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Flexural band gaps and vibration 
control of a periodic railway track
Mohd Iqbal1, Anil Kumar1*, Mahesh Murugan Jaya2 & Oreste Salvatore Bursi3

Periodic structures exhibit unique band gap characteristics by virtue of which they behave as vibro-
acoustic filters thereby allowing only waves within a certain frequency range to pass through. In 
this paper, lateral and vertical flexural wave propagation and vibration control of a railway track 
periodically supported on rigid sleepers using fastenings are studied in depth. The dispersion 
relations in both lateral and vertical directions are obtained using the Floquet-Bloch theorem and the 
resulting dispersion curves are verified using finite element models. Afterwards, tuned mass dampers 
(TMDs) with different mass ratios are designed to control vibrations of the examined rail in both the 
directions. Moreover, the influence of damping of rail and resonators on band gap characteristics is 
investigated. As a replacement to the conventional TMD, a novel possibility to control vibration relies 
on using another existing rail as a lateral distributed resonator (LDR). Although the effectiveness of 
LDR is lower than that of localized resonators, the former represents a simple and promising way to 
control vibrations. Efficacy of the proposed control methods is finally verified by applying a random 
Gaussian white noise input. The study presented here is useful to understand the propagation and 
attenuation behavior of flexural waves and to develop efficient and novel vibration control strategies 
for track structures.

Railway system is the most widely used medium of transportation between urban and rural areas. Due to traf-
fic congestion issues in cities, the railway serves as a reliable alternative and is realized as the safest, on time, 
rapid and most convenient medium of transportation. However, due to the significant increase in speed and the 
operating frequency of trains, the interaction of wheel/rail is greatly enhanced and results in excessive noise and 
vibrations in tracks1. This can cause fatigue damage, corrugations in rails, loosening of fasteners and cracks in 
sleepers. A significant part of the railway infrastructure budget is thus required to maintain the safety of such 
tracks. Also, such excessive vibrations affect both strength and serviceability requirements of buildings adjacent 
to tracks. At the same time, the generation of excessive noise results in noise pollution which is a major concern 
to the mental health of residents and can lead to hearing loss. Therefore, it is essential to protect rail track struc-
tures from undesired waves and large vibration amplitudes.

Propagation of elastic waves in periodic structures received much attention of researchers/scientists for 
decades2,3. Meanwhile, the concept of phononic crystals (PCs) introduced from solid-state physics opened a new 
direction to study the acoustic/elastic wave propagation in periodic structures. Differently from conventional 
periodic structures, PCs are a new class of materials/structures made by a periodic arrangement of artificial 
structural units. Such structures possess a unique wave filtering property and thereby exhibit band gaps in certain 
frequency ranges. This is a result of either the Bragg scattering2 or a local resonance4,5. The frequency ranges 
wherein the freely propagating acoustic/elastic waves get attenuated are represented as band gaps or stop bands 
while waves of the remaining frequencies pass freely creating pass or propagation bands. Earlier studies con-
ducted on band gaps in periodic structures are based on the Bragg scattering mechanism2,3. When the charac-
teristic unit cell length l  of a periodic structure is comparable to the wavelength � of the waves in the structure, 
Bragg band gaps are induced. They occur around the frequencies governed by the Bragg condition l = n

(

�

2

)

 , 
where n = 1, 2, 3, . . . . To date, several studies have been carried out in the context of band gaps in periodic 
beams2,6, piping systems7,8, plates3,9 and railway tracks10,11. However, PCs with locally resonant units are classified 
as acoustic/elastic metamaterials because of their effective attenuation properties12. In addition to Bragg band 
gaps, locally resonant PCs entail additional band gaps induced by local resonances4. Recently, vibration control 
strategies based on such local resonances were used to filter the propagation of undesired waves in metamaterial 
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beams13,14, rods15, shafts16,17 and piping systems8. Moreover, vibration transmission behavior in the vertical and 
lateral direction of railway tracks like the one depicted in Fig. 1, were investigated by many researchers18–23.

In the context of passive control, vibration in a structure can be reduced through different mechanisms. One 
of the commonly employed methods consists of attaching a secondary unit called tuned mass damper (TMD) 
to the main structure24. TMD consists of a mass that is attached to the main structure using a spring-damper 
element. The principle of TMD lies in transferring energy from the main system to the secondary system and 
dissipating it through this secondary system25,26. In order to harness an efficient energy dissipation, a TMD has to 
be optimally designed. For a given mass ratio, this is achieved by adjusting the stiffness and damping values so as 
to minimize any significant response quantity of the main system, typically displacements. Closed-form expres-
sions exist for the optimal values of such damper parameters in case of an undamped single degree of freedom 
(SDoF) system subjected to harmonic excitations25. Similar optimal values for different types of responses and 
excitations are also available27,28. However, such methods are based on simplified assumptions and are applicable 
only to simple structures. For more accurate designs and for complex structures, TMDs are designed by means 
of numerical optimization techniques29–32.

