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Autofluorescence‑spectral imaging 
as an innovative method for rapid, 
non‑destructive and reliable 
assessing of soybean seed quality
Clíssia Barboza da Silva1*, Nielsen Moreira Oliveira2, Marcia Eugenia Amaral de Carvalho3, 
André Dantas de Medeiros4, Marina de Lima Nogueira3 & André Rodrigues dos Reis5

In the agricultural industry, advances in optical imaging technologies based on rapid and non‑
destructive approaches have contributed to increase food production for the growing population. 
The present study employed autofluorescence‑spectral imaging and machine learning algorithms 
to develop distinct models for classification of soybean seeds differing in physiological quality after 
artificial aging. Autofluorescence signals from the 365/400 nm excitation‑emission combination 
(that exhibited a perfect correlation with the total phenols in the embryo) were efficiently able to 
segregate treatments. Furthermore, it was also possible to demonstrate a strong correlation between 
autofluorescence‑spectral data and several quality indicators, such as early germination and seed 
tolerance to stressful conditions. The machine learning models developed based on artificial neural 
network, support vector machine or linear discriminant analysis showed high performance (0.99 
accuracy) for classifying seeds with different quality levels. Taken together, our study shows that the 
physiological potential of soybean seeds is reduced accompanied by changes in the concentration 
and, probably in the structure of autofluorescent compounds. In addition, altering the autofluorescent 
properties in seeds impact the photosynthesis apparatus in seedlings. From the practical point of 
view, autofluorescence‑based imaging can be used to check modifications in the optical properties of 
soybean seed tissues and to consistently discriminate high‑and low‑vigor seeds.

Seeds are important sources of food for human and livestock, in addition to be considered the best natural 
method for protection of genetic material variability. Soybean [Glycine max (L.) Merril] is one of the most 
important oil and protein crop worldwide. The soybean yield depends on the use of high-vigor seeds because they 
guarantee a rapid and uniform establishment of plants under a variety of environmental  conditions1–3. Nowadays, 
the seed industry uses standardized germination and vigor tests to predict field performance of seedlots. These 
tests provide valuable information on seed physiological potential; however, they are relatively time-consuming 
with subjective results that depend on specialized analysts, being difficult to reproduce the  results4. Hence, there is 
a great interest for exploring advanced and innovative methods to further refine the current seed testing methods.

In the last few years, fluorescence-based methods are providing significant advances in many areas of life 
science, including medical  diagnostics5,  forensics6, food  quality7,8, plant  physiology9 and genetic  analysis10. Tra-
ditional fluorescence imaging is mainly based on fluorescence spectroscopy (e.g. FTIR or Raman microspec-
troscopy) that can be applied to determine autofluorescent compounds, or non-fluorescent compounds can be 
measured by using multiple fluorescent tracers to highlight molecular, physiological or anatomical  features11,12. 
However, this technique assesses only a small part of an object (i.e., a “spot measurement”), so they do not pro-
vide spatial information that it is important for many seed inspection applications. In this context, advanced 
autofluorescence-spectral imaging techniques can be a great alternative to overcome such a limitation. Autoflu-
orescence-spectral imaging is a modern optical technology that combine both spatial and spectral information 
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in a single measuring protocol. It provides a high-resolution optical spectrum for each image pixel and yields a 
set of images of the same object, in which each image is represented by a specific wavelength. In seed technology, 
autofluorescence-spectral imaging technique can be applied on fluorescent chemical compounds—the so-called 
fluorophores—with important roles in seed biology, including pigments (e.g. chlorophylls) and structural com-
ponents of cell wall such as  lignin13,14.

