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Quantifying the contribution 
of individual variation in timing 
to delay‑discounting
Evgeniya Lukinova1,2 & Jeffrey C. Erlich1,2,3*

Delay‑discounting studies in neuroscience, psychology, and economics have been mostly focused 
on concepts of self‑control, reward evaluation, and discounting. Another important relationship 
to consider is the link between intertemporal choice and time perception. We presented 50 college 
students with timing tasks on the range of seconds to minutes and intertemporal‑choice tasks on both 
the time‑scale of seconds and of days. We hypothesized that individual differences in time perception 
would influence decisions about short experienced delays but not long delays. While we found some 
evidence that individual differences in internal clock speed account for some unexplained variance 
between choices across time‑horizons, overall our findings suggest a nominal contribution of the 
altered sense of time in intertemporal choice.

The nature of time, and our relationship to time, continues to be a great puzzle to philosophers, physicists, 
psychologists and  neuroscientists1,2. One consequence of dealing with time that has received great attention 
from economists, psychologists and neuroscientists is delay discounting (also named intertemporal choice in 
the literature): the tendency to consider a reward in the future to be worth less than an immediate reward. Many 
decisions we face involve this trade-off: choosing between an outcome (usually larger) to be received later and 
an outcome (usually smaller) to be received sooner. The variability in human’s delay discounting, starting from 
early childhood, is correlated with many measures of success later in  life3,4. In a recent study, we compared sub-
jects’ delay discounting for offers in seconds (the seconds task) with those in days (the days task) to investigate 
whether the two time-horizons engaged similar cognitive  processes5. We found that the choices in the days task 
explained around 40% of the variance of choices in the seconds task: a substantial portion, but also leaving the 
majority of variance unexplained. Given that a substantial ( ∼ 60% ) fraction of the variance in one task was not 
explained by the other task, we considered differences in the tasks that could contribute to the unshared variance. 
One important difference was that all delays in the seconds task were experienced during the session (e.g., if a 
subject chose 10 coins in 30 s, then an individual would have to sit and wait for 30 s to receive the coins before 
proceeding to the next trial). In contrast, in the days task each choice was recorded and at the end of the session 
one trial was implemented. If the subject chose a delayed reward on that trial, they went about their lives and 
received an electronic payment at the appropriate time. Since subjects were more likely to pay attention to the 
duration of the delay in the seconds tasks, we hypothesized that individual differences in time perception seem 
more likely to influence choices in the seconds task than in the days task.

Time perception or the sense of the rate of time can vary from one person to the  next6,7. In other words, after 
standing in line for 1 min, one person might report that 30 s had passed, while another might report that 2 min 
had passed. In the seconds-to-minutes range, the dominant model of temporal processing has been the internal 
clock  model6,8. This model suggests that a pulse count provides a linear metric of time and following temporal 
judgments rely on comparing the current pulse count to that of a reference time. Timing not only of longer 
intervals but also of intervals lasting from one second to tens of seconds appears consistent with mechanisms 
that generate a linear metric of  time6. People with higher internal clock speed (ICS) perceive time passing faster 
than a stopwatch (e.g., for an objective 30 s period one might subjectively report 35 s elapsing). People with 
lower ICS perceive time passing slower than a stopwatch, i.e. subjectively reporting 25 s elapsing for an objective 
30 s. There is a growing evidence that timing (or time perception) participates in value-based decision making, 
especially when temporal cues are available throughout the task, making time inherently more salient than many 
other stimulus dimensions in the intertemporal choice  task9. Recent human and animal research has suggested 
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that timing processes may play an important role in impulsive choice  behavior10–12: priming with durations not 
only led to more precise time estimations, but also decreased subjects’ impulsive choices significantly.

Intuitively, there are a few ways that time perception might influence delay-discounting. First, the duration 
of time, like the value of money, is perceived logarithmically (or a similar decelerating function). The difference 
between 1 and 5 days seems to be more than the difference between 100 and 105 days. Some have argued that 
the form of deceleration of time perception may be related to the particular functional form of delay-discounting 
(i.e. hyperbolic versus  exponential13–15). Second, individual differences in time perception can make the same 
duration feel short to one person and long to another. Imagine two people, Alice and Bob, who are waiting for 
their lunch orders. Allow that they are cognitively identical except that Bob has a faster internal clock than Alice, 
so after waiting 10 min, he feels like 20 min have passed. When asked if their lunches were worth the wait, Alice 
says ‘yes’ and Bob says ‘no’. Naively, we might think that Bob discounts time more steeply, but in fact, it was the 
difference in time perception, not discount rate, that caused the outcome. This is the intuition behind our study: 
subjects who have faster internal clocks should appear more impulsive, but only in the seconds task, where delays 
are experienced. While this imagined scenario might be intuitive, there are only a handful of investigations that 
have directly tested whether and how individual differences in time perception influence delay-discounting. 
Moreover, these studies have used hypothetical timing (i.e. “How long is 1 month?”) and hypothetical delay-
discounting tasks which may limit their  generalizability16. To date, we know only one study that has explored 
timing and intertemporal choice (both not hypothetical) in the seconds-to-minutes  range17.

Here, we used both the delay-discounting tasks and also measured time perception and production. Our 
within-subject experiment directly addresses the question, posed by Wittmann and  Paulus18, whether variation 
in timing in the seconds-to-minutes range influences not only discounting in seconds, but also discounting in 
days, weeks, and months. In our experiment, we fill the existing gap in the literature and compare timing on 
the range of seconds-to-minutes with delay discounting on the time-scale of seconds and of days, importantly, 
both not hypothetical: in the timing tasks subjects had to report perceived time and produce intervals and in 
the discounting task subjects’ payment depended on the choices they made.

