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Analysis of complex trophic 
networks reveals the signature 
of land‑use intensification on soil 
communities in agroecosystems
Juliette M. G. Bloor 1*, Sara Si‑Moussi2,3,5, Pierre Taberlet3,4, Pascal Carrère1 & 
Mickaël Hedde2

Increasing evidence suggests that agricultural intensification is a threat to many groups of soil biota, 
but how the impacts of land‑use intensity on soil organisms translate into changes in comprehensive 
soil interaction networks remains unclear. Here for the first time, we use environmental DNA to 
examine total soil multi‑trophic diversity and food web structure for temperate agroecosystems along 
a gradient of land‑use intensity. We tested for response patterns in key properties of the soil food 
webs in sixteen fields ranging from arable crops to grazed permanent grasslands as part of a long‑
term management experiment. We found that agricultural intensification drives reductions in trophic 
group diversity, although taxa richness remained unchanged. Intensification generally reduced the 
complexity and connectance of soil interaction networks and induced consistent changes in energy 
pathways, but the magnitude of management‑induced changes depended on the variable considered. 
Average path length (an indicator of food web redundancy and resilience) did not respond to our 
management intensity gradient. Moreover, turnover of network structure showed little response to 
increasing management intensity. Our data demonstrates the importance of considering different 
facets of trophic networks for a clearer understanding of agriculture‑biodiversity relationships, with 
implications for nature‑based solutions and sustainable agriculture.

Soil is a key reservoir of biological diversity on Earth, supporting complex food webs and biotic interactions that 
underlie biogeochemical cycling and the provision of fundamental ecosystem services such as plant production, 
carbon storage and the biological regulation of pest  species1,2. Indeed, biodiverse soils are considered to play a 
pivotal role in sustainable agricultural systems and food  security1,3. In recent years, widespread concerns over 
global biodiversity loss in aboveground organisms have heightened the interest in soil biodiversity patterns in 
response to global  change4–6. Nevertheless, holistic understanding of the impacts of global change pressures on 
the diversity and interactions within complex networks of soil organisms remains  limited7.

Soil systems are particularly sensitive to changes in land-use and management practices which modify soil 
physico-chemical  properties6,8. Agricultural intensification can affect soil biodiversity both directly (through 
the application of pesticides, fertilizers and tillage) and indirectly, via changes in plant diversity and production 
which affect inputs of organic matter to the  soil5,9,10. A large body of research suggests that intensive agricultural 
management practices and mineral fertilizer inputs can have negative effects on the species richness of many soil 
functional groups including earthworms, springtails, nematodes and oribatid  mites9,11–13. Increasing land-use 
intensity has also been associated with decreases in microbial  biomass10,14 and/or shifts in the relative abundance 
of different microbial groups (bacterial, archaeal and fungal taxa)15,16. For example, increased inorganic nitrogen 
inputs and organic matter with a low C:N ratio are commonly reported to reduce the fungal:bacteria ratio in 
intensively-managed  agroecosystems10,16. Such responses to agricultural intensification at the species- or func-
tional group-level can have implications for soil food web structure and trophic networks by modifying trophic 
resource availability, and hence the potential for trophic interactions and the prevalence of highly-connected taxa. 
Indeed, recent evidence suggests that intensive land-use management decreases the complexity of soil bacterial 
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 networks17, as well as that of soil networks based on a relatively-limited number of micro-/mesofaunal  groups8,9. 
However, agricultural intensification is not consistently harmful to soil fauna  diversity16,18,19, and variation or 
non-linearity in species responses may therefore lead to idiosyncratic effects on complete food web structure. 
Given that loss of interactions among species may also supersede the effects of species loss within trophic groups 
on ecosystem  function20, there is a pressing need for data on the responses of complex soil interaction networks 
to land-use intensification.

To date, the construction of comprehensive food webs and entire interaction networks for soil communities 
has encountered a number of technical difficulties. As soil organisms show a  106-fold difference in both body 
size and  abundance2, traditional taxonomic sampling methods show considerable variation in spatio-temporal 
resolution and are difficult to standardize across groups. In addition, simple co-occurrence analysis of soil organ-
isms may not accurately reflect or represent trophic  interactions21. Consequently the construction of interaction 
networks requires detailed information on the nature of interactions and predator–prey relationships between 
different taxonomic groups which may be difficult to acquire for complex  communities22. Over the last dec-
ade, environmental DNA and metabarcoding technology (DNA taxonomy combined with high-throughput 
DNA sequencing) have emerged as a promising tool for soil biodiversity  monitoring23–25. Environmental DNA 
(eDNA) refers to the DNA present in environmental samples (such as soil, water or air), and includes a mixture 
of genomic DNA from both living cells/organisms (e.g. from skin, mucus or secretions) as well as extracellular 
DNA linked to cell death and degradation. Compared to the traditional description of taxonomic-based trophic 
networks, eDNA allows a faster and efficient construction of more comprehensive networks based on presence 
 data23,26. Moreover, the identification and assignment of trophic groups in complex networks now benefits from 
the increasing availability of open knowledge bases on biotic  interactions27 and functional  guilds28. It is therefore 
possible to combine inherently-qualitative eDNA data with information on trophic interactions, and overcome 
some of the traditional limitations of soil food web analysis. However, although eDNA metabarcoding has clear 
potential to provide novel insights into the drivers of changes in soil biotic communities, this methodology has 
rarely been tested in the context of agricultural  intensification29.