When fluorescent compounds are stimulated by light, they are raised to an excited state as a result of photon 
absorption, and the radiation light re-emitted is measured by autofluorescence-spectral imaging sensors. Photon 
absorption and fluorescence emission occur  simultaneously15. Excitation is induced in the ultraviolet and visible 
regions, and a charge-coupled device chip (CCD-chip) combined with different filters at longer wavelengths 
detect the light emission (fluorescence) as seed compounds relax to lower energy levels. Furthermore, combining 
autofluorescence-spectral imaging technology with chemometric approaches may allow better characterization 
of seed quality in a non-destructive way. For instance, machine learning algorithms such as artificial neural 
network (ANN), support vector machine with either linear (SVM-l) or radial basis (SVM-r) kernel, and linear 
discriminant analysis (LDA) have been proven to be effective for solving problems in many research  fields16–20. 
In the present study, we tested the use of these machine learning algorithms combined with autofluorescence-
spectral imaging for classification of soybean seeds based on their physiological quality levels.

Results
Physiological status of seeds. The germination percentage decreased as seed aged, especially at 5 days 
after sowing (Fig.  1). While the electrical conductivity (an indirect indicator of seed membrane integrity) 
increased in seeds aged for 24 h and 48 h (Fig. 1), the saturated-salt accelerated aging (SSAA) separated seeds 
into two groups, i.e., seeds aged for 0 and 12 h vs seeds aged for 24 and 48 h. Meanwhile, the traditional artificial 
aging (AA) further sliced non-aged seeds from the aged ones. The seedling emergence test was unable to differ 
seed classes (Fig. 1).

Biochemical changes in seeds. The total carotenoids and phenols in the seed coat and embryo (embry-
onic axis plus cotyledons) did not differ in aged seeds compared to non-aged class (Fig. 2). The malonaldehyde 
(MDA) content was markedly decreased in aged seeds in comparison to non-aged seeds (42.33–71.33%) (Fig. 2). 
In addition, there was a high amount of hydrogen peroxide  (H2O2) in non-aged seeds, and a maximum level in 
seeds aged for 12 h (Fig. 2). Further biochemical analyses indicated that the content of lignin, chlorophyll a and 
b (Fig. 2) remained at similar levels for 0 (non-aged seeds), 12 and 24 h of aging; however, increasing the age time 
to 48 h reduced lignin content (by 14.23% compared to non-aged seeds). At the same time, seeds aged for 48 h 
had a substantial increment in chlorophyll a and b (108.09% and 86.50%, respectively).

Figure 1.  Germination and vigor tests for classes of non-aged soybean seeds and seeds aged for 12, 24 and 48 h. 
Means (± standard deviation) followed by the same letter are not significantly different according to Tukey test 
(P < 0.05).
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Autofluorescence‑spectral markers. The average autofluorescence spectra of the seeds were higher at 
excitation wavelengths from 365 to 540 nm (with exception of 470 nm) (Fig. 3a). Non-aged seeds were effi-
ciently separated from aged classes at 365/400 nm, 405/500 nm and 630/700 nm excitation-emission combina-
tions; among these combinations, 365/400  nm provided the most refined discrimination of the seed classes 
(Fig. 3a). The highest correlation coefficients between bandwidths were: 1.00 (515/600 nm vs 540/600 nm), 0.99 
(430/500 nm vs 450/500 nm; 630/700 nm vs 645/700 nm), and 0.97 (405/500 nm vs 430/500; 645/700 nm vs 
660/700 nm) (Fig. 3b).

Using nCDA algorithm, the pixel values of the autofluorescence images acquired with the combination of 
365/400 nm were transformed by removing the outlier observations, which allowed to calculate the trimmed 
mean. This technique is useful to eliminate the influence of outliers that can affect the mean, and thus providing 
a more realistic image. The autofluorescence intensity was displayed in the images using pixel-to-pixel mapping 
that was created using false color codes ranging from red (0) to blue (256), where higher pixel values represent 
tissues with higher autofluorescence (Fig. 4). Although all classes showed similar RGB images, there was a dif-
ferent autofluorescent pattern when the images were captured in the presence of the seed coat (Fig. 4a), in which 
seeds aged for 24 and 48 h exhibited the lowest autofluorescence signals (lower pixel values). However, removing 
the seed coat, all seed classes presented a similar autofluorescent pattern, regardless of the aging period (Fig. 4b). 
In the germination test at 8 days, the lower the seed autofluorescence signal in the presence of the seed coat the 
lower the seedling performance (Fig. 4c).