In the context of railway tracks, different realizations of TMDs exist33–37. Most of these systems employ 
attaching masses on either side of the rail which are allowed to deform in both the lateral and vertical directions. 
Damping in such cases may be obtained by hysteresis in the attached damping layers33–35. Magnetorheological 
elastomeric rail dampers endowed with variable stiffness obtained by means of magnetic fields also exist36. Energy 
can also be dissipated in TMDs using impacts/pounding of masses37.

In this study, flexural band gaps and vibration control of a ballastless periodic track structure is examined. 
Along this main vein, flexural wave propagation is both theoretically and numerically investigated. More pre-
cisely, two types of flexural waves are studied in the track: (1) lateral wave—Wave #A and (2) vertical wave—Wave 
#B. The dispersion relation that characterizes wave propagation in the rail is derived using the Floquet-Bloch 
theory of periodic structures and is subsequently verified by a finite element (FE) model. In this respect, Fig. 1 
shows a simplified layout of the track consisting of two rails R1 and R2 fixed on sleeper blocks using fasteners hav-
ing translational and rotational stiffnesses in both lateral and vertical directions. The sleeper blocks are assumed 
to be rigid and any flexibility of the parts underneath is neglected. For modelling the track, a Euler–Bernoulli 
beam formulation is used10,18,20,38–42. The cross-section of the rail starts to deform significantly in high frequency 
regime43 and in such cases shear deformation is important. However, since in the present work, only low fre-
quency range is considered, the shear deformation is neglected and thus for modelling, a Euler–Bernoulli beam 
will suffice. Torsional effects may occur in rails owing to the sectional asymmetry, but they are neglected as a 
first approximation.

In order to tune band gap properties, localized resonators in both lateral (LLRs) and vertical (VLRs) directions 
are attached at the middle of each unit cell/span of the rail. The configurations of the track in lateral direction 
(Wave #A) without and with the LLRs are illustrated in Fig. 2a,b, respectively. Identical configurations are also 
used for the rail in the vertical direction (Wave #B). In this respect, coordinates x , y and z, respectively represent 
the longitudinal, vertical and lateral directions.

A conventional TMD requires the installation of additional mass along with stiffness and damping com-
ponents. However, in the case of lateral distributed resonator (LDR), any already existing mass in the system 
is utilized as a part of control mechanism8. The concept of LDR can be easily implemented in situations where 
multiple beam-like structures are present, such as pipe-rack systems, railway tracks, etc. Here, the mass of another 
rail already existing in the rail track system can be used as a vibration control mechanism. Thus, in the context of 
Wave #A, a vibration control mechanism is proposed by coupling rails R1 and R2 using spring-damper systems 
as shown in Fig. 2c. This can be practically realized by connecting them using simple springs that are endowed 
with targeted equivalent stiffness and damping properties. For controlling lateral vibration (Wave #A) in rail R1 , 
rail R2 acts as a lateral distributed resonator (LDR) and vice versa. When a train passes over the track, elastic/
acoustic waves propagate in both the rails R1 and R2 simultaneously. It is assumed herein that Wave #A propagates 
in both the rails in the same phase. A simple configuration to couple both the rails is to connect their correspond-
ing mid spans using a spring-damper system8. Here, this may not be effective as both the rails vibrate with the 

Figure 1.   Layout of a ballastless railway track fixed on sleeper blocks using fasteners.
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same amplitude, frequency and phase making the spring-damper system ineffective. Therefore, the two rails are 
attached as shown in Fig. 2c, i.e., the mid-span of one rail is connected to the middle of the adjacent span of the 
other rail. Derivation of dispersion relations is not straightforward for the case when LLRs/LDRs are attached 
to the rail or when damping is considered. Therefore, in these situations, a numerical model is established to 
conduct the relevant studies. The optimal values of spring and damper parameters of TMDs in both lateral and 
vertical directions are obtained using a genetic algorithm-based optimization.

The influence of damping of both rail R1 and resonators on the band gaps is also studied herein. To show the 
effectiveness of the proposed control methods, the response of uncontrolled R1 is compared against the different 
controlled cases. In addition, to evaluate the performance of the optimized LLRs/LDRs and VLRs solutions, a 
Gaussian white noise load is applied and the resulting response is compared. Results show that in the context 
of vibration control, LDRs work less efficiently than LLRs; nonetheless, as LDRs do not require any additional 
mass, they may lead to cost-saving solutions.

It is necessary to examine the propagation and attenuation characteristics of flexural waves in tracks and this 
warrants the use of the presented analytical dispersion relations. This study also proposes innovative and efficient 
control strategies that can help to control the undesirable vibration in tracks, thereby increasing their service life. 
The concepts and methods presented herein are not limited to rails and can be implemented in similar periodi-
cally supported structures such as pipelines on rack, bridge supported on multiple piers, etc.