Surprisingly, there is no consensus in the literature whether subjects with higher or lower ICS are more 
impulsive. As described above, intuitively, people with higher ICS should be more impulsive since, for them, 
time intervals are perceived subjectively as lasting too  long18–20. However, several studies have failed to find this 
 correlation21,22 and at least one study has found the opposite: that a higher internal clock speed is linked to lower 
 impulsivity17. This counter-intuitive result may be explained via speculation that people with higher ICS might 
have faster processing  speed23. Since choosing the later option is thought to involve extra cognitive processing 
and is robustly correlated with general  intelligence24, faster processing speed should be linked to less impulsivity. 
In support of this, drift-diffusion modeling has linked higher ICS with ‘a more deliberate processing of the choice 
presented’25. Studies have also found that less accurate ICS is correlated with  impulsivity17: the notion being that 
subjects who often experience large errors in their time estimation come to have a lot of uncertainty in predicting 
events. This uncertainty has been linked, theoretically and empirically to general avoidance of delayed  options26.

One potential reason for the lack of consensus could be that there is substantial variation in intertemporal 
choice that is not influenced by ICS, making it statistically challenging to find a robust relationship. The strength 
of our design is that we tested subjects in two intertemporal choice tasks, only one of which should be influenced 
by ICS. Thus, we can use the long task (which should not be influenced by ICS) to effectively normalize the dis-
count factor measured in the short task (which should be influenced by ICS). In this way, we have a novel and 
powerful way to test the relationship between ICS and intertemporal choice.

We had three main hypotheses about how the influence of ICS on the short intertemporal choice task could 
be measured. First, we hypothesized that subjects who appeared more impulsive in the seconds task than the days 
task (measured via the difference in discount factors in 1/s and in 1/day, respectively) would have faster internal 
clocks than those who appear less impulsive in seconds than days. Second, that the inter-subject variability in 
ICS would account for variability in discount factor in the short task that was unexplained by variability in dis-
count factor in the long task. Third, if subjects’ delay-discounting choices in the short task were fit with a model 
that used subjective (based on performance in timing tasks) rather than objective time, then the correlation of 
the ‘subjective time’-short-discount-factor with the day-discount-factor would be higher than the correlation 
between ‘objective time’-short-discount-factor and the day-discount-factor.

We only found support for our second hypothesis: timing had additive value in explaining the time-horizons 
gap in discounting, but only when the time perception estimates were done at the same time as the decision-
making choices and when the time perception task proxy for ICS was used. However, there was no evidence 
that subjects who were relatively impulsive in seconds vs. days had fast internal clocks (Hypothesis 1). Likewise, 
we did not significantly improve correlation between discounting on the time-scale of seconds and of days after 
accounting for subjective time (Hypothesis 3). Together, these results suggest that variation in ICS can contrib-
ute to small variations in estimated discount rates, but does not account for the unexplained variance between 
discounting in the seconds compared to days task and that the degree of contributed variation is small enough 
that it seems reasonable to ignore, at least for healthy participants.

Results
Two groups of subjects in this study participated in intertemporal choice tasks to estimate discount factors and 
timing experiments to estimate internal clock speeds. The follow-up group had a greater than 1 year gap between 
the intertemporal choice tasks and the timing experiments (Fig. 1A). The new subjects performed the timing 
experiments on the same day as their second session of intertemporal choice tasks (Fig. 1B).
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Delay discounting. In each trial of the delay-discounting task, subjects made a decision between a sooner 
and a later option (Fig. 1C; as in Lukinova et al.5). Two delay-discounting tasks were considered: the verbal short 
delay task (SV, or the seconds task) where the delays to reward were in seconds and the verbal long delay task (LV, 
or the days task) where the delays were in days. Importantly, in the SV task, in each trial that the subject chose 
the later option, they experienced the delay. In contrast, in the LV task, after the choice the next trial proceeded 
immediately. At the end of each LV session, one trial was chosen at random. If the subject chose the later option 
on that trial then an electronic payment was delivered after the chosen delay.

Subjects’ discount factors were estimated by fitting their choices with a Bayesian hierarchical model (BHM) 
of hyperbolic discounting with decision noise (as in Lukinova et al.5). The model (described as the ‘objective 
time model’ in “Methods/Analysis”) had four population level parameters: log discount factor, log(k) , and the 
log of the decision noise, log(τ ) for both intertemporal choice tasks; and three parameters per subject: log(kSV ) , 
log(kLV ) and log(τ ) . We used this model to fit 10,269 choices across 26 subjects in the new group. We re-used 
the fits from Lukinova et al.5 for the follow-up group.

Consistent with our previous result, we found strong intersubject correlations between the seconds and 
days task. In other words, the most patient subject in the seconds task was likely to also be patient in the days 
task. This was true for the new group (Fig. 2A; Pearson r = .63 , p < .001 ) and for the follow-up group (Pearson 
r = .49 , p = .014 ). We also found that the population level parameters of the fit to the new group were similar 
to our previous results (compare Fig. 2B with figure 3C in Lukinova et al.5). All subjects’ choices were well-fit by 
the objective time model (Fig. 2C for an example subject and SI Fig. S1 for all subjects).