In the linear discriminant analysis (LDA) the first two discriminant components (LD1 and LD2) explained 
91.19% of the total variation between autofluorescence-spectral data (Fig. 5a). Autofluorescence data obtained 

Figure 2.  Total carotenoids, total phenols in the seed coat and embryo, malondialdehyde (MDA), hydrogen 
peroxide  (H2O2), lignin in the seed coat, chlorophyll a and b of non-aged soybean seeds and seeds aged for 12, 
24 and 48 h. Means (± standard deviation) followed by the same letter are not significantly different according to 
Tukey test (P < 0.05).
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from 365/400 nm combination contributed most to the LDA model (Fig. 5b), in which higher vigor seeds (i.e., 
non-aged seeds and seeds aged for 12 h) showed the highest fluorescence values (Fig. 5c).

Seed quality classification based on different machine learning algorithms. The algorithms (i.e., 
ANN, SVM-l, and LDA) presented excellent performance for discrimination of seeds from different aged groups 
based on autofluorescence-spectral data (Table 1). In addition, the models developed showed very high accu-
racy (0.99), kappa (≥ 0.98), precision (0.99), recall (0.99), and F1 (0.99) in both cross and external validations 
(Table 1). The ANN algorithm showed slightly superior performance for kappa coefficient in cross-validation 
test.

Correlation between autofluorescence measurements and seed quality indicators. The Pear-
son’s correlation analysis (Fig. 6) showed a perfect negative correlation between 365/400 nm combination and 
the total phenols in the embryo (− 1.00), and a perfect positive correlation between 660/700 nm combination 
and the SSAA test (1.00). High correlation coefficients were also noticed for other bandwidths: 0.99 (either 
515/600 nm or 540/600 nm vs lignin), − 0.99 (630/700 nm vs electrical conductivity; 645/700 nm vs total phenols 
in the embryo), 0.98 (430/500 nm vs lignin), 0.97 (405/500 nm vs lignin), − 0.97 (570/600 nm vs either chloro-
phyll a or chlorophyll b), 0.96 (450/500 nm vs lignin) and 0.95 (470/500 nm vs lignin).

Seedings grown from aged and non‑aged seeds. Although seedlings from seeds aged for 48 h reached 
a germination percentage similar to non-aged seeds at 8 days after sowing (Fig. 1), with a remarkably enhanced 
chlorophyll a index in the resulting seedlings on the 16th day (Fig. 7), they exhibited less efficient photochemi-
cal apparatus than those from non-aged seeds as highlighted by the quantum yield of photosystem II  (FV/FM) 
(Fig. 7). Higher chlorophyll fluorescence was closely related to aged class, particularly in seedlings grown from 
seeds aged for very short period (12 h) (Fig. 7).

Discussion
The vigor of seeds depends essentially on their ability to withstand the deleterious effects of aging, which induces 
the deterioration of tissues through consumption of reserves and damages to genetic  material21. Artificial seed 
aging has been widely used to study the physiological and biochemical mechanisms associated with decreased 
seed  vigor22–24, particularly to predict the seed performance during the entire storage period. Seed storage starts 
in the field when the seeds reach physiological maturity and ends at the beginning of the germination  process25. 
For instance, at the point of physiological maturity, soybean seeds have a relatively high water content, and 
therefore seed quality can be highly affected by environmental conditions until harvest maturity, i.e., when the 
seeds reach a moisture content level that permits an efficient harvest. In the present study, we used an advanced 
autofluorescence-spectral imaging and machine learning models to efficiently classify the physiological potential 
of soybean seeds.