Methods
Theoretical modelling and formulation of dispersion relationships.  An infinite periodic rail track 
of span l  illustrated in Fig. 2a is adopted to investigate the flexural wave propagation characteristics. The equa-
tions are derived for the track in the lateral direction. By changing the parameters, the same relations hold in the 
vertical direction as well. Each unit cell is composed of a single span of the rail supported on both ends by rigid 
sleeper blocks connected using fasteners. Two such adjacent unit cells are depicted in Fig. 3a. The governing 
equation of motion of the undamped rail considered as an Euler- Bernoulli beam is given as,

Figure 2.   Simplified physical models of a periodic track structure subjected to lateral movement: (a) 
uncontrolled rail R1 ; (b) rail R1 endowed with lateral localized resonators (LLRs) in the middle of each unit cell; 
and (c) the adjacent spans of rails R1 and R2 connected using spring-damper systems.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18145  | https://doi.org/10.1038/s41598-021-97384-3

www.nature.com/scientificreports/

where E and Iyy are the modulus of elasticity and second moment of inertia about y axis, respectively; ρ and A 
respectively denote the density and cross-sectional area and z(x, t) represents the transverse displacement as a 
function of the spatial coordinate x and time t .

A steady-state harmonic solution of the form  z(x, t) = Z(x)eiωt is assumed, which when substituted in 
Eq. (1) yields,

where ω is the angular frequency. The solution of (2) provides the beam displacement amplitude Z(x) which 
can be expressed as,

where α =

(

ρAω2

EIyy

)
1
4 denotes the wave number of the flexural wave in the beam.

By applying the Floquet-Bloch periodic condition at each node of the two-unit cells shown in Fig. 3b, trans-
verse displacements of the generic nodes j + 1 and j − 1 is related to that at node j as

where l  represents the length of the unit cell, i is 
√
−1 and q signifies the Bloch parameter or the wavenumber, 

which is related to the wavelength � as � = 2π/q . Similar relations are employed for shear forces, bending 
moments and rotations.

The constants D1 , D2 , D3 and D4 in (3) are obtained by means of the boundary conditions illustrated in Fig. 3c, 
which are used to calculate the bending moments M and shear forces S on both sides of the node j . The expres-
sions for dynamic compliance coefficients44,45 at x = 0 and x = l for z0 = 1 and ψ0 = 0 read,

(1)
∂2

∂x2

[

EIyy
∂2z(x, t)

∂x2

]

+ ρA
∂2z(x, t)

∂t2
= 0

(2)EIyyZ
4(x)− ρAω2Z(x) = 0

(3)Z(x) = D1 cos(αx)+ D2 sin(αx)+ D3 cosh(αx)+ D4 sinh(αx)

(4)zj+1 = zje
iql , zj−1 = zje

−iql

(5)

S
′

0 =
α3EIyy [sin(αl)+ sinh(αl)]

1− cos (αl)cosh (αl)

S
′

l =
α3EIyy [cosh (αl)sin (αl)+ cos (αl)sinh (αl)]

1− cos (αl)cosh (αl)

M
′

0 =
α2EIyy [cos (αl)− cosh (αl)]

1− cos (αl)cosh (αl)

M
′

l =
α2EIyy [sinh (αl)sin (αl)]

1− cos (αl)cosh (αl)

Figure 3.   Theoretical modelling of a track structure in the lateral direction. (a) Two-unit cells; (b) periodic 
Floquet-Bloch condition imposed to the nodes for angular and transverse displacements; (c) single unit cell 
represented as a simple beam with rotation ψ0 and transverse displacement z0 at free end and clamped at the 
other end; and (d) equilibrium of forces and moments at node j.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18145  | https://doi.org/10.1038/s41598-021-97384-3

www.nature.com/scientificreports/

For z0 = 0 and ψ0 = 1 , the dynamic compliance coefficients are given by 

With reference to Fig. 3b, the shear forces and bending moments at node j are expressed as 

The equilibrium of forces and moments at node j in Fig. 3d entails,

where kz and kϕy represent the translational and rotational stiffness of the fastening, respectively.
The kinematic compatibility condition at node j is given as,

Equations (7)-(9) yield a set of linear homogeneous equations in term of ψ−
j  , ψ+

j  and zj as,

Successively, Eqs. (10)–(12) can be written in a matrix form as,

A non-trivial solution of (13) entails,

The subsequent solution of (14) provides the dispersion relation of the periodic track structure as,

The dispersion relation is derived for the rail in the lateral direction, i.e. Wave #A; by replacing the corre-
sponding stiffness values, the same relation holds for the track in the vertical direction, i.e. Wave #B.