Here we use eDNA metabarcoding, data mining on trophic interactions and machine-learning in order to 
infer comprehensive, interaction-based soil food webs (Fig. 1), and to examine the trophic structure of soil 
communities for sixteen agroecosystems along a gradient of agricultural pressure (from arable crops to grazed 
permanent grasslands) in a long-term management trial. Analyses of food web properties and trophic networks 
were used to assess the potential for different network metrics to discriminate between agricultural practices, and 
to determine the sensitivity of trophic networks to land-use intensity. Our overarching hypothesis was that land-
use intensification would decrease the trophic complexity of soil communities. Specifically, we hypothesized that 
increasing land-use intensity would reduce trophic network size, modifying soil food web connectance (number 
of realized interactions) and average centrality (prevalence of highly-connected species). In addition, we exam-
ined impacts of increasing land-use intensity on energy-flow pathways within trophic networks, predicting an 
increase in the dominance of bacteria over fungi but a decrease in the importance of parasitic interactions (the 
latter response due to a decrease in trophic resources). Finally, we explored the linkages between multi-trophic 
β-diversity (i.e. turnover in trophic group networks between fields) and land-use intensification, in order to test 
for possible divergence between the responses of local assemblages (α-diversity) and compositional turnover 
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Figure 1.  Inference of trophic network structure for the present study using Next‐Generation Sequencing 
technologies and a database of ecological interactions.
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to agricultural pressure. Previous work on a limited number of soil trophic groups has suggested that this phe-
nomenon occurs in temperate grassland communities along a land-use intensification  gradient19. Such empirical 
evidence could demonstrate the role of biotic interactions in determining the outcome of ecosystem responses 
to land-use intensification, and highlight which network metrics may be useful indicators of soil biodiversity 
in managed ecosystems.

Results
Taxonomic composition and trophic groups. Metabarcoding data yielded a final database (and 
metaweb) comprised of 21,667 pairwise interactions (6% parasitic, 0.5% symbiotic), covering 99.7% of the taxa 
recorded (total of 1049 families/species/genera). 981 taxa were retained after filtering marine organisms and taxa 
from non-temperate terrestrial ecosystems (Supplementary Data table). Assessment of the taxonomic diversity 
among all fields showed that 14%, 48% and 38% of OTUs were assigned to family, genus and species level respec-
tively. Across all fields, five out of 44 phyla represented about 50% of all taxa. The Proteobacteria were the most 
represented phylum (17.1% of the taxonomically-identified sequences), followed by Arthropoda, Actinobac-
teria, Nematoda and Ciliophora comprising 9.1%, 7.7%, 7.7% and 6.5% of all taxa respectively. On average we 
detected 369 taxa in each experimental field. Overall, 79.1% of phyla and 36% of families were found to be com-
mon across all experimental fields. Trophic inference generated a total of 16 trophic groups across experimental 
fields (range 12–16 per field, Supplementary Fig. S1).

Food web responses to land‑use intensification. Assessment of food web properties indicated con-
siderable variation in diversity and structure across experimental fields (Fig. 2). Eight out of the 12 network 

Figure 2.  Relationships between land-use intensity and average trophic network properties across experimental 
fields. Regression lines and 95% CI are shown where significant. Network metrics are given in Table 2. The 
colour code emphasizes the land-use intensity gradient from least intensive (purple) to most intensive (yellow).
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indices representing α-diversity and network topology showed significant linear responses to agricultural inten-
sification gradient (Fig. 2, Supplementary Table S1). Total number of trophic groups and trophic group equita-
bility (entropy) declined along the gradient of intensification, as did average node degree, omnivory level, link 
density and prevalence of parasitic links. The magnitude of decrease in response to increasing land-use intensity 
was greatest for average degree, trophic group entropy, network link density and parasitic links (standardized 
effect sizes, SES, ranging from − 0.15 to − 0.22); decreases in trophic group richness and omnivory index were 
more limited (SES − 0.03 and − 0.10 respectively). In contrast, both the bacteria-to-fungi path ratio and the 
detritivory-to-root herbivory path ratio increased along the gradient of intensification, with a two-fold increase 
from values in ‘low-intensity’ fields to those at the ‘high-intensity’ end of the gradient (SES of 0.16 and 0.09 for 
the bacteria-to-fungi path ratio and the detritivory-to-root herbivory path ratio respectively). Total number of 
taxa (node richness), mean trophic level, mean and maximum path length showed no response to the agricul-
tural intensification gradient (Fig. 2).

Analysis of network dissimilarity across experimental fields indicated a significant turnover in node compo-
sition between fields (DF = 15, F = 10.08, p < 0.01) and sites (DF = 3, F = 3.33, p < 0.01) for taxa-based food webs 
(Fig. 3), but no significant turnover in trophic group networks. Permanent grassland fields at the low end of the 
land-use intensity gradient were characterized by greater β-diversity compared to the more-intensively managed 
fields at the Mons and Lusignan sites (Fig. 3), but network dissimilarity showed no clear relationship with land 
use intensity (LUI). Site rankings along PCoA1 were negatively correlated to soil pH across experimental fields 
(r = − 0.96, p < 0.05), but were unrelated to any other pedoclimatic variables.

Discussion
The construction of data-based food webs including multiple interaction types is essential for the accurate 
appraisal of ecosystem vulnerability to global  change23,30,31. Recent work on complex aboveground trophic net-
works has shown that agricultural intensification drives changes in network structure and  robustness32, but 
studies of complex soil networks are lacking and current understanding of soil network responses to land-use is 
based on a relatively-limited number of taxonomic groups and network  metrics8,9. Our study of complex soil food 
webs generated by eDNA metabarcoding in 16 agricultural fields along a broad LUI gradient resulted in three 
major findings: (1) trophic interaction networks show a range of consistent qualitative responses to agricultural 
intensification; (2) soil network complexity is more sensitive to agricultural intensification than network size; (3) 
local assemblages (metrics of α-diversity) show stronger statistical relationships with agricultural intensification 
than does composition turnover (β-diversity). Together our results bring new insights into the importance of 
different facets of food web structure for biodiversity preservation, and the contribution of biological interactions 
to agriculture-biodiversity relationships.