The artificial aging promoted deterioration to the soybean seed tissues as revealed by reduced physiological 
performance (Fig. 1) and biochemical changes (Fig. 2). For instance, lower seed germination was accompanied 
by loss of membrane integrity over time (as shown by progressive increase in electrical conductivity through the 

Figure 3.  Comparison between classes of non-aged soybean seeds and seeds aged for 12, 24 and 48 h using 
autofluorescence-spectral data from different excitation-emission combinations; means followed by the same 
letter are not significantly different according to Tukey test (P < 0.05) (a). Pearson’s correlation coefficients 
between all bandwidths used for autofluorescence-spectral imaging of soybean seeds (n = 200 seeds) (b).



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17834  | https://doi.org/10.1038/s41598-021-97223-5

www.nature.com/scientificreports/

electrolyte leakage—Fig. 1). Another interesting result was the strong accumulation of  H2O2 in the first aging 
period (12 h) (Fig. 2). Despite the fact that  H2O2 can be a toxic byproduct of aerobic metabolism, depending 
on the concentration its role as a signaling molecule during oxidative stress is well-known26. Perhaps, as a con-
sequence of  H2O2 signaling, there was less damages to membrane polyunsaturated fatty  acids27 with decreased 
MDA levels (a toxic aldehydic end product of lipid peroxidation of polyunsaturated fatty acids) during aging, 
as shown in Fig. 2. In this context,  H2O2 content can be used as an indicative of “metabolic health” in soybean 
seeds. Accordingly, autofluorescence signals emitted in the excitation-emission combinations of 365/400 nm and 
660/700 nm showed a very strong positive correlation with  H2O2 levels (r2 = 0.91 and 0.93, respectively), which 
were two of the four bandwidth combinations strongly correlated with early germination test (r2 = 0.91 and 0.92, 
respectively). In addition, the combination of 365/400 nm was perfectly correlated with the accumulation of the 
total phenols in the seed embryo (r2 =  − 1.00), which efficiently protect soybean seeds from the oxidative stress 
of various origins 28. Meanwhile, the combination of 660/700 nm reached a perfect positive correlation with seed 
tolerance to the stressful conditions of the SSAA test (r2 = 1.00).

The nature of the autofluorescence intensity at excitation wavelength of 365 and 660 nm is mainly attributed 
to  chlorophylls29,30, which absorb light in a broader range of the spectrum. Therefore, chlorophyll fluorescence 
appeared to be an important indicator of soybean seed quality for agricultural industry; however, besides chlo-
rophyll, other autofluorescent molecules can also be excited at 365 nm such as lignin and ferulic acid (weaker 
signal) present in the cell  wall29,31. Curiously, the combination of 365/400 nm provided a better separation of the 
seed classes, in which the autofluorescence decreased as the aging time increased (Figs. 3, 4, 5). It is important 
to emphasize that such discrimination was more efficient than the early germination test, for example (Fig. 1).

Additionally, our results indicated that depending on the seed region and the aging period, the aging process 
can (i) enhances chlorophyll synthesis (Fig. 2), (ii) increases chlorophyll degradation (Fig. 4) or (iii) induces 
these two events in seeds. As shown in the autofluorescence images (Fig. 4), the deleterious effects of deterio-
ration predominantly affected the autofluorescent compounds present in the superficial regions of the seeds. 
Donaldson and  Williams31 have demonstrated that chlorophyll fluorescence is highly reduced in deteriorated 
tissues due to the loss of chlorophylls, whereas these regions generally show a substantial increase in green 

Figure 4.  Raw RGB images from soybean seeds for classes of non-aged seeds and seeds aged for 12, 24 and 
48 h, and corresponding autofluorescence images (grayscale and nCDA) captured at 365/400 nm excitation-
emission combination, showing autofluorescence patterns in the presence (a) and absence (b) of the seed coat. 
Germination test at 8 days after sowing using seeds with different autofluorescence patterns in the nCDA images 
(c). In the nCDA images, the pixel values (autofluorescence intensity) is calculated based on 10% trimmed mean 
to provide a more realistic image.
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Figure 5.  Linear discriminant analysis (LDA) for autofluorescence-spectral data in soybean seeds using 
different excitation-emission combinations (a). Importance of each excitation-emission combination to 
discriminate non-aged seeds from seeds aged for 12 h, 24 h and 48 h (b). Scatter plot with the representation of 
the values of each variable based on autofluorescence data using 365/400 nm combination (c) (n = 200 seeds).

fluorescence associated with browning. In recent studies, Medeiros et al.16 investigated soybean seed images 
obtained in the visible spectrum, and these authors also found a strong correlation between seed coat patterns 
and seed vigor levels.