FE modeling.  In order to verify the flexural wave propagation behavior obtained based on the dispersion 
relation (15), a FE model of R1 placed on rigid sleeper blocks using fasteners is developed employing 2-noded 
Euler–Bernoulli beam element (BEAM4) available in the ANSYS 2020 R2 software46. In the present study, the 
optimal mesh size for the FE analysis is governed by the range of frequency, and thus the modes considered. The 
optimal mesh size is decided based on a sensitivity study of the vibration transmittance (Eq. (16)) calculated over 

(6)

S′′0 =
−α2EIyy[cosh(αl)− cos(αl)]

1− cos(αl)cosh(αl)

S′′l =
−α2EIyy[sinh(αl)sin(αl)]

1− cos(αl)cosh(αl)

M ′′
0 =

−αEIyy[sin(αl)− sinh(αl)]

1− cos(αl)cosh(αl)

M ′′
l =

−αEIyy[cosh(αl)sin(αl)− cos(αl)sinh(αl)]

1− cos(αl)cosh(αl)

(7)

S− = −S
′

0zje
−iql + S

′

l zj + S′′0ψ
+
j e−iql + S′′l ψ

−
j

S+ = S
′

0zje
iql − S

′

l zj + S′′0ψ
−
j eiql + S′′l ψ

+
j

M− = M
′

0zje
−iql +M

′

l zj −M ′′
0ψ

+
j e−iql +M ′′

l ψ
−
j

M+ = M
′

0zje
iql +M

′

l zj +M ′′
0ψ

−
j eiql −M ′′

l ψ
+
j

S+ = S− + kzzj

(8)M+ = M− − kϕy

(

ψ−
j + ψ+

j

2

)

(9)ψ−
j = ψ+

j

(10)ψ−
j − ψ+

j = 0

(11)
(

S′′0e
iql − S′′l

)

ψ−
j +

(

S′′l − S
′′

0e
−iql

)

ψ+
j +

[

2S
′

0cos
(

ql
)

− 2S
′

l − kz

]

zj = 0

(12)
(

M ′′
0 e

iql −M ′′
l +

kϕy

2

)

ψ−
j +

(

M ′′
0 e

−iql −M ′′
l +

kϕy

2

)

ψ+
j +

[

2iM
′

0sin
(

ql
)

]

zj = 0

(13)





1 −1 0

S′′0e
iql − S′′l S′′l − S′′0e

−iql 2S
′

0cos
�

ql
�

− 2S
′

l − kz

M ′′
0 e

iql −M ′′
l +

kϕy
2 M ′′

0 e
−iql −M ′′

l +
kϕy
2 2iM

′

0sin
�

ql
�











ψ−
j

ψ+
j

zj







= 0

(14)

∣

∣

∣

∣

∣

∣

1 −1 0

S′′0e
iql − S′′l S′′l − S′′0e

−iql 2S
′

0cos
(

ql
)

− 2S
′

l − kz

M ′′
0 e

iql −M ′′
l +

kϕy
2 M ′′

0 e
−iql −M ′′

l +
kϕy
2 2iM

′

0sin
(

ql
)

∣

∣

∣

∣

∣

∣

= 0

(15)
[

4M
′

0S
′′
0 sin

2
(

ql
)

]

+

[

2S
′

0cos
(

ql
)

− 2S
′

l − kz

]

[

2M ′′
0cos

(
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)

− 2M′′
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the frequency of interest and the computational effort. Based on these two factors, it is decided to discretize each 
span into ten elements.

If sufficient number of unit cells are used, a finite structure can replicate the band gap characteristics of the 
corresponding infinite structure. Since in FE modelling, an infinite number of unit cells (spans) cannot be con-
sidered, a finite structure composed of 30 unit cells is used to verify the dispersion relations. In order to replicate 
the flexural wave propagation, a harmonic rotation of the form ψi/pe

i2π ft with f = ω/2π is imposed to the left 
end of R1(in the first span). These waves propagate through the rail and the output rotation ψo/p(f ) is measured 
at the right end (last span). For generating the lateral and vertical flexural wave, the input rotation ψi/pe

i2π ft is 
separately applied about the y and z axis. The vibration transmittance Tψ(dB) for this system is defined as