Time estimation and production. Subjects internal clock speeds (ICS) were estimated using two tasks: 
a time perception (estimation) task where subjects reported the duration that a visual stimulus appeared on the 
screen (Fig. 1D) and a time production task where subjects were presented with an interval and they had to 
start and stop the indicated interval with keypresses on the keyboard (Fig. 1E). Subjects’ performance was well 
described by both linear and power fits for both estimation and production (Fig. 3A–C shows three example 
subjects; see Fig. S4 for all subjects). The variation in timing increased with longer intervals for both estimation 
(Te) and production (Tp) tasks (Fig. 3D), a key signature of scalar timing, which “requires timing sensitivity 
to remain constant as durations timed vary”28. This can also be seen by plotting the SD/M for each interval 
(Fig. 3E). As expected, the coefficient of variation (SD/M) remained roughly constant, consistent with Weber’s 
 law29. This is in stark contrast to data from subjects’ using a counting strategy, where the standard deviation is 
constant as a function of interval (see Fig. 5, intervals > 1 s in Grondin et al.30).

Figure 1.  Behavioral tasks. (A) Timeline of experimental sessions for the follow-up group ( n = 24 ). During 
sessions 1–3 (not shown) subjects performed a non-verbal delay-discounting task (B) Timeline of experimental 
sessions for the new group ( n = 26 ). (C) Stimuli examples in the intertemporal choice task. (D, E) Screenshots 
of the timing experiment.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18354  | https://doi.org/10.1038/s41598-021-97496-w

www.nature.com/scientificreports/

Two proxies (ICSe and ICSp) for ICS were calculated using Eqs. (1) and (2), respectively (“Methods”). The 
majority of our subjects had a lower ICS, meaning that they would perceive time passing slower than a stopwatch 
(e.g., for an objective 30 s period an individual might subjectively report 25 s elapsing). The strong correlation 
between proxies for internal clock speed supports our choice for ICS as a reliable measure of timing: correla-
tion between ICSe and ICSp, Pearson r = .76 , p < .001 for all subjects in Fig. 3F. The ICS error was calculated 
by capturing distortions from accurate timing (Eq. 3) and was negatively correlated with both ICSe and ICSp 
(Fig. 3G, H). The follow-up and the new group were not significantly different according to permutation tests 
(SI, Individual timing) for each of the three timing variables.

We fit each subjects’ estimation and production raw data (separately) with power and linear functions 
(Eqs. 6, 7, respectively) of the actual time. All subjects’ subjective timing was fit well (using a BHM, SI, Subjec-
tive time estimation) with both linear and power functions. The exponent of the power function (Eq. 6), β , was 
close to 1 for many subjects so the power and the linear fits overlap (Fig. 3A–C and SI Fig. S4). According to 
10-fold cross validation criteria (‘kfold’ model comparison in SI Table S2) time estimation was better fit with a 
power function and time production with a linear function. Therefore, for the subjective time model further on 
we used both linear and power fits.

Timing explains variation in discounting only when measured proximally. Having estimated 
subjects’ time preferences and timing properties we tested for correlations between them. We found no signifi-
cant relationships between ICSe, ICSp, ICSError and discount factor ( N = 49 , both jointly in Fig. 4 and within 
each group in SI Fig. S6A–C). This lack of correlation stands in contrast to previous literature that found a posi-
tive correlation between ICSError and  impulsivity17. Furthermore, when we separated subjects who appear more 
impulsive in the seconds task than the days task and vice versa, we did not find that the groups were significantly 
different from each other. We observed no differences in ICSe, ICSp, ICSError distributions when split by the 
sign of the difference between discount factor in delay-discounting tasks (Fig.  4A–C; ICSe permutation test 
between KLV > KSV and KSV > KLV subgroups: MKLV>KSV = 0.85 and MKSV>KLV = 0.90 with p = .444 ; ICSp: 
MKLV>KSV = 0.89 and MKSV>KLV = 0.91 with p = .787 ; ICSError: MKLV>KSV = 0.1698 and MKSV>KLV = 0.1961 
with p = .492 , where M indicates the mean; see SI for permutation tests for ICSe separately for the two groups). 
Using the sign of the residuals of the total least squares fit (in Fig. 2A) to split our sample into subgroups did 
not change these results. Thus, we failed to find support for our first hypothesis: that subjects who were more 
impulsive in the short compared to long delay-discounting task would have higher ICS than subjects who were 
more impulsive in the long compared to the short task.

We demonstrated that discount factors were significantly correlated between the short and long task (Fig. 2A). 
Here, we tested our second hypothesis: whether timing might account for variance in discount factor in the 
short task beyond what was explained by the discount factor in the long task (but not vice-versa). To this end, 
we ran linear regressions according to Eqs. (4) and (5). We tested the contribution of each factor by dropping it 
from the model to create a reduced nested model and performing a likelihood ratio test against the full model 
( N = 49 , Fig. 5). We found that subjects’ timing in the new group, but not in the follow-up group, was related 
to their discount factors. Dropping ICSe (a proxy for ICS) resulted in a significant decrease in the likelihood for 
explaining short delay ( N = 26 , Fig. 5C), but not long delay task in the new group. Thus, we found some support 
for our hypothesis that ICS accounts for some of the variance in delay discounting for short experienced delays 