In the current study, the greatest autofluorescence-spectral signals shown in non-aged soybean seeds corrobo-
rates previous studies of Li et al.32 who verified that the average spectral fluorescence of viable soybean seeds (by 
365 nm excitation) was higher in relation to non-viable seeds. Moreover, we developed models based on ANN, 
SVM-l and LDA algorithms and full excitation-emission combinations, and the models presented an excellent 
performance for soybean seed quality classification (0.99 accuracy). The ANN method was implemented with 
the multilayer perceptron (MLP) algorithm that trains using Backpropagation. Neural networks have been suc-
cessfully applied to identify contaminants in seeds through image analysis and the topology of the multilayer 
perceptron (MLP) also proved to be the best in recognizing classes of triticale  seeds33. The SVM-l algorithm 
showed to be efficient in discriminating high-and low-vigor soybean seeds compared to LDA  models34. However, 
the LDA approach has achieved the highest training speed, with high potential to classify the quality of  beans35 
and  oat19 seeds from multispectral sources.

Other interesting results were: (1) a direct relationship between very low autofluorescence in seeds at 
365/400 nm combination (aging for 48 h—Fig. 3a) and lower  FV/FM in the resulting seedlings (Fig. 7); (2) 
increased synthesis of chlorophyll a and chlorophyll b in seeds (aging for 48 h—Fig. 2) and greater accumulation 
of chlorophyll a in seedlings (Fig. 7). Considering that the percentage of emerged seedlings was significantly 
similar between non-aged and aged seeds (Fig. 1), our data suggest a possible compensatory mechanism during 
seedling development to outstand aging side effects that were detected at early stage of germination. Such mecha-
nism may be related to an increase in chlorophyll a and b in aged seeds and higher amount of chlorophyll a in 
the resulting seedlings to improve the conversion of light to chemical energy—although this was not sufficient 
to improve the photochemical activity of the photosystem II as revealed by  FV/FM values. In fact, chlorophyll 
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plays an essential role in the physiological performance of mature  seeds36,37, and plant responses to abiotic stress 
 conditions38.

Taken together, seed aging impacted photon-emitting substances that were detected by autofluorescence-
spectral imaging, which can be used as a new marker for qualitative analysis of soybean seeds. Soybean seed is 
very sensitive to environmental stress, leading to both nutritious and economic losses. Moreover, in a seed bank 
context this approach may improve the accuracy of quality tests, providing novel insights into the storage and 
use of soybean seed sources.

Conclusions
Autofluorescence-spectral imaging based on fluorescent properties of seed tissues can be a potential tool for char-
acterization of soybean seed physiological potential. This approach can rapidly assess soybean seed quality using 
artificial-aging treatment by applying artificial neural network, support vector machine or linear discriminant 

Table 1.  Comparation of the artificial neural network, support vector machine and linear discriminant 
analysis algorithms to assess soybean seed quality using autofluorescence-spectral data, and the model 
performances based on accuracy, kappa, precision, recall and F1. The models were created using 
autofluorescence-spectral data extracted from non-aged seeds and seeds aged for 12, 24 and 48 h (n = 800 
seeds).