Design of vibration control mechanism.  To control the flexural waves in the track for both lateral and 
vertical cases, a certain frequency range of the first pass band is considered. For an efficient control, both opti-
mal stiffness and damping properties needs to be employed for the controller. For a LLR with a given mass ratio 
σ, where σ = m

l
t,σ /(ρAl)R1 and ml

t,σ is the mass of the resonator/TMD, the optimal stiffness klt,σ and damp-
ing clt,σ determine the efficiency of control strategy. Let �HControl�∞ and �HUncontrol�∞ refer to the peak value 
of ψo/p(f ) with and without LLR, respectively. As a measure of the efficiency of LLR, a performance metric 
η = �HControl�∞/�HUncontrol�∞ is adopted, which is then minimized to obtain the optimal klt,σ and clt,σ . A lower 
value of η denotes better vibration suppression capabilities of the controlled structure. A genetic algorithm (GA)-
based optimization is adopted for the design of a given mass ratio σ as follows,

subjected to,

{UB} and {LB} represent the upper and lower bound for klt,σ and clt,σ , respectively. The values of these two bounds 
are selected such that the design variables do not adopt unrealistic values and results in faster optimization. η is 
calculated over the frequency range to be controlled. A similar GA-based optimization is used to determine the 
optimal spring-damper parameters kvt,σ and cvt,σ of the vertical localized resonator (VLR). Finally, the optimal 
parameters klt and clt for the LDR in the lateral direction are also obtained using a similar optimization.

In view of the design of TMDs, GA-based methods are widely used29,30,32. The concept of GA which is a 
population-based stochastic search method is based on the principles of natural selection and genetics47,48. The 
optimization starts by selecting a random set of possible initial configurations X0 which evolves towards the 
optimal solution in each generation. A simplified layout of the algorithm is shown in Fig. 4. From any generation 
i , the i + 1th generation is obtained by means of selection, crossover and mutation. Selection involves finding a 
set of solutions from Xi which has the best fitness values and they are included directly in the next generation. 
While crossover involves finding new solutions by combining two best solutions from Xi , mutation generates 
new solutions by applying random changes to the solutions in Xi . This process is repeated until some desired 
convergence criterion is satisfied49.

(16)Tψ = 20log10

∣

∣

∣

∣

ψo/p(f )

ψi/p(f )

∣

∣

∣

∣

(17)
{

k
l

t,σ and clt,σ

}

= argmin(η)

(18){LB} ≤

{

k
l

t,σ and c
l

t,σ

}

≤ {UB}

Figure 4.   Flow chart of genetic algorithm-based optimization for control mechanism.
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Results
Based on the dispersion relation (15), the propagation characteristics of both Wave #A and Wave #B are initially 
studied. On the basis of these results, vibration control mechanisms are designed for both the lateral and vertical 
cases. The influence of LLR/VLR and damping on the band gaps is also determined. Finally, the effectiveness of 
the optimized LLRs/LDRs and VLRs is verified by imposing a random Gaussian white noise excitation as input.

Propagation of Wave #A and Wave #B in R
1
.  In order to determine the propagation characteristics of 

Wave #A and Wave #B, the track shown in Fig. 2a is considered. The dispersion relation provided in (15) corre-
sponds to Wave #A in the undamped rail R1 . By substituting the compliance coefficients relations, the dispersion 
relation is obtained as,

The solution of Eq. (19) yields two pairs of q for each ω : ±q1 and ±q2 ; the two signs indicate the same waves 
propagating in opposite directions. The real part of (ql) represents the phase difference between two adjacent 
cells while the imaginary part shows the decay rate of the amplitude.

Based on the characteristics of q , three types of waves exist. For purely real q ( Im
(

ql
)

= 0 ), the waves of all 
frequencies travel freely through each unit cell thereby giving only pass bands in the dispersion relationships. 
Here adjacent cells vibrate in phase. Conversely, for purely imaginary q ( Im(ql)  = 0 and Re

(

ql
)

= 0 or π ), the 
amplitude of wave reduces at each unit cell and they are referred to as evanescent waves. Now the adjacent 
unit cells vibrate either in or out of phase. For a complex q , both Im

(

ql
)

 and Re
(

ql
)

 will be non-vanishing, 
( 
∣

∣Im(ql)
∣

∣ > 0 and 0 <
∣

∣Re(ql)
∣

∣ < π ) and the waves propagate and attenuate in the adjacent unit cells resulting 
in both pass and stop bands in the dispersion curves.

The properties of the laterally fastened track structure based on Table 1 are used in (19) to obtain the disper-
sion curves. Dispersion characteristics of only the first wave ( i.e.,+q1 ) travelling along the positive x direction in 
the track are investigated. The variation of  Re

(

ql
)

 and Im(ql) with the wave frequency f = ω/2π are plotted in 
Fig. 5a,b. In the frequency range [0− 1000]Hz , two band gaps are found with the frequency ranges of [0− 82]Hz 
and [541− 556]Hz , respectively, and are shown by shaded areas while remaining frequency regions indicate 
pass bands. To verify these results, an undamped FE model of the rail track consisting of 30 spans is considered. 
Tψ(dB) (from Eq. (16)) versus f  is plotted in Fig. 5c which shows a perfect correspondence with the first band 

(19)

[{cosh(αl)− cos(αl)}2]sin2
(

ql
)

+

[

cos
(

ql
)

{sin(αl)+ sinh(αl)} − {(cosh(αl)sin(αl)+ cos(αl)sinh(αl)} − kz

{

1− cos(αl)cosh(αl)

2α3EIyy

}]

[

cos
(

ql
)

{sinh(αl)− sin(αl)} − {cos(αl)Sinh(αl)− cosh(αl)sin(αl)} + kϕy

{

1− cos(αl)cosh(αl)

2αEIyy

}]

= 0

Table 1.   Properties of the rail track fastening system50.