Figure 2.  Comparison of discount factors across groups and tasks. (A) Each circle represents one subject 
( N = 50 ). The log discount factors in short delay verbal task (SV, x-axis) plotted against the log discount factors 
in long delay verbal task (LV, y-axis). Discount factors were estimated in the units of the task. The color of 
the circles identifies the group, either follow-up (purple) or new (cyan). The error bars indicate the standard 
deviations of the log discount factor. The lines represent the total least squares (TLS) regression lines for two 
 groups27. (B) Distribution of posterior parameter estimates of log(k) and log(τ ) from the model fit of the new 
group of subjects. (C) Intertemporal choices and softmax-hyperbolic fit of one example subject from the new 
group. In each panel, the marker and error bar indicate the mean and binomial confidence intervals of the 
subject’s choices for that offer. The smooth ribbon indicates the BHM model estimates (at 50, 80, 99% credible 
intervals). Each column shows the choices for a specific delay (in seconds for SV, top row; in days for LV, bottom 
row). At the top of the subject plot we indicated the mean estimates of log(k) , τ and the Bayesian r2 for each task 
for that subject.
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(but only for time estimation and the new group). With the addition of ICSe we explained 48% (an increase in 
8% compared to 40% for reduced model) of the variance in log(kSV ) (Table 1). Detailed results of the remaining 
regression models were presented in SI Tables S2–S4. In the joint group analysis, dropping ICSe did not signifi-
cantly decrease the likelihood for predicting short delay task choices, suggesting that the effect was really only 
for the ‘new’ group. Still, adding ICSe resulted in an increase of 5% of variance explained (SI Tables S6 and S7). 

Accounting for subjective timing does not improve fits nor does it change the correlation 
between discount factors significantly. If individual differences in ICS influenced choices in the short 
delay-discounting task, then using subjective time (ST), rather than objective time should improve our ability to 
predict subjects’ choices. To this end, we compared the model with objective delays (‘obj’) to four models with 
subjective delays:

• ‘subjTep’—where delays in seconds were substituted by the power fits based on time estimation,
• ‘subjTel’—where delays in seconds were substituted by the linear fits based on time estimation,

Figure 3.  (A–C) Reported versus actual time for three example subjects. Circles correspond to individual 
trials and the horizontal dotted line shows the mean per interval (Production, red; Estimation, blue). y = x is 
drawn in dotted gray. The solid and dashed lines of each color are the power and the linear fits, respectively. If 
the estimation time was slower (blue below y = x ) and the produced time was faster (red above y = x ) than 
a stopwatch that was consistent evidence for a lower ICS. A subject with (A) low ICS, (B) accurate ICS & (C) 
high ICS. (D) Subjects showed scalar timing. Distribution of within-subject standard deviations grouped by the 
type of timing task and actual time interval ( N = 50 subjects in each density plot with outlier trials removed, 
“Methods”). See also Fig. S5 and Table S1 in SI. (E) Boxplots of SD/M for each duration. The SD/M was stable 
across durations, consistent with scalar timing (Production, red, two outlier points were truncated; Estimation, 
blue, eight outlier points were truncated). (F–H) Scatter plots ( N = 49 ) between ICSe, ICSp and ICS error with 
TLS regression lines. Significant correlation between ICSe & ICSp measures indicates that the tasks reliably 
captured between subject variability in ICS. Inset: kernel density estimation of respective timing variable 
(x-axis).
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Figure 4.  (A–C) First two columns represent correlations between discount factors (in short delay and long 
delay tasks, y-axis) with ICSe, ICSp, and ICSError (x-axis). Each circle is one subject ( N = 49 ). Pearson’s r is 
reported on the figure (all p > .05 ). Best linear fit line ( y ∼ x ) is displayed. There was no evidence of correlation 
between any ICS measure and discount factor. The rightmost column represents kernel density estimations of 
ICSe and ICSp as proxies for ICS and ICSError split by positive or negative difference between discount factor in 
short and long delay tasks. There was no significant difference in internal clocks between subjects who appear 
more impulsive in the seconds task than the days task ( KSV > KLV ) and those, who appear more impulsive in 
the days task than the seconds task ( KLV > KSV ). These results did not support our first hypothesis that subjects 
who appear more impulsive in the seconds task than the days task will have fast internal clocks and vice versa.

Figure 5.  Drop-one regression analysis. We generated linear regression models of log(k) for each task (short 
delay and long delay) against the discount factor of the other task, as well as timing variables. In order to test 
which factors were important, we dropped each factor and tested whether the decrease in likelihood was 
significant by a χ2 test. (Analyses were done in R using the ‘drop1’ function). We plot the change in AIC, with 
significant drops in black ( p < .0125 , Bonferroni Corrected p < .05/4 ). (A, B)—follow-up group; (C, D)—new 
group. Only for the new group and with ICSe we found some evidence that subjects’ timing was related to their 
discount factors. Dropping this proxy for ICS resulted in a significant decrease in the likelihood for explaining 
short delay.
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• ‘subjTpp’—where delays in seconds were substituted by the power fits based on time production, and
• ‘subjTpl’—where delays in seconds were substituted by the linear fits based on time production.

After accounting for subjective timing in the short delay task we did find a higher (but not significantly higher 
according to ‘cocor’ tests, “Methods”) correlation between discount factors in the short and long delay tasks 
(Table 2). This was only true in the models that replaced objective time with subjective time based on the time 
estimation task (both within each group and for groups combined in SI Table S8). Therefore, we only found 
nominal evidence to support our third hypothesis: adjusting for individual heterogeneity in timing did not 
improve the correlation between discounting factors across seconds and days.