Metrics

Artificial neural network Support vector machine Linear discriminant analysis

Cross-validation
External 
validation Cross-validation

External 
validation Cross-validation External validation

Folds = 5 (n = 680) n = 120 Folds = 5 (n = 680) n = 120 Folds = 5 (n = 680) n = 120

Accuracy 0.99 ± 0.003 0.99 0.99 ± 0.010 0.99 0.99 ± 0.006 0.99

Kappa 0.99 ± 0.004 0.99 0.98 ± 0.013 0.99 0.98 ± 0.007 0.99

Precision 0.99 ± 0.003 0.99 0.99 ± 0.010 0.99 0.99 ± 0.005 0.99

Recall 0.99 ± 0.003 0.99 0.99 ± 0.010 0.99 0.99 ± 0.006 0.99

F1 0.99 ± 0.003 0.99 0.99 ± 0.010 0.99 0.99 ± 0.005 0.99

Figure 6.  Pearson’s correlation coefficients between autofluorescence-spectral data from different excitation-
emission combinations and soybean seed quality indicators.
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analysis, with an excellent performance (0.99 accuracy). The autofluorescence emitted in the excitation-emission 
combination of 365/400 nm (that exhibited a perfect correlation with the total phenols in the embryo) enables 
a clear separation of seed classes.

Furthermore, there is a strong correlation between autofluorescence-spectral data and several quality indica-
tors, including early germination and seed tolerance to stressful conditions. In addition, altering the autofluores-
cent compounds in seeds impact the photosynthesis apparatus in seedlings. To further advance development, we 
strongly support in depth-studies with a larger number of crop cultivars to detect seed quality traits and evaluate 
differences among different genotypes.

We would like to emphasize that the artificial-aging method used in the present work was previously used by 
other authors, with excellent results in the development of new seed quality methods based on non-destructive 
 techniques39–41. However, another important future study will be to compare the results obtained from artificially-
aged seeds, as done in the current work, with those of naturally-aged seeds (see Rajjou et al.42). Indeed, it is 
known that the physiology of seed deterioration during storage is largely influenced by the physical state of the 
 cytoplasm43, which depends on equilibrium RH during storage. Under dry conditions (as in commercial and 
genebank storage) this cytoplasm is glassy with very low molecular mobility, while under high humidity aging 
conditions (as employed in the current study) the cytoplasm is liquid with high molecular mobility. Despite 
these limitations we anticipate that autofluorescence-spectral imaging based on fluorescent properties of seed 
tissues will provide a very potent and convenient tool for characterization of soybean seed physiological quality.

Materials and methods
Plant material. The soybean seeds (M5705 IPRO cultivar) used in this study were kindly provided by Dr. 
Raquel Márcia Modena Wutzki, Seed Quality Manager at the Lagoa Bonita Company, in Itaberá city, São Paulo 
State, Brazil. Seeds were produced in the Fazenda Redomona (field 194S18), Arapoti city, Paraná State, Brazil 
during 2018/2019 crop season. All required approvals were obtained for the study, which complied with all 
relevant regulations. Seeds with an initial moisture content of 7.9% were artificially aged for 0, 12, 24 and 48 h. 
For aging, seeds were distributed over a single layer on a wire mesh screen suspended inside a covered box 
(11.0 cm × 11.0 cm × 3.5 cm) containing 40 mL of distilled water at 42 °C and 98 ± 2% relative humidity (RH). 
Subsequently, seeds were dried at 20 °C for 24 h to bring them back to their initial pre-aged moisture content 
before measurements.

Figure 7.  Chlorophyll a index, chlorophyll a fluorescence, and maximum quantum yield of photosystem II 
based on  FV/FM in soybean seedlings grown from non-aged seeds and seeds aged for 12, 24 and 48 h on the 
16th day after sowing. Means (± standard deviation) followed by the same letter are not significantly different 
according to Tukey test (P < 0.05).
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Autofluorescence‑spectral imaging. Multispectral fluorescence images were captured from seeds (four 
9-cm glass Petri dishes with 50 seeds per class) using a VideometerLab4™ device (Videometer A/S, Herlev, Den-
mark). This system is integrated with a CCD-chip, providing autofluorescence-spectral images (2192 × 2192 
pixels; 40  μm/pixel; 32 bits/pixel) in a few seconds, requiring no sample preparation. Long-Pass (LP) filters 
were combined with different excitation wavelengths, providing the following excitation-emission combina-
tions: 365/400 nm, 405/500 nm, 430/500 nm, 450/500 nm, 470/500 nm, 515/600 nm, 540/600 nm, 570/600 nm, 
630/700 nm, 645/700 nm, 660/700 nm. RGB images were also captured by the same sensor, in which each indi-
vidual pixel is associated with the values for red, green and blue channels.