Five out of nine network metrics describing node, community and network properties showed significant 
negative relationships with land-use intensity in our study, providing support for the hypothesis that increasing 
management intensity decreases trophic diversity and the complexity of soil interaction networks. In general, we 
found that the magnitude of negative effects induced by our LUI gradient was greater for soil network complexity 

Figure 3.  Principal Coordinates Analysis based on food web dissimilarities for interaction networks 
constructed with Operational Taxonomic Units (OTUs) in experimental fields. Colours illustrate the gradient of 
land-use intensity (LUI) across experimental fields. Black diamonds represent the barycenter of each study sites.
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than network size; agricultural intensification was associated with markedly-simpler networks (lower interac-
tions and distribution of interactions between nodes) compared to relatively-limited changes observed in trophic 
group richness. Such a loss of network complexity and cohesion has previously only been demonstrated for soil 
microbial networks in relation to cropping  intensity17,33, although our observed negative relationship between 
link density and LUI also matches results from comparisons between soil networks in grasslands and arable 
crop  systems8. Reduced diversity of interactions may stem from less structurally-complex habitats, and shifts in 
environmental and/or biotic filtering under intensive management  practices34,35. Decreases in trophic network 
complexity are considered to have repercussions for community stability and soil functioning in a changing 
 environment31, and recent work with combined above- and belowground trophic groups has also demonstrated 
linkages between network complexity and the provision of ecosystem  services36.

We found greater effects of LUI on trophic group richness/equitability compared with taxa richness, in line 
with the idea that species number is less critical for soil ecosystem function than functional diversity due to 
functional redundancy in  soils37. Where newly-occurring or “lost” species exhibit unique functional attributes, 
changes in functional richness can markedly exceed the change in taxonomic diversity. In systems with relatively 
low functional redundancy, increases in LUI may therefore cause strong functional shifts. Limited responses of 
taxa richness to LUI observed in the present work could partly reflect the dominance of smaller-bodied organ-
isms in our food webs, since previous studies have suggested that larger soil organisms and top predators show 
greater sensitivity to agricultural intensification compared with smaller-sized soil  biota7. Low rates of occurrence 
of large top predators in our dataset may also contribute to the limited responses of average path length and mean 
trophic level to agricultural intensification in our soil networks; additional studies with biodiversity ‘soups’ and 
complementary sampling methods could help test the generality of our  findings38.

Energy-flow pathways within trophic networks reflect the quantity and quality of resources, stochiomet-
ric constraints and ‘top-down’ regulatory  processes39,40. In the present study, increasing management intensity 
increased the relative importance of both the bacterial energy channel compared to the fungal channel, and the 
detrital energy channel compared to the root herbivory channel. These results are consistent with changes in plant 
biomass allocation and rates of decomposition, root exudation and nitrogen mineralization under agricultural 
intensification, which promote the detrital energy  channel39,41, but  see10. Moreover, the ‘slow cycle’ fungal energy 
channel tends to be more dominant in extensively-managed systems where the ratio of carbon to nitrogen (C:N) 
in organic matter is high. Although some interconnections between energy channels  exist42, dominance of fungal, 
bacterial or root energy channels in soil trophic networks has significant implications for subsequent nutrient 
turnover rates and ecosystem  stability39. Our results highlighted a decrease in the prevalence of parasitic interac-
tions with increasing agricultural pressure. This response pattern likely reflects a decrease in trophic resources 
(vector abundance) due to the increased use of pesticides and fertilizers along our LUI gradient. Data on soil 
parasites and agricultural intensification is scarce in the literature, but decreases in the prevalence of parasitic 
nematodes and mites have previously been observed following the conversion of grassland to arable  land12.

In contrast to our metrics of network size and structure or energy channels, turnover in trophic networks 
(β-diversity of nodes) showed no clear pattern with increasing LUI across our study systems. Moreover, we found 
no significant turnover in trophic groups, supporting the idea of a common “backbone” of interactions across 
food  webs43. These results suggest that agricultural intensification has divergent effects on local interaction net-
works and the network turnover of soil food webs across different sites, with greater effects of LUI on α- rather 
than β-diversity. Indeed, the marked responses of local assemblages (α-diversity) to agricultural intensification in 
the present study could have served as a stabilizing mechanism for broader-scale patterns of  diversity44. Limited 
β-diversity responses and absence of biotic homogenization to LUI may also be linked to confounding effects of 
pedoclimatic  conditions15,45, or to functional redundancy and phylogenetic niche  conservatism46. Irrespective of 
the underlying mechanisms, insensitivity of beta diversity to increasing agricultural pressures may promote the 
buffering capacity of soil food webs against land-use change, with cascading effects on the connections between 
detritus-based and primary production-based food webs, and the regulation of aboveground and belowground 
 dynamics40.

With regards to our methodological approach, eDNA metabarcoding can meet challenges faced by traditional 
taxonomic monitoring, use high taxonomic resolution to confront current paradigms of ecosystem dynamics, 
and provide a valuable tool to support evidence-based decision  making47. In the present study we show that 
eDNA metabarcoding is an effective technique for visualizing complex soil communities, and for analysing the 
structural and functional relationships within soil food webs. To date, very few studies on soil food web structure 
integrating microbes, micro- and mesofauna have documented large numbers of taxa (> 500), and those rare 
examples involved spatially-distinct and labour-intensive diversity  protocols8. Not only were we able to identify 
a very high number of taxa from microbes and key micro- and meso-faunal groups using a simple field protocol, 
but the analysis of standard soil samples also provided good assurance of species/ taxa co-occurrence in space.