Discussion
Scholars have argued that it is crucial to combine timing and intertemporal choice  research11,18,31,32. Here we 
measured one aspect of timing, internal clock speed, estimated using time estimation and production tasks to 
test whether variation in ICS explains variation in subjects intertemporal choices between tasks where the delays 
are experienced versus not experienced. We hypothesized that subjects with fast ICS would experience delays 
as longer and thus be less willing to wait for experienced delays. In this paper, we have shown that accounting 
for subjects’ timing helps to predict discounting, but only using variation in time perception to explain variance 
in short delay tasks and when timing and discounting are proximally assessed. In the new group of subjects, 
accounting for timing explained an additional 8% of variance in discount factors in the seconds task: an effect 
which supported our second hypothesis. However, we did not find support for our other hypotheses that larger 
errors in timing are associated with more impulsive subjects in the short delay task, nor did we find a significant 
increase in correlation between short and long delay discount factors after accounting for subjective timing.

Our findings highlighted the importance of temporal proximity of the timing and the intertemporal tasks. 
One possible explanation for the difference in results between the new and the follow-up groups (Fig. 5A vs. C) 
was that similar to how a timing task can influence the performance of the following discounting  tasks10,33,34, 
the discounting task in the new group influenced performance on the subsequent timing task. However, since 
the distributions of internal clock speeds in the new and the follow-up groups were highly overlapping, this 
explanation was unsupported by the data. Another possible explanation for this difference was that both internal 
clock speed and discounting were somewhat unstable over time. For example, both timing and discounting can 
be perturbed by emotional  state35,36 or caloric  intake37,38. These, and other, factors could contribute to moderate 
test-retest reliability for  discounting39 or  timing40 which would, in the follow-up group, wash out the small effects 
observed here in the new group.

There are many ways to assess ICS. In this paper we used just the time perception and the time production 
tasks on the time range of seconds to minutes and three different measures of internal clock speed, without a 
strong a priori belief about which would influence choices in the delay-discounting task: time perception internal 
clock speed (ICSe), time production internal clock speed (ICSp), or internal clock speed errors (ICSError). We 
found only time perception (ICSe) to be associated with discounting in the seconds task. Sensory timing (dura-
tion discrimination, perception) and motor timing (production, reproduction of the time interval) putatively 

Table 1.  New Group log(kSV ) Regression Results. This regression analysis was done according to Eq. (4). By 
looking at the r2 , we found some support for our hypothesis that ICS accounts for some of the variance in delay 
discounting for short experienced delays. With the addition of time estimation proxy for ICS we explained 48% 
(an increase in 8% compared to 39.7% for reduced model) of the variance in log(kSV ). ∗p < .05 ; ∗∗p < .01.

Dependent variable: log(kSV )

(1) (2) (3)

log(kLV )
0.313∗∗ 0.286∗∗ 0.300∗∗

(0.070) (0.072) (0.069)

ICSe
3.364∗ 1.671

(1.318) (0.875)

ICSp
− 1.559

(1.149)

ICSError
2.019

(1.475)

Constant
−3.872∗∗ −2.001∗∗ −3.457∗∗

(0.888) (0.342) (0.829)

Observations 26 26 26

r
2 .567 .397 .480

Adjusted r2 .484 .372 .435

Residual Std. Error 0.806 (df = 21) 0.889 (df = 24) 0.844 (df = 23)

F Statistic 6.865∗∗ (df = 4; 21) 15.822∗∗ (df = 1; 24) 10.607∗∗ (df = 2; 23)
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have distinct underlying neural  mechanisms41. We note that, in both the time perception and the intertemporal 
choice tasks, time was controlled by the experimenter which makes these two experiments closer to each other, 
in comparison to the production task where timing was controlled by the subject. Moreover, time perception 
seems to be intertwined in the short delay task: you may experience the delay in seconds once, but then decide 
to wait or not on another similar trial (update your belief) based on your subjective experience of the elapsed 
time. Unlike in the time production experiment, where time was controlled (started and ended) by the subject, 
in the short delay task subjects were not able to give up waiting. As van den Broek et al.19 puts it, production 
tasks involve not only temporal judgement but also an ability to withhold a response: taking an action to indicate 
the end of the interval. Therefore, time production performance may not be indicative of “deficient temporal 
discrimination per se, since their performance might be attributable to difficulty in inhibiting responding”3.

Overall, we did not find a strong relationship between timing and intertemporal choice. It is worth noting that 
the previous studies investigating the relationship between these two phenomena sometimes found  positive20, 
sometimes found  negative17,25 and sometimes found no  correlations21,22 between internal clock speed and dis-
count factors. In contrast to previous published work, we did not find internal clock speed errors (ICSError) 
to be correlated with the discount factors in the sample of college students. We speculate that a clinical sample 
with high levels of impulsivity might be a better one to relate to a less accurate ICS (higher ICSError) as previous 
works suggest: to an impulsive person the passage of time may appear to be more intolerable and more error 
 prone41. For example, research on children (in the context of attention-deficit/hyperactivity disorder or preterm 
birth) suggests that there is a positive relationship between waiting time in the delay of gratification task and 
children’s performance in the timing  task42–45. Also, animal research finds that the delay-exposure training in rats 
significantly decreases not only the number of impulsive choices, but also alcohol consumption  level12. Taken 
together, these results reinstate the importance of core timing processes in impulsive  behaviors10.

Considering our preregistered findings along with the inconsistency in the direction of the relationship in 
previously published studies, several conclusions are possible. First, there may be no reliable relationship between 
individual differences in timing and intertemporal choice, despite the intuitive appeal of such a relationship. 
Alternatively, there is a subtle relationship, but it depends on poorly understood contextual factors that have 
obstructed replication across studies. To definitively resolve this question, a larger preregistered multi-site study 
(similar  to46) should be done including both neurotypical and clinical populations, where more extreme examples 
of individual differences in timing and intertemporal choice might reveal a connection.