Autofluorescences-spectral data were extracted using the VideometerLab™ software version 3.14.9 (Videome-
ter A/S, Herlev, Denmark). It was built a mask to segment the seeds and then a normalized canonical discriminant 
analysis (nCDA) algorithm was applied to highlight the autofluorescence signals pixel-to-pixel. This algorithm 
uses 10% trimmed mean, eliminating the influence of outliers (the lowest 10% and the highest 10% of the data).

To verify whether artificial aging affects primarily the fluorophores present in the superficial regions of the 
seed tissues, autofluorescence images of all samples were also generated without seed coat using the same pro-
cedures described above, and they were used for illustration only.

Germination tests. Following the imaging, seeds were distributed on a wire mesh screen suspended inside 
a box (11.0 cm × 11.0 cm × 3.5 cm) containing 40 mL of distilled water. The boxes were covered with lids and 
maintained at 25 °C for 16 h to provide a lower uptake of water. Subsequently, four repetitions of 50 seeds were 
placed into rolled paper towels moistened with distilled water (1: 2.5, g: mL) and kept at 25 °C with 8/16 h (day/
night). The percentage of germinated seeds were based on the number of normal seedlings on the 5th and 8th 
days after sowing.

Vigor tests. Four repetitions with 50 seeds per class were evaluated for electrical conductivity, SSAA, AA, 
and seedling emergence tests. The electrical conductivity (μS  cm−1   g−1) was measured in samples previously 
weighed and placed in plastic containers with 75 mL of distilled water at 25 ºC for 24 h. In the aging tests, seeds 
were distributed over a single layer on a wire mesh screen suspended inside a box (11.0 cm × 11.0 cm × 3.5 cm) 
containing either 40 mL of distilled water (AA test) or 40 mL of saturated NaCl solution (i.e., 40 g of NaCl in 
100 mL of water) (SSAA test), providing 98 ± 2% RH (AA test) or 76 ± 2% RH (SSAA test) at 42 °C for 72 h. The 
rate of normal seedlings was recorded at 5 days. The seedling emergence test was conducted in plastic boxes 
(32.0 cm × 28.0 cm × 10.0 cm) at room temperature (25–30 °C) for 8 days.

Chlorophylls and carotenoids in seeds. Chlorophyll a, chlorophyll b and the total carotenoids were 
extracted from 5 g of seeds tissue in 10 mL of 80% acetone. After 24 h the material was filtered and centrifuged 
at 500×g for 10 min. The Chlorophylls and carotenoids were determined by the absorbance at 470, 662 and 
645  nm44,45.

Lipid peroxidation in seeds. Lipid peroxidation or MDA was measured according to the method 
described by Heath and  Packer46. Samples with 400 mg of macerated material were mixed with 4 mL of 0.1% 
(w/v) trichloroacetic acid (TCA) and then centrifuged at 10,000 rpm for 15 min at 4 °C. The reaction was started 
by adding 250 μL of supernatant and 1 mL of 20% trichloroacetic acid + 0.5% thiobarbituric acid solution. All 
samples were kept in a dry bath at 95 °C for 30 min. The material was centrifuged at 10,000 rpm for 10 min, and 
the absorbance was read at 535 and 600 nm. The concentration of  H2O2 was determined according to Alexieva 
et al.47. Approximately 400 mg of macerated material was mixed with 4 mL of 0.1% (w/v) trichloroacetic acid 
(TCA). The material was homogenized and centrifuged at 10,000 rpm for 15 min at 4 °C. Subsequently, 200 μL 
of supernatant was combined with 200 μL of 100 mM potassium phosphate buffer and 800 μL of 1 M potassium 
iodide solution. The absorbance was read at 390 nm.