Component Property Value

Rail

Density (ρ) 7850 kg/m3

Modulus of elasticity (E) 2.1E11 N/m2

Area of cross-section (A) 77.45E-4 m2

Second moment of inertia
Iyy 5.24E-6 m4

Izz 32.17E-6 m4

Fastening

Stiffness in lateral direction
Translational (kz) 10E6 N/m

Rotational (kϕy) 7E4 Nm/rad

Stiffness in vertical direction
Translational (ky) 35E6 N/m

Rotational (kϕz) 5E6 Nm/rad

Spacing (l) 0.625 m

Figure 5.   Dispersion curves and transmittance Tψ(dB) of Wave #A: (a) real part of the dispersion relation, Re 
(ql) ; (b) imaginary part of the dispersion relation, Im (ql) ; and (c) Tψ(dB).
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gap. However, FE model is not able to capture the second band gap. This may be due to its narrow bandwidth 
and low attenuation of waves.

Similarly, the propagation characteristics of Wave #B is investigated. The properties of the vertically fastened 
track collected in Table 1 are used with the dispersion relation (19). The vertical direction being stiffer than the 
lateral entails a higher frequency range from [0− 2000]Hz , to be considered. Two band gaps [0− 153]Hz and 
[1276− 1359]Hz are found in this range and are represented by shaded areas in Fig. 6. Figure 6c corresponds to 
the FE results and shows an excellent agreement with Fig. 6a,b, respectively.

In Figs. 5 and 6, the first band gap is due to local resonance of rail-fastening system while the second is caused 
by Bragg scattering40. The rail fastening system can be idealized as a single degree of freedom spring-mass system 
whose stiffness and mass properties respectively correspond to the translational stiffness (kz = 10E6N/m and 
ky = 35E6N/m for lateral and vertical direction, respectively) of the fastener and the mass of half the span of 
rail on either side of fastener. The ending frequency of first band gap in both lateral and vertical direction coin-
cide with the natural frequency of the corresponding spring-mass system. Here, the Bragg band gap is induced 
around the frequency governed by the Bragg condition while its starting and ending frequencies depends upon 
the translational and rotational stiffness of the fasteners.

Vibration transmission characteristics of a controlled periodic track structure.  From the results 
depicted in both Figs. 5 and 6, it is evident that the bandwidth of the first and second band gap is narrow and the 
latter also has very low attenuation. Consequently, for a wide frequency range waves can freely pass through the 
track, causing excessive noise and vibration. Thus, for both the lateral and vertical cases, it is aimed to control 
a certain frequency range of the first pass band. The full pass band is not considered as the frequency bounds 
are very large to be efficiently controlled using a SDoF TMD. Thus, the LLRs and VLRs are optimized in the 
frequency ranges [300− 500]Hz and [500− 1000]Hz , respectively.

Along this main vein, identical LLR and VLR are respectively attached to the center of each span of the rail. 
Figure 2b shows the rail R1 endowed with LLRs. A similar configuration is adopted with VLRs. For a given mass 
ratio σ , the optimal damping coefficient and stiffness are obtained as clt,σ and klt,σ for the LLR and as kvt,σ and cvt,σ 
for the VLR using (17) and (18). The optimal parameters and the corresponding performance metric η calculated 
for different values of σ are listed in Table 2. In the calculation of optimal parameters, material damping ( ξ ) of 
2% is used for the rails.

Figure 7a,b show the vibration transmittance Tψ when damping in both the rail and the resonators are 
neglected for LLR and VLR, respectively. These plots correspond to a mass ratio σ = 0.20 while the other mass 
ratios having identical variation of Tψ are not reported. In the absence of damping, a new band gap is opened 
around the natural frequency of the resonator and thus three band gaps are obtained in the frequency response 
of both the wave types. In the case of Wave #A, the band gap frequency ranges are [0− 75]Hz , [318− 398]Hz 
and [549− 618]Hz ; conversely, for Wave #B, they are [0− 147]Hz , [556− 646]Hz and [1295− 1416]Hz . Both 
are represented by shaded areas in Fig. 7a,b.