Methods
This study was preregistered at OSF (https:// osf. io/ vaqf8). Unless otherwise specified, all experimental methods 
and analyses presented here were as described in the preregistration.

Participants. This study included two groups of subjects: a ‘follow-up’ group (19 women and 5 men that 
participated previously in the main or control experiment 1 of Lukinova et al.5 and a new (named ‘naive’ in the 
preregistration) group of subjects (Fig. 1A, B). We recruited new subjects for two reasons. First, we anticipated 
the challenge of bringing back the desired number of subjects. Second, we anticipated that an individual’s vari-
ability in timing or delay-discounting over the course of a year might overwhelm a small relationship between 
timing and discounting (since our initial delay-discounting study took place more than a year before the data 
collection for this study).

For the new group, 30 participants were recruited from the NYU Shanghai undergraduate student population. 
Four subjects were excluded from all analyses, because their choices were insensitive to delay, leading to a total 

Table 2.  Pearson correlation between log(kSV ) and log(kLV ). ‘Significantly Better?’ answers whether there 
has been a significant increase in correlations from the objective time model to the respective subjective time 
model tested using R package cocor (“Methods”). After accounting for subjective timing in the short delay 
task we hypothesized to find a higher correlation between discount factors in the short and long delay tasks. 
However, although we found stronger correlations none of them resulted in significant increase, thus, not 
supporting our third hypothesis.

Pearson r value p value Significantly better?

New

obj .63 < .001

subjTel .64 < .001 No

subjTep .64 < .001 No

subjTpl .51 .008 No

subjTpp .51 .007 No

Follow-up

obj .43 .034

subjTel .48 .016 No

subjTep .48 .018 No

subjTpl .39 .063 No

subjTpp .41 .046 No

https://osf.io/vaqf8
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sample of 26 students (16 women, 10 men). The study was approved by the IRB of NYU Shanghai. All human 
subjects research at NYU Shanghai is conducted in accordance with the US policy and regulations found in 
45CFR46, as well as in accordance with Chinese policy and regulations found in Measures for the Examination 
of Ethics for Biomedical Research Involving Humans. In the event of conflict between applicable standards of 
protection, NYU Shanghai follows the standard that provides greater protection to human subjects. Each par-
ticipant gave written informed consent for participation in the study at the start of the first session.

The subjects were between 18–21 years old and 13 subjects were Chinese nationals. Subjects received a 40 
CNY ( ∼ $5.5 USD) per hour participation fee as well as up to an additional 50 CNY ( ∼ $8 USD) per session based 
on their individual choices in the delay-discounting tasks. There was no monetary incentive to be accurate in the 
timing tasks. For the follow-up group, there were two sessions of intertemporal choice (2 weeks apart from each 
other) and after 1.5-3 years, a third session of timing tasks (Fig. 1A). For the new group, there were two sessions 
(2 weeks apart from each other): both sessions included intertemporal choice tasks and the second session also 
included timing tasks (Fig. 1B). All sessions (for both groups) took place in the NYU Shanghai Behavioral and 
Experimental Economics Laboratory in Shanghai. All decisions in the intertemporal choice task involved a choice 
between a later (delays in seconds and days) option and an immediate (now) option (Fig. 1C).

Corvi et al.17 reported moderate correlations between discount factors and timing variables such as internal 
clock speed error ( r = .43 , p < .01 ), and r = −.31 for internal clock speed. Thus, we expected an r value from 
.3 to .5 for the correlation between timing variables and discount factor in seconds. A power analysis indicated 
that for expected correlation r = .5 and 80% power (the ability of a test to detect an effect, if the effect actually 
exists) the required sample size was N = 29 , for a medium size correlation of r = .3 the required sample size 
was N = 8447. We preregistered collection and analysis of data from 30 participants in each experimental group. 
However, we were able to bring back only 24 participants for follow-up group (19 women, 5 men; between 20 
and 24 years old; 14 subjects were Chinese Nationals). Therefore, a total of 50 (out of 54) subjects with 30 (5 time 
interval × 3 repetitions × 2 tasks) timing observations per each subject was considered for analysis. This was a 
within-subject study, so all conditions applied equally to all subjects.

Materials and procedure. In our timing experiment, we used two tasks to measure each subject’s timing 
properties (Fig. 1D–E). They were always in order: first, a time perception task, then, a time production task. We 
used this order since the time intervals for estimation were the same as those for production and we did not want 
to bias our subjects with any numbers prior to assessing their time perception. All subjects first participated in 
a demonstration with instructions and two trials of each task (interval = 10 s) to facilitate the real experiment.

For the time perception task the instruction was: “Welcome to the experiment. You will estimate how long 
the circle has shown up and type in your estimation as an integer (unit = seconds). Please press [space] key to 
start the experiment when you are ready.” The time intervals (t) that were used in the task were 3, 7, 14, 30, and 
64 s, each repeated three times, in random order.

For the time production task the instruction was: “Welcome to the experiment. You will press the [enter] key 
to start and press the [enter] key to end the estimation of the given time intervals. Please press [space] key to 
start the experiment when you are ready.” The time intervals (t) that were used in the task were 3, 7, 14, 30, and 
64 s, each repeated three times, in random order.