Unlike bulk-community DNA sampling which targets whole organisms, eDNA samples detect biological 
signals in the environment from traces of intracellular and extracellular DNA. Given that DNA fragments may 
persist for periods ranging from several days to several months in the environment, this increases the temporal 
uncertainty associated with the diversity  assessment47. It is therefore possible that taxa detected in soil samples in 
the present study were not all present at exactly the same time, and hence our food webs represent the potential 
complexity of trophic interactions in our experimental fields, rather than a snapshot of trophic interactions at 
a single date. Further work using additional sampling dates, and combined bulk- and eDNA sampling, would 
provide a clearer picture of the degree of temporal uncertainty associated with eDNA metabarcoding results at 
our study sites.

Finally, quantifying land-use intensity is a non-trivial issue in studies of agricultural intensification, since 
multiple processes relating to inputs, outputs and mechanical disturbance need to be  considered48,49. As yet, 
there is no widely-accepted, purely quantitative measure for ranking a set of agricultural fields along a gradient 
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of management intensity, although indices of LUI do exist for functionally-similar agroecosystems such as 
 grasslands19,48 or arable cropping  systems33. In the present study, we used an unweighted, multicriteria  approach48 
and calculated a continuous LUI index based on management practices over the preceding 6-year period. Our 
approach and choice of criteria allowed the positioning of very different agroecosystems (permanent grasslands, 
annual cropping systems) along a standardised gradient, and the site ranking obtained was subsequently validated 
by expert opinion (ANAEE-F ACBB site managers). Our calculation of the intensification gradient also provided 
an objective method to quantify the differences in agricultural intensification between sites, which is not pos-
sible to achieve based on expert knowledge alone. Of course, the absolute values of such an index will change 
depending on the exact criteria used and the cohort of sites examined, making direct comparisons between 
studies difficult. The development and validation of a standardised, additive index for use across the entire range 
of cropping systems and managed grasslands would facilitate the identification of broad-scale response patterns 
and assessment of the relative importance of drivers of agricultural intensification in future studies.

Conclusion
Together, the results of this study extend previous work on multiple taxa and land-use, and highlight the need 
to consider the response patterns of complex trophic networks for a clearer understanding of linkages between 
biodiversity and agricultural practices. Our results indicate that agricultural intensification has profound impacts 
on trophic interactions and soil trophic network structure, driving decreases in trophic group diversity (richness, 
equitability) and complexity of interactions (average degree, link density). Observed changes in energy flow 
pathways were consistent with shifts in resource availability (labile C, living roots) and increases in pesticide use 
due to agricultural intensification. In contrast, eDNA metabarcoding did not highlight sensitivity to agricultural 
intensification for either taxa richness, maximum path length or mean trophic level. Soil trophic networks in 
our studied agroecosystems showed divergent responses of α- and β-diversity to intensification, and we also 
found evidence for a common backbone of trophic group interactions across food webs, with implications for 
both ecological assembly rules and diversity conservation strategies. Although more broad-scale studies which 
include the temporal dynamics of complex soil food webs are needed, the present results reveal that agricultural 
intensification simplifies entire soil trophic networks, with likely consequences for biodiversity-ecosystem func-
tion relationships.

Methods
Field sites and sampling. Sixteen experimental fields were selected from within four sites of the long-
term ANAEE-F ACBB agroecosystems management trial in France (http:// www. soere- acbb. com/): Mons (49° 
52′ N, 3° 1′ E, 85 m a.s.l.), Lusignan (46° 25′ N, 0° 7′ E, 151 m a.s.l.), Theix (45° 43′ N, 3° 1′ E, 880 m a.s.l.) and 
Laqueuille (45° 38′ N, 2° 44′ E, 1100 m a.s.l.). These four temperate sites cover a range of soil types and climate 
conditions, and represent a gradient of management intensity from permanent grasslands to arable cropping 
systems (Table 1). At each site, we selected fields in order to generate a broad gradient of management intensity 
across sites (Table 1); at the time of the study, fields had been subjected to experimental treatments for over 
10 years. The gradient of management intensity for the 16 fields was quantified using a multi-criteria evalua-
tion based on soil tillage (depth, frequency), N inputs (mineral N, N fixation), C exports (biomass harvests, 

Table 1.  Soil type, management and land-use intensity (LUI) ranking for the sixteen experimental fields in 
France. Values for LUI are based on a multicriteria evaluation (Supplementary Fig. S2); more positive values 
indicate more intensive management practices. Mean annual temperature and rainfall of sites as follows: Mons: 
11.7 °C, 614 mm; Lusignan: 11.7 °C, 800 mm; Theix: 8.7 °C, 780 mm; Laqueuille: 8 °C, 1000 mm.

Site Soil type Agroecosystem Management LUI

Mons Silty loam (Luvisol) Arable crops (6-years rotation: spring pea; winter wheat; 
rapeseed; spring barley; maize; winter wheat)

Conventional tillage, reference N inputs 1.70

Conventional tillage, reduced N inputs 1.46

Reduced tillage -0.11

Reduced tillage, residue removal 0.26

Lusignan Loamy clay (Cambisol)

Arable crops (3-years rotation: maize; wheat; barley) Conventional tillage, reference N inputs 2.14

Crop-grass rotation (6-years rotation: maize; wheat; barley; 
3-years sown grassland) Tillage for crops, mown grassland, reference N inputs 1.52

Grass-crop rotation (9-years rotation: 6-years sown grassland; 
maize; wheat; barley)

Tillage for crops, mown grassland, reference N inputs (2 
fields, one with additional pesticide treatments)