In order to verify the influence of damping of R1 and the resonators on the band gaps, four cases are examined 
for both types of wave; (i) uncontrolled R1 with material damping (ξ = 0.02) , (ii) both material damping in R1 
(ξ = 0) and damping in LLR/VLR is neglected ( klt,σ = 4.0E7, clt,σ = 0 for Wave #A and kvt,σ = 1.03E8, cvt,σ = 0 
for Wave #B), (iii) material damping (ξ = 0.02) is considered in R1 while damping in LLR/VLR is neglected 
( klt,σ = 4.0E7, clt,σ = 0 for Wave #A and kvt,σ = 1.03E8, cvt,σ = 0 for Wave #B) and (iv) both material 

Figure 6.   Dispersion curves and transmittance Tψ(dB) of Wave #B: (a) real part of the dispersion relation, Re 
(ql) ; (b) imaginary part of the dispersion relation, Im (ql) ; and (c) Tψ(dB).

Table 2.   Optimal TMD parameters for different mass ratios to control lateral and vertical flexural vibrations.

Mass ratio ( σ)

LLR VLR

k
l
t,σ(N/m) c

l
t,σ(Ns/m) η k

v
t,σ(N/m) c

v
t,σ(Ns/m) η

0.10 1.89E7 5.15E3 0.121 5.24E7 1.10E4 0.199

0.15 2.93E7 7.41E3 0.057 7.56E7 1.68E4 0.106

0.20 4.00E7 9.90E3 0.027 1.03E8 2.07E4 0.058

0.25 5.13E7 1.15E4 0.013 1.24E8 2.61E4 0.034
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damping (ξ = 0.02)  in R1 and damping of LLR/VLR is considered ( klt,σ = 4.0E7, clt,σ = 9.90E3 for Wave #A 
and kvt,σ = 1.03E8, cvt,σ = 2.07E4 for Wave #B). The transmittance Tψ of all the four cases for Wave #A is shown 
in Fig. 8a while Fig. 8b reveals the same trend for Wave #B. As damping of the structure is taken into account, 
the pass band peaks get lowered while the band gaps broaden and high damping causes the band gaps to vanish.

The effectiveness of the designed LLRs and VLRs is also compared in Fig. 8a,b for both the uncontrolled R1 
(i.e., case 1) against the case when R1 is attached to LLRs/VLRs (i.e., case iv) with σ = 0.20 . In both Fig. 8 and 
Table 2, it can be observed that a significant reduction in response is achieved for the rail R1 in the considered 
frequency range.

Similar to the case of LLR, LDR is also designed in the same frequency range. The corresponding optimal 
stiffness and damping values are obtained as 1.44N/m and 3.71E4Ns/m , respectively, with the performance 
metric η = 0.147 . For Wave #A, vibration transmittance Tψ of uncontrolled R1 is compared with LDR and LLR 
of different mass ratio σ in Fig. 9a. Similarly, Fig. 9b compares Tψ of uncontrolled R1 against R1 with VLR for 
different values of σ in case of Wave #B. The efficiency with LDR appears to be less when compared to the LLR. 

Figure 7.   Transmittance Tψ(dB) of the undamped R1 when attached with undamped resonators: (a) use of 
lateral localized resonators (LLRs) for Wave #A; and (b) use of vertical localized resonators (VLRs) for Wave #B.

Figure 8.   Effect of different damping values on the transmittance Tψ(dB) of R1 when attached with LLRs and 
VLRs, respectively: (a) propagation of Wave #A; and (b) propagation of Wave #B.

Figure 9.   Comparison between transmittance Tψ(dB) of: (a) uncontrolled R1 against R1 with LDRs and LLRs in 
lateral direction; and (b) uncontrolled R1 against R1 with VLRs in vertical direction.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18145  | https://doi.org/10.1038/s41598-021-97384-3

www.nature.com/scientificreports/

This may be due to low mass mobilization obtained with LDR. In contrast, for a LLR, the complete mass ml
t,σ 

takes part in the tuned mass damper action; instead, when R2 is connected to R1 , only a part of the mass of R2 
of a particular span is mobilized, leading to a low effective mass ratio. The LDR also has an additional damp-
ing owing to the material property of rail R2 . However, this additional damping cannot offset the effects of the 
reduced mass mobilization.

Efficacy of control mechanism.  Efficiency of the designed vibration control mechanism in both lateral 
and vertical direction is evaluated using a general loading scenario. A random Gaussian white noise rotation 
RYi/p and RZi/p about the y and z -axis- is respectively applied for lateral and vertical direction as an input to the 
left-most end of the rail and the output rotation at the right end is computed as RYo/p and RZo/p.

The input RYi/p is defined as a zero mean Gaussian process with unit standard deviation and is imposed for 
a duration of 3 s with a discretization time of 6.25E − 4 s. Figure 10a shows the realization of the input rotation 
RYi/p , whilst Fig. 10b depicts the corresponding fast Fourier transform (FFT) which points out the white noise 
characteristics.