We repeated each of the timing intervals presentation three times in our timing tasks following the design 
from Corvi et al.17. Although some experimenters point to a repetition effect affecting the time estimates, accord-
ing to  Matthews48, effects disappear when there is a modest lag between presentations (in our case, five different 
stimuli in random order). Also, Miomi et al.49 revealed that time production techniques are not equivalent, with 
the method involving key presses to start and stop the production (which we used) showing the highest accu-
racy. Contrary to Rattat and Droit-Volet29, in both timing tasks we did not provide instructions ‘not to count’. In 
earlier pilot studies, subjects reported that this instruction was hard to follow (e.g. forced some subjects to shift 
attention away from the timing task to stopping themselves from counting) and resulted in unreliable data that 
did not adhere to scalar timing properties. That said, analyses of the data are consistent with scalar timing, sug-
gesting that the subjects did not count. Both tasks took approximately 12–15 min to finish. The duration of each 
task (not including the real timing distortions and intertrial intervals that depend on each subject’s speed) was 
(3+ 7+ 14+ 30+ 64)× 3/60 = 5.9 min. Subjects received a fixed payment of 40 CNY for both timing tasks.

The intertemporal task for new participants mimicked the last two sessions in Lukinova et al.5 control experi-
ment 1 ‘no circles’ (Fig. 1C). Two sessions (two weeks apart) included an alternating set of verbal tasks (verbal 
short delay, SV, and verbal long delay, LV; SV-LV-SV-LV in Fig. 1B or LV-SV-LV-SV, for a random half of subjects). 
For the short delay tasks, when subjects chose the later option, a clock appeared on the screen, and only when 
the clock image disappeared, could they obtain their reward, visualized as a stack of coins. The visual presenta-
tion of coins was accompanied by a ‘dropping coins’ sound. The payment was done differently for SV and LV: 
in the former, subjects accumulated coins and the total earned was paid via electronic payment at the end of 
each experimental session, in the latter, a single trial was selected at random at the conclusion of the session 
for payment. In our sessions, the exchange rate in SV was 0.05 CNY per coin (since all coins were accumulated 
and subjects were paid the total profit), whereas in LV, the exchange rate was 4 CNY per coin. These exchange 
rates were set to, on average, equalize the possible total profit between short and long delays tasks. In each trial, 
irrespective of the task, subjects made a decision between the sooner and the later options. The sooner option 
was fixed at 4 coins now (or today). There were 25 different later options presented in each task, i.e. all possible 
combinations of 5 delays and 5 reward magnitudes: 3, 7 (6.5 for the follow-up group), 14, 30, 64 s (or days) and 
1, 2, 5, 8, 10 coins, respectively. Across sessions, 200 trials were conducted in verbal short delay (SV, delays in 
seconds) and verbal long delay (LV, delays in days).
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Analysis. Preregistered analysis. Timing experiments resulted in several observations per subject in the 
time perception and time production tasks. Some researchers used only a production task and calculated the in-
ternal clock speed (ICS) as the ratio of produced versus actual  duration50. Since we used two tasks we converted 
observations from both tasks into our key variables following the procedure from Corvi et al.17.

First, per each time interval (t) and each subject, the average time estimation (Te(t)) and average time pro-
duction (Tp(t)) were calculated by averaging reported time in three trials for the same time interval and the 
same subject. Then, the ratios TeRatio(t) and TpRatio(t) were calculated by dividing Te(t) and Tp(t) by the actual 
time interval duration (t) per subject, respectively as suggested by Glickson and  Hadad50. Next, we adjusted the 
procedure, since Corvi et al.17 used only one interval per task, and averaged the ratios across time intervals in 
each task per subject (MTeRatio and MTpRatio).

In general, people with higher than average ICS estimate an objective duration to be longer than average and 
tend to produce shorter durations than  average8. We decided to separately consider data from the production 
task and the perception task as proxies for ICS. According to the definition, the calculation of the proxy for ICS 
per subject from time perception (estimation) task was straight-forward:

Thus, ICS values higher and lower than 1 indicate internal clock speeds faster and slower than objective 
time, respectively. For the production task we had to symmetrically reflect the value of the averaged timing ratio 
around 1 in order to adhere to the same meaning of the ICS. So, for those subjects whose MTpRatio > 1 the proxy 
was calculated as ICSp = (1− abs(MTpRatio− 1)) and, otherwise, MTpRatio < 1 the proxy was calculated as 
ICSp = (1+ abs(MTpRatio− 1)) (the latter definition was preregistered). Combined, this gives us the equation 
below for the time production proxy for ICS:

The ICS error per subject was calculated as:

thus, higher values indicate greater error.
We called the variables ICSe, ICSp, and ICSError, as defined above, the ‘timing variables’ per subject. For 

plotting the distributions of the timing variables (Fig. 3E–G) we calculated probability density estimates (for 
smoothing) using the ksdensity function in Matlab. By default the estimate is based on a normal kernel 
function, and is evaluated at equally-spaced 100 points, xi , that cover the range of the data in x.

In the preregistration, we did not expect subjects’ time production to be distorted more than two times. 
However, one of our subjects produced an interval of more than 160 s when asked to produce 64 seconds. In 
this case, Eq. (2) cannot convert the MTpRatio to a proxy for ICS correctly. This subject did adhere to the scalar 
properties and was not removed from the overall analyses. However, whenever proxies for ICS and ICSError were 
used, this subject’s data were removed. Also, in the scalar timing analysis we removed 19 points representing 
subjects trials (outliers) in which they exceeded 3 ∗mean for that Actual Time interval.