0.98

0.87

Tillage for crops, mown grassland, reduced N inputs 0.62

Grass-crop rotation (9-years rotation: 6-years sown grassland 
with legumes; maize; wheat; barley) Tillage for crops, Grazed grassland 0.57

Theix

Sandy clay loam (Cambisol) Mown permanent grassland
Reference NPK inputs  − 1.05

No fertilizer inputs − 1.91

Clay loam
(Cambisol) Mown permanent grassland

Reference NPK inputs − 1.13

No fertilizer inputs − 1.96

Laqueuille Silt loam
(Andosol) Grazed permanent grassland

High stocking rate, Reference N inputs − 1.86

Low stocking rate, no N inputs − 2.08

http://www.soere-acbb.com/
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residue management) and frequency of crop protection treatments for the period 2010–2016; fields were ranked 
according to their scores from the first axis of a principal components analysis using the management criteria 
(Supplementary Fig. S2).

Soil sampling was carried out at a standardized plant phenological stage across sites i.e. the peak of the plant 
vegetative growing period in 2016 (mid-May to mid-June depending on the plant phenology at each site). Four 
plots of 0.25  m2 were selected for sampling in each experimental field; plots were randomly-positioned in each 
quadrant of the field, at least 10 m apart and at least 5 m away from the edge of the field. One soil core (10 cm 
depth, 8 cm diameter) was taken from each plot and coarsely-sieved to remove stones/large debris (heat-sterilized 
sieve, 4 mm mesh size), providing a total of 64 soil cores. A 15 g sample of freshly-sieved soil from each soil core 
was placed in a sterile plastic container and preserved with silica gel within 30 min of field collection to prevent 
microbial growth prior to DNA  extraction50.

Molecular analysis and sequence curation. Soil biodiversity was assessed with DNA metabarcoding 
using eight DNA markers. Three markers targeted regions of the ssu rRNA gene in the Bacteria and Eukaryota 
domains, whereas five additional markers focused on earthworms, collembola, oligochaetes, insects and vascular 
plants (primer details for Bact02, Coll01, Euk02, Euk03, Inse01, Lumb01, Oligo01, Sper01 given in Supplemen-
tary Table S2). Extracellular DNA was extracted from 15 g of soil following methods described  previously51. 
Briefly, soil was extracted with a saturated phosphate buffer  (Na2HPO4; 0.12 M; pH 8); sub-samples of the slurry 
were centrifuged, and the resulting supernatant was used as starting material for the NucleoSpin Soil kit (Mach-
erey–Nagel, Düren, Germany), following manufacturer’s instructions but skipping the lysis step. The resulting 
DNA extracts were recovered in 100 µL and diluted ten times. Each diluted extract was then PCR-amplified, with 
all the above primer pairs. All PCR were carried out in a final volume of 20 μL containing 2 μL of DNA extract. 
The amplification mixture consisted of 10µL of AmpliTaq Gold 360 master mix (Applied Biosystems), 0.5 μM of 
each primer and 0.16 µL (20 mg/mL) of bovine serum albumin (BSA, Roche Diagnostic). Polymerase activation 
was performed at 95 °C for 10 min, followed by 32–45 cycles at 95 °C for 30 s (denaturation), 45–55 °C for 30 s 
(primer annealing) and 72 °C for 60–90 s (extension), followed by a final elongation for 7 min at 72 °C.

We carried-out four technical PCR replicates for each sample and for each primer pair. In order to mini-
mize possible biases in the experimental workflow, each technical replicate for a primer pair included three 
extraction controls, 12 blanks (no primer, no template), nine PCR negative controls (ultrapure water), and 
eight positive controls (positive controls only for Sper01 and Euka02 primer pairs). PCR products were puri-
fied using the MinElute PCR purification kit (Qiagen GmbH). Library preparation was performed using the 
MetaFast protocol by Fasteris (https:// www. faste ris. com/ dna/?q= conte nt/ metaf ast‐proto col‐ampli con‐metag 
enomi c‐analy sis), which significantly limits the tag‐jump  problem50. For Bact02, sequencing was performed by 
2 × 250‐bp paired‐end sequencing on the Illumina MiSeq platform, while for all other primer pairs sequencing 
was performed by 2 × 125‐bp paired‐end sequencing on the Illumina HiSeq 2500 platform using default settings 
at Fasteris. Sequence data were processed using OBITools  software52 to (1) assemble and dereplicate reads, (2) 
match sequences to the original samples, (3) remove noise from the data by removing singletons, low-quality 
sequences, putative PCR/sequencing artefacts (criteria used to remove low-quality  reads53), and (4) taxonomi-
cally-assign the remaining sequences. At the end of the data curation process we obtained a total of 5880 robust 
OTUs (Operational Taxonomic Units).

Construction of trophic interaction networks and inference of trophic groups. Heuristic food 
webs were constructed from DNA-generated taxa  lists54; we identified all possible pair-wise trophic interactions 
using existing structured trophic knowledge, information mined from the literature and a rule-based approach 
(Fig. 1). We first determined the complete taxonomic tree for the OTUs using DNA reference databases and the 
Name Parser API of the Global Biodiversity Information Facility (GBIF)55. We next created a database of pair-
wise biotic interactions (predation, parasitism, symbiosis) for our complete taxonomic tree by compiling infor-
mation from available databases, including NemaGuild,  FunGuild28, BETSI (http:// betsi. cesab. org/),  GloBI27 and 
systematic literature searches. In a limited number of cases where data was lacking, we generalized the informa-
tion on interactions within families. For example, in the absence of available data on species-level interactions, 
members of a fungivorous genus of nematodes were assumed to feed on all fungal taxa in the network. The 
database was trimmed based on species co-occurrence and habitat data; pairwise ‘resource-consumer’ interac-
tions were only included for organisms known to co-occur in a soil layer (soil surface, 0–10 cm, > 10 cm). The 
database of plant and animal taxa was also trimmed based on geographical range, targeting taxa known to occur 
in temperate Europe (taxa of microorganisms were considered to have a broad geographical distribution). Local 
food webs for each plot were extracted from the metaweb based on the list of taxa present in the four sets of DNA 
sequences for each plot.

