% CIs can cover reported number of 
confirmed infections in hospitals, even if the reported number of I(t) has many fluctuations. We find that except 
India and Iran, by decreasing of the population size, i.e., strict control measures, the peaks would have a decrease, 
especially in USA and Russia, and the time of peaks would arrive earlier. It is worth noting that this is different 
from the results of Wu et al.5. The reason is that Wu et al.5 assume that the population size is fixed and strengthen 
the control intensity by reducing the contact rate α(t) . Thus, it is not contradictory. In this experiment, there 
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are no effects on the peak of different population sizes in India and Iran, but the decline rates of the infections 
in hospitals are different. If the population size continues to grow, there could be a second peak. The prediction 
results in Fig. 6 indicate that the use of different population sizes N to make prediction will have different trends 
and peaks. Therefore, it is necessary to take public health intervention measures to avoid the spread of COVID-19 
to a larger subsystem, in other words, to avoid an increase in the population size N for pathogen transmission.

Discussion
Nowcasting and forecasting of epidemics play a vital role in predicting geographic disease spread as well as case 
counts so as to better inform public health interventions when outbreaks  occur46. In this study, we developed a 
stochastic SEIR model under public health interventions, the nonlinear filtering and prediction methods and 
selection criterion for the population size for pathogen transmission, which could be valuable to national and 
international agencies for public health situation perception and design of intervention strategies. Our technical 
contributions are made with a backdrop of the COVID-19 pandemic that has engulfed the world. We infer that 
USA has the most serious situation as it has 2,295,026 latent infections as of December 8, 2020. India and Russia 
are with 327,922 and 273,583 latent infections, respectively. Based on the present trajectory, the latent infections 
may cause further outbreaks in the case of weak public health interventions.

Therefore, it is essential to strengthen control intensity such as large-scale quarantine, strict controls on travel 
and extensive monitoring of suspected cases to reduce the contact rate and the population size of the susceptible. 
Here we regard the population size N for pathogen transmission as one of the measures of the control intensity, 
which is conducive to assess the effectiveness of public health interventions. Moreover, it is valuable to obtain 
the more accurate number of the latent infections, which is helpful to design control strategies (e.g., scales of 
quarantine, strict controls on travel, contact isolation, hand hygiene, and use of face masks) in the future. How-
ever, on the population size N, we selected it by minimizing the prediction error based only on the current data, 
which may be prone to overfitting of the data. One possible improvement approach is to include the prediction 
covariance in the selection criterion. Besides, the stochastic model (14)–(18) ignored the impact of the imported 
cases, which are considered as random noises. If the airline transportation data can be obtained, by combining 
the networked dynamic metapopulation  model14,19,47 and selection of the local population sizes in time, more 
accurate prediction methods and results for the local and global trend may be obtained. We believe that it is 
extremely important to predict further spread of COVID-19 globally and evaluate the effectiveness of different 
mitigation strategies and to try to mitigate the impact of this pandemic on the entire global population.

Data availability
The author confirms that the data used in this paper are freely available to public: https://github.com/SCU-
Bigdata/2019-nCoV-Forecast/tree/master/Collect_data.
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