In order to test our hypotheses, we compared timing variables to the discount factors in short and long tasks. 
The discount factors for the new subjects were estimated using a softmax-hyperbolic fit in a similar way as in 
Lukinova et al.5, i.e. a four population level and three subject level parameters model (mixed-effects model) was 
used with the help of ‘brms’ package in  R51 that allowed to do a Bayesian hierarchical model (BHM) of nonlinear 
multilevel models in Stan with the standard R formula  syntax52,53. Objective time model:

choice ∼ inv_logit((later_reward/(1 + exp(logk)*delay)-sooner_reward)/
exp(logtau)),
logtau ∼ task + (1 | subjid),
logk ∼ task + (task | subjid)

where later_reward was the later reward, sooner_reward was the sooner reward; logk was the natural 
logarithm of the discounting parameter k and logtau ( log(τ ) ) was the log of the decision noise. Fitting elog(k) 
allowed log(k) to vary from −∞ to +∞ while k = elog(k) was restricted to [0,+∞ ]. For the subjective time models 
we substituted delays in seconds by power or linear fits based on two timing tasks (four subjective time models 
total). All models ( M4p,3s ) had 4 population level parameters ( log(k) and log(τ ) for each of the two intertemporal 
choice tasks) and 3 parameters per subject: log(kSV ) , log(kLV ) and log(τ ) . We used a normal prior for log(k) 
parameter with mean − 5 and standard deviation of 3 and a normal prior for log(τ ) parameter with mean 0 and 
standard deviation of 0.3 based on our expectations from previous studies in delay discounting. By default brms 
utilizes the No-U-Turn Sampler  (NUTS54) implemented in Stan. All models were fitted using 10 chains, each 
with 6000 iterations of which the first 2000 were warmup to calibrate the sampler, leading to a total of 40,000 
posterior samples. R package shinystan55 was used to diagnose and develop the models.

Following our general hypotheses, we examined whether there were:

• a significant difference in terms of subjects’ ICS for those who were more impulsive in the short compared 
to the long delay-discounting task (and vice versa) and a positive correlation between ICSError and discount 
factor (bigger error ∼ more impulsive) for short delays;

• individual differences in short verbal discount factor, but not long verbal discount factor, that were accounted 
for by differences in timing variables;

(1)ICSe = MTeRatio

(2)ICSp = 2−MTpRatio

(3)ICSError = (abs(MTeRatio− 1)+ abs(MTpRatio− 1))/2
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• a higher correlation between discount factors in short and long delays after accounting for subjective timing 
in the short delay task.

We used the following linear models to test the contribution of timing variables to each discount factor:

This regression analysis addressed the second hypothesis. R package lme4 was used for linear  models56.
To convert objective time into subjective time we considered both power and linear forms of subjective timing 

(see fitting details in the SI, Subjective time estimation). The functional form for the power law was

where ST was the subjective time, t was the target (actual) duration, α was a linear scaling in producing (or 
estimating) durations, and β captured the degree of  nonlinearity14,50. We also planned the estimation of a special 
case of the power function, where β = 1.

Then α , the slope of a linear function, reflected the change in the produced (or in the estimated) duration 
for a unit change in the target duration (considered as another index of  ICS18,25). For a time production task, 
the higher the slope the more time was produced for a unit change in the target duration reflecting a lower ICS.

Other planned analyses, reported in the SI, included performing nonparametric tests to compare timing 
variables between genders and correlations of timing variables with the Barratt Impulsiveness Scale (BIS).

The permutation tests of differences between the means of two groups were done by shuffling the group label 
and computing the mean between the shuffled groups 10,000 times. This generates a null distribution which was 
used to estimate the probability of observing the true difference between groups (bootmean in https:// github. 
com/ erlic hlab/ eluti ls).

The significant difference in correlations (e.g., between the objective model and four subjective time models) 
was tested using R package cocor57 assuming nonoverlapping dependent correlations.

Additional analyses. As mentioned in Participants, the follow-up group was only a subset of the subjects from 
Lukinova et al.5. As we were using a hierarchical model to estimate the parameters of each subject, the inclu-
sion or exclusion of other subjects can subtly influence the estimates of any individual subject. For the analy-
ses reported in Table 2 ‘follow-up’, we fit those models using only the follow-up group. The correlation coeffi-
cient between short and long discount factor for these subjects based on the original model in Lukinova et al.5 
(Pearson r = .49 ) was not significantly different (using the ‘R cocor’ tests) from the one reported here (Pearson 
r = .43 ). We also fit the objective time models for the follow-up and the new groups combined. The discount 
factors aligned well across the fits (see SI Fig. S3).

In order to check whether the relationship between timing and discounting was present regardless of the 
group and to increase the statistical power, we re-ran all our analyses with the follow-up and the new groups 
combined (not preregistered). Some of the joint results were listed in the main text, others were reported in SI 
(Post hoc analysis). Importantly, all results before and after combining the samples were consistent.

Software. The code for the timing experiment was written in Python using the ‘PsychoPy’ toolbox (version 
1.83.0458). The code for the intertemporal choice task was re-used from Lukinova et al.5 available at https:// www. 
github. com/ erlic hlab/ delay 3ways. All analyses and statistics were performed either in Matlab (version 9.3, or 
higher, The Mathworks, MA), or in R (version 3.4.1, or higher, R Foundation for Statistical Computing, Vienna, 
 Austria59). R package brms (2.0.1) was used as a wrapper for rstan to perform Bayesian nonlinear multilevel 
modeling. R package  stargazer60 was used to transform R regression results to LaTex tables.

Code and data availability statement
The code, de-identified raw data and saved model fits necessary for regenerating main results and figures are 
available as a Zenodo release (https:// doi. org/ 10. 5281/ zenodo. 51981 67) of a GitHub repository (https:// github. 
com/ erlic hlab/ delay TP/).
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