Given that many taxa share the same sets of resources and consumers, partitioning food webs into trophic 
groups can be a useful tool to better identify network structure and  function56,57. Aggregating taxa into trophic 
groups allows the simplification of complex food webs whilst preserving the information content of the initial 
network structure. With this approach, information on intra-specific plasticity is lost, but we assume that inter-
specific plasticity is greater than intraspecific plasticity and drives network structure responses at the trophic 
group level. We assigned taxa to trophic groups using an automatic inference technique and machine-learning 
approach to avoid limitations of subjective, user-defined  groups58; stochastic block models (SBM)59 were fitted 
to the heuristic metaweb using the “blockmodels” package in R (Supplementary Fig. S3). This approach gener-
ates trophic groups based on a common resource/food source or predator irrespective of taxonomic affiliation 
(for example, nematodes and protists which feed on the same bacterial groups will be clustered together). The 
optimal number of groups was determined using the Integrated Complete-data Likelihood criterion (ICL)60. 

https://www.fasteris.com/dna/?q=content/metafast‐protocol‐amplicon‐metagenomic‐analysis
https://www.fasteris.com/dna/?q=content/metafast‐protocol‐amplicon‐metagenomic‐analysis
http://betsi.cesab.org/
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In addition to partitioning taxa into groups, the stochastic block model ‘learns’ the probability of interactions 
between trophic groups that generate the trophic group metaweb. Heuristic food webs based on DNA metabar-
coding have previously been validated as a powerful tool in freshwater  systems61.

Statistical and network analyses. Standard metrics in connection with α-diversity and network robust-
ness were used to describe the topology and properties of the 64 food webs inferred in the 16 experimental 
fields (Table 2, see Supplementary Fig. S4 for correlations between indices); in particular we focused on trophic 
network size, diversity of taxa or trophic groups (α-diversity), connectance, centrality and the nature of energy 
flow pathways (an indicator of network functioning) using the R package Netindices. In addition, we assessed 
multi-trophic β-diversity using the Simpson dissimilarity index and calculations of pairwise network dissimi-
larity between the 16 experimental fields. We computed the turnover in the composition (nodes) of both the 
trophic group networks and the taxa-based food webs using Hill  numbers62) and the R package econetwork. We 
then applied generalized linear mixed effect models (GLMM) to test whether individually, these characteristics 
differed along our experimental land-use intensity gradient. Land-use intensity score and site identifier were 
used as fixed and random effects respectively:

To visualize the overall effects of land-use intensity on β-diversity, we computed the first two components 
of the principal coordinate analysis (pcoa function from package ape) on the matrix of plot-by-plot network 
dissimilarities (Hill number = 0).

Data availability
The complete list of taxa and associated trophic groups is provided as a data file. The datasets generated during 
and/or analysed during the current study are available on request. All soil samples were collected with permis-
sion from ANAEE-F ACBB site managers, and in accordance with ANAEE-F ACBB guidelines. No plant parts 
were used in the present study.

Received: 16 March 2021; Accepted: 20 August 2021

References
 1. Brussaard, L., Ruiter, P. C. & Brown, G. G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 121, 233–244 

(2007).
 2. Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).

mi ∼ LUIi + 1|sitei

Table 2.  Network metrics applied at experimental fields to assess soil biodiversity, trophic complexity and 
energy pathways of the soil food  web63,64. The interaction network is described by nodes (N), which are 
either OTUs or trophic groups (G), and edges (L, links from a resource node to a consumer node). Edges are 
described by their type (predator, parasitic, symbiotic), and weighted by the probability of occurrence of the 
resource and consumer pair.

Metric Scope Definition Biological relevance

Node richness Community Number of nodes S Food web size. Indicator of potential relationships

Trophic group richness Community Number of distinct trophic groups present in a commu-
nity.|G| Functional diversity

Trophic group entropy Community Distribution of read counts among groups in an observed 
community using Hill numbers framework Indicator of equitability

Average degree Node Number of interactions in which the OTU or group is 
involved Centrality index: indicator of complexity

Mean trophic level Node
Ordinal classification based on the relative position in the 
network, defined as 1 + the weighted average of the trophic 
levels of its resources/hosts

Centrality index: Indicator of the variety of trophic levels/ 
resources exploited as a food source

Omnivory level Node Variety in the trophic levels of a consumer’s food Centrality index: Indicator of the degree of specialization

Link density Network Average number of edges per node
L/S Connectivity index: indicator of quantity of relationships

Average path length Network Mean distance (d) between any pair of nodes in the network
Σi,j  dij/S2

Connectivity index: indicator of trophic redundancy and food 
web resilience

Maximum path length Network Longest path between any pair of nodes in the network
max┬((i,j) ∈ 1..S)〖d_ij 〗 Connectivity index: indicator of network length

% parasitic links Energy pathways Proportion of total links that are parasitic Diversity of interaction types

Bacteria:Fungi path ratio Energy pathways Ratio of decomposer-bacteria chains to saprotroph-fungi 
total pathway lengths Indicator of bacterial dominance and N cycling efficiency

Detritivore:Herbivore path ratio Energy pathways Ratio between detritivore and root herbivory total pathway 
lengths

Indicator of importance of the detrital food path (dead vs. 
living organisms as a resource)

Node turnover
(hill number: q = 0, 1,2) Network stability Turnover in the composition of the network (OTU or group) β-diversity



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18260  | https://doi.org/10.1038/s41598-021-97300-9

www.nature.com/scientificreports/

 3. El Mujtar, V., Muñoz, N., Mc Cormick, B. P., Pulleman, M. & Tittonell, P. Role and management of soil biodiversity for food security 
and nutrition; where do we stand?. Glob. Food Secur. 20, 132–144 (2019).