Lignin in the seed coat. Lignin was determined using acetyl bromide procedure as described by Fuku-
shima and  Kerley48. Cell wall extraction was performed with 10 mg of seed material combined with 1 mL water 
at 98 °C for 30 min. The samples were centrifuged for 5 min at 14,000 rpm, and then the supernatant was mixed 
with 1 mL ethanol and incubated at 76 °C for 30 min. Next, the samples with 1 mL of chloroform were incubated 
at 59 °C for 30 min. Finally, it was added 1 mL of acetone and the samples were incubated at 54 °C for 30 min. 
After centrifuging for 5 min at 14,000 rpm, the supernatant was removed and the pellet was dried for 45 min 
using a SpeedVac vacuum. The purified cell wall was used for lignin quantification using acetyl bromide.

Total phenols in the seed coat and embryo. The total phenols in the seed coat and embryo was deter-
mined following the procedures described by Swain and  Hillis49. The measurements were conducted in 100 mg 
of seed material mixed with 2.0 mL of ethanol (70%) at 70 °C water bath for 30 min. After centrifuging for 5 min 
at 13,000 rpm, the supernatant was combined with the Folin–Ciocalteau reagent and a sodium carbonate solu-
tion. The absorbance was measured at 725 nm.

Photosynthesis and chlorophyll a in seedlings. Measurements were conducted on 32 pots per class 
(two seedlings per pot) kept at 25 °C, 8/16 h (day/night), and 50–70% RH. Light was provided by LED lamps 
(900 mm, 13 W) (County Ilum., São Paulo, Brazil) with a photosynthetically active radiation (PAR) of 200 μmols 
 m−2  s−1. At 16 days, seedlings were adapted in the dark for 30 min, and then they were illuminated with high 
intensity amber LEDs (620 nm peak) with a saturating light intensity of 6,320 μmol  m−2  s−1 in a short time inter-
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val (≈ 0.8 s). A fast chlorophyll fluorescence method based on the Kautsky induction curve was used to measure 
the initial fluorescence  (F0), maximum fluorescence  (FM), variable fluorescence  (FV) and  FV/FM

50 using a See-
dReporter™ equipment (PhenoVation B.V., Wageningen, Netherlands). A CCD-chip provided a fast screening 
of the chlorophyll fluorescence emission at 730 nm, generating images with a spatial dimension of 2,448 × 2,448 
pixels (3.69 μm/pixel). The  FV/FM was measured based on the following formula:

Chlorophyll a index was measured as described by Gitelson et al.51 based on reflectance at 710 and 770 nm, 
according to the following formula:

where ρ represents the spectral reflectance for each wavelength.

Data analysis. The main procedures for extracting and analyzing autofluorescence-spectral data are shown 
in Fig. 8. The autofluorescence values were compared by Tukey’s test (P < 0.05) and the Pearson’s correlation 
coefficient was measured to investigate the relationship among different excitation-emission combinations. A 
LDA was applied to rank the importance of bandwidths. Different models were developed for seed quality clas-
sification based on ANN (solver: Stochastic Gradient Descent; hidden layer sizes: two layers with 25 neurons in 
each; Activation function: Tanh; Learning rate: adaptive; maximum number of interactions: 5000), SVM-l, and 
LDA algorithms. Data from 680 seeds were used to train and test the models in cross-validation (K-fold = 5). An 
external data set with 120 seeds was used to perform external validation. The performance of the models was 
evaluated using five metrics—accuracy, Cohen’s Kappa coefficient, precision, recall, F1 (documentation can be 
found at https:// scikit- learn. org/ stable/ modul es/ model_ evalu ation. html). The Pearson’s correlation coefficient 
was measured to investigate the relationship between the autofluorescence measurements and the traditional 
seed quality tests. All the statistical analyses were performed using R 4.0.0 software  program52.
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