A full transient dynamic analysis is performed by means of the Newmark-β method with the assumption of 
linear variation of acceleration between two successive time instants44 ( γ = 1/2 and β = 1/6 ). Rayleigh damp-
ing was provided to the rail and the relevant coefficients were chosen to cover a frequency range of 0 to 500 Hz 
and 0 to 1000 Hz for lateral and vertical track, respectively. Here, only the LLR/VLR with a mass ratio σ = 0.2 
is considered, and since others follow a similar pattern, they are not reported.

The response of uncontrolled R1 and R1 with LLRs is compared in Fig. 11a, while Fig. 11b reports the simi-
lar comparison for LDRs. A significant reduction in response is observed for both cases. Figure 12 shows the 
relevant FFT of the responses which further illustrates the response attenuation when properly designed LLRs 
and LDRs are used.

Similar to the lateral track, an input rotation RZi/p is applied to the vertical track for 3 s with a discretization 
time of 3.25E − 4 s. The response RZo/p of uncontrolled R1 and R1 with VLRs is compared in Fig. 13a and their 
corresponding FFT are represented in Fig. 13b.

Discussion
To study in depth, the propagation characteristics of flexural wave in rails, a phononic crystal theory-based 
metamaterial concept was utilized. The dispersion relation for the propagation of both Wave #A and Wave #B in 
an infinite periodic track was formulated by means of the Floquet-Bloch theorem, and the resulting dispersion 
characteristics were compared with FE models. Two band gaps were identified for both waves in the considered 

Figure 10.   Input rotation ( RYi/p ) applied to the rail: (a) time history; and (b) FFT.

Figure 11.   Comparison between the output response ( RYo/p ) of R1 in the lateral direction: (a) uncontrolled R1 
against R1 with LLRs; and (b) uncontrolled R1 against R1 with LDRs.
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frequency range. The first band gap is due to local resonance of rail-fastening system while the second one is 
caused by the spatial periodicity in the track40. By virtue of these band gaps, such spatially periodic structures 
act as filters and allow only waves of particular frequencies to pass through.

Further, to control vibrations within the respective first pass bands of the rail R1 , LLRs/VLRs were attached at 
the middle of each unit cell of the rail. The elimination of damping of both LLRs/VLRs and the rail R1 , entails a 
new band gap around the natural frequency of the resonator which can be observed in Fig. 7a,b. Thus, the wave 
filtering and attenuation capability of the track can be greatly enhanced with the LLRs/VLRs. At the same time, 
the introduction of resonators causes a small shift in the band gap frequencies as highlighted in Fig. 7. A reader 
can notice in Fig. 8 that when damping is taken into account in both R1 and LLRs/VLRs, the vibration transmis-
sion peaks are lowered in the pass bands. Although the use of high damping results in vanishing of band gaps 
13,14, Fig. 8 shows that a significant reduction in the amplitude of vibration8 is achieved.

Along these lines, it is apparent from Table 2 that with an increase of the mass ratio σ , the effectiveness of 
the control mechanism increases in both lateral and vertical directions. However, it also increases the optimal 
stiffness and damping values which may lead to a higher cost.

Furthermore, to control the vibration of R1 for the propagation of Wave #A, a strategy based on the novel 
concept of LDRs was employed. The rail R2 available in the full track structure was utilized as a LDR. When 
both the rails R1 and R2 are connected by spring-damper systems as in Fig. 2c, R2 acts as LDR for R1 and vice 
versa. Thus, the response of both rails can be equally reduced. From the results of Fig. 12 and the corresponding 
η values of LLRs/LDRs, it is evident that LLRs perform better than the LDRs in terms of response reduction; but 
the adoption of LDRs may be a cost-saving solution. The vibration reduction principle of the LDR is same as that 
of the conventional TMD except that in the latter, its complete mass participates in the corresponding mode, 
while the former being a multi-degrees of freedom (MDoF) system, the full mass mobilization does not occur 
for any frequency. Also, the LDR has an additional damping due to the material damping of the connected rail. 
While, a LLR was observed to create stop band around its tuned frequency, the LDR was not capable to do so. 
This is due to the fact that the LDR is a continuous system. The relevant time history analysis further illustrates 
the effectiveness of the proposed vibration control mechanisms. Conversely, the corresponding FFT reported 
in Figs. 12 and 13b demonstrates the efficiency of the designed solution in the considered frequency range for 
both lateral and vertical track, respectively.

Nonetheless, for any excitation/disturbance whose frequencies fall outside this range, the controller may not 
exhibit the intended performance. The control strategies of LLR/VLR were based on SDoF resonator systems. 
This limits their usability for a large frequency range. However, MDoF resonators may efficiently be employed 
in such situations. While in the context of LDRs, the center of rail R1 was connected to the center of rail R2 of the 
adjacent span, the study of more efficient configurations deserves further attention.

Figure 12.   Comparison between the FFT of RYo/p of the uncontrolled R1 against R1 with LLRs and LDRs in the 
lateral direction.
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