 4. Bardgett, R. D. & Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
 5. Kardol, P. & De Long, J. R. How anthropogenic shifts in plant community composition alter soil food webs. F1000Res 7, 4 (2018).
 6. Smith, P. et al. Global change pressures on soils from land-use and management. Glob. Change Biol. 22, 1008–1028 (2016).
 7. Geisen, S. et al. A methodological framework to embrace soil biodiversity. Soil Biol. Biochem. 136, 107536 (2019).
 8. Creamer, R. E. et al. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as 

affected by land use across Europe. Appl. Soil. Ecol. 97, 112–124 (2016).
 9. Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).
 10. de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. PNAS 110, 14296–14301 

(2013).
 11. Ponge, J. F. et al. Collembolan communities as bioindicators of land-use intensification. Soil Biol. Biochem. 35, 813–826 (2003).
 12. Postma-Blaauw, M. B., de Goede, R. G. M., Bloem, J., Faber, J. H. & Brussaard, L. Soil biota community structure and abundance 

under agricultural intensification and extensification. Ecology 91, 460–473 (2010).
 13. Decaëns, T. & Jiménez, J. J. Earthworm communities under an agricultural intensification gradient in Colombia. Plant Soil 240, 

133–143 (2002).
 14. Dequiedt, S. et al. Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and manage-

ment. Globa. Ecol. Biogeogr. 20, 641–652 (2011).
 15. Thomson, B. C. et al. Soil conditions and land-use intensification effects on soil microbial communities across a range of European 

field sites. Soil Biol. Biochem. 88, 403–413 (2015).
 16. de Graaff, M. A., Hornslein, N., Throop, H., Kardol, P. & van Diepen, L. T. A. Effects of agricultural intensification on soil biodi-

versity and implications for ecosystem functioning: A meta-analysis. Adv. Agron. 155, 1–44 (2019).
 17. Karimi, B. et al. Biogeography of soil bacterial networks along a gradient of cropping intensity. Sci. Rep. 9, 3812 (2019).
 18. Wardle, D. A., Nicholson, K. S., Bonner, K. I. & Yeates, G. W. Effects of agricultural intensification on soil-associated arthropod 

population dynamics, community structure, diversity and temporal variability over a seven-year period. Soil Biol. Biochem. 31, 
1691–1706 (1999).

 19. Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 
(2016).

 20. Valiente-Banuet, A. et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 
(2015).

 21. Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A. & Navarrete, S. A. Species co-occurrence networks: Can they reveal 
trophic and non-trophic interactions in ecological communities?. Ecology 99, 690–699 (2018).

 22. Gray, C. et al. FORUM: Ecological networks: The missing links in biomonitoring science. J. Appl. Ecol. 51, 1444–1449 (2014).
 23. Evans, D., Kitson, J., Lunt, D., Straw, N. & Pocock, M. Merging DNA metabarcoding and ecological network analysis to understand 

and build resilient terrestrial ecosystems. Funct. Ecol. 30, 1904–1916 (2016).
 24. Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: 

A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, 00547 (2019).
 25. Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).
 26. Vacher, C. et al. Chapter one—Learning ecological networks from next-generation sequencing data. Adv. Ecol. Res. 54, 1–39 (2016).
 27. Poelen, J. H., Simons, J. D. & Mungall, C. J. Global biotic interactions: An open infrastructure to share and analyze species-

interaction datasets. Ecol. Inform. 24, 148–159 (2014).
 28. Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 

20, 241–248 (2016).
 29. Dopheide, A. et al. Rarity is a more reliable indicator of land-use impacts on soil invertebrate communities than other diversity 

metrics. Elife 9, e52787 (2020).
 30. García-Callejas, D., Molowny-Horas, R. & Araújo, M. B. Multiple interactions networks: Towards more realistic descriptions of 

the web of life. Oikos 127, 5–22 (2018).
 31. Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94, 16–36 (2019).
 32. Morrison, B. M. L., Brosi, B. J. & Dirzo, R. Agricultural intensification drives changes in hybrid network robustness by modifying 

network structure. Ecol. Lett. 23, 359–369 (2020).
 33. Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. 

ISME J. 13, 1722–1736 (2019).
 34. Thakur, M. P. & Wright, A. J. Environmental filtering, niche construction, and trait variability: The missing discussion. Trends Ecol. 

Evol. 32, 884–886 (2017).
 35. Xue, L. et al. Long term effects of management practice intensification on soil microbial community structure and co-occurrence 

network in a non-timber plantation. For. Ecol. Manag. 459, 117805 (2020).
 36. Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. PNAS https:// 

doi. org/ 10. 1073/ pnas. 20162 10117 (2020).
 37. Heemsbergen, D. A. et al. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306, 

1019–1020 (2004).
 38. Erdozain, M. et al. Metabarcoding of storage ethanol vs. conventional morphometric identification in relation to the use of stream 

macroinvertebrates as ecological indicators in forest management. Ecol. Indic. 101, 173–184 (2019).
 39. Moore, J. C., McCann, K., Setälä, H. & De Ruiter, P. C. Top-down is bottom-up: Does predation in the rhizosphere regulate above-

ground dynamics?. Ecology 84, 846–857 (2003).
 40. Wollrab, S., Diehl, S. & De Roos, A. M. Simple rules describe bottom-up and top-down control in food webs with alternative energy 

pathways. Ecol. Lett. 15, 935–946 (2012).
 41. de Vries, F. T. & Wallenstein, M. D. Below-ground connections underlying above-ground food production: A framework for 

optimising ecological connections in the rhizosphere. J. Ecol. 105, 913–920 (2017).
 42. de Vries, F. T. & Caruso, T. Eating from the same plate? Revisiting the role of labile carbon inputs in the soil food web. Soil Biol. 

Biochem. 102, 4–9 (2016).
 43. Bramon Mora, B., Gravel, D., Gilarranz, L. J., Poisot, T. & Stouffer, D. B. Identifying a common backbone of interactions underlying 

food webs from different ecosystems. Nat. Commun. 9, 2603 (2018).
 44. Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. 

Evol. 31, 67–80 (2016).
 45. Malik, A. A. et al. Land-use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 3591 (2018).
 46. Jia, Y. & Whalen, J. K. Functional redundancy and phylogenetic niche conservatism in the soil microbial community. Pedosphere 

30, 18–24 (2020).
 47. Bush, A. et al. DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. Proc. Natl. Acad. 

Sci. 117, 8539–8545 (2020).
 48. Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic 

Appl. Ecol. 13, 207–220 (2012).

https://doi.org/10.1073/pnas.2016210117
https://doi.org/10.1073/pnas.2016210117


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18260  | https://doi.org/10.1038/s41598-021-97300-9

www.nature.com/scientificreports/

 49. Ruiz-Martinez, I., Marraccini, E., Debolini, M. & Bonari, E. Indicators of agricultural intensity and intensification: A review of 
the literature. Ital. J. Agron. 10, 74–84 (2015).

 50. Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (OUP Oxford, 
Oxford, 2018).

 51. Taberlet, P. et al. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcod-
ing studies. Mol. Ecol. 21, 1816–1820 (2012).

 52. Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).
 53. Zinger, L. et al. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. 

Soil Biol. Biochem. 96, 16–19 (2016).
 54. Compson, Z. G. et al. Chapter two—Linking DNA metabarcoding and text mining to create network-based biomonitoring tools: 

A case study on boreal wetland macroinvertebrate communities. Adv. Ecol. Res. 59, 33–74 (2018).
 55. G.B.I.F. GBIF backbone taxonomy. (2017).
 56. Allesina, S. & Pascual, M. Food web models: A plea for groups. Ecol. Lett. 12, 652–662 (2009).
 57. Gauzens, B., Thébault, E., Lacroix, G. & Legendre, S. Trophic groups and modules: Two levels of group detection in food webs. J. 

R. Soc. Interface 12, 20141176 (2015).
 58. Makiola, A. et al. Key questions for next-generation biomonitoring. Front. Environ. Sci. 7, 197 (2020).
 59. Nowicki, K. & Snijders, T. A. B. Estimation and prediction for stochastic block structures. J. Am. Stat. Assoc. 96, 1077–1087 (2001).
 60. Biernacki, C., Celeux, G. & Govaert, G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE 

Trans. Pattern Anal. Mach. Intell. 22, 719–725 (2000).
 61. Compson, Z. G. et al. Network-based biomonitoring: Exploring freshwater food webs with stable isotope analysis and DNA 

metabarcoding. Front. Ecol. Evol. 7, 395 (2019).
 62. Ohlmann, M. et al. Diversity indices for ecological networks: A unifying framework using Hill numbers. Ecol. Lett. 22, 737–747 

(2019).
 63. Gauzens, B., Legendre, S., Lazzaro, X. & Lacroix, G. Intermediate predation pressure leads to maximal complexity in food webs. 

Oikos 125, 595–603 (2016).
 64. Lau, M. K., Borrett, S. R., Baiser, B., Gotelli, N. J. & Ellison, A. M. Ecological network metrics: Opportunities for synthesis. Ecosphere 

8, 01900 (2017).

Acknowledgements
This research was financed by the INRA ECOSERV initiative and has benefited from the ANAEE-F ACBB infra-
structures of Mons, Lusignan and Theix-Laqueuille (supported by ANR-11-INBS-0001) as well as CAP 20-25 
support at Theix-Laqueuille (16-IDEX-0001). We thank K. Klumpp, F. Louault, G. Vitte and F. Gastal, principal 
investigators of these sites for their assistance in this work. Thanks also to A. Salcedo, J.-N. Gaillot, M. Mattei 
and A. Pinot for help with fieldwork, and to J. Amossé (CEREMA, France) and E. Lara (Real Jardín Botánico, 
CSIC, Spain) for taxonomic advice.

Author contributions
J.M.G.B., P.C., P.T. and M.H. designed the study. J.M.G.B., P.C. and P.T. contributed to the fieldwork and/or to 
soil analysis. P.T. produced the metabarcoding data. M.H. and S.S. built the trophic groups and led the statistical 
analysis. J.M.G.B. and M.H. wrote the first draft of the manuscript with help from S.S., and all authors reviewed 
the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 97300-9.

Correspondence and requests for materials should be addressed to J.M.G.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-97300-9
https://doi.org/10.1038/s41598-021-97300-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Analysis of complex trophic networks reveals the signature of land-use intensification on soil communities in agroecosystems
	Results
	Taxonomic composition and trophic groups. 
	Food web responses to land-use intensification. 

	Discussion
	Conclusion
	Methods
	Field sites and sampling. 
	Molecular analysis and sequence curation. 
	Construction of trophic interaction networks and inference of trophic groups. 
	Statistical and network analyses. 

	References
	Acknowledgements


