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Risk prediction of clinical adverse 
outcomes with machine learning 
in a cohort of critically ill patients 
with atrial fibrillation
Lorenzo Falsetti1,9*, Matteo Rucco2,9, Marco Proietti3,4,5, Giovanna Viticchi6, 
Vincenzo Zaccone1, Mattia Scarponi7, Laura Giovenali7, Gianluca Moroncini8, Cinzia Nitti1 & 
Aldo Salvi1

Critically ill patients affected by atrial fibrillation are at high risk of adverse events: however, the actual 
risk stratification models for haemorrhagic and thrombotic events are not validated in a critical care 
setting. With this paper we aimed to identify, adopting topological data analysis, the risk factors for 
therapeutic failure (in-hospital death or intensive care unit transfer), the in-hospital occurrence of 
stroke/TIA and major bleeding in a cohort of critically ill patients with pre-existing atrial fibrillation 
admitted to a stepdown unit; to engineer newer prediction models based on machine learning in the 
same cohort. We selected all medical patients admitted for critical illness and a history of pre-existing 
atrial fibrillation in the timeframe 01/01/2002–03/08/2007. All data regarding patients’ medical history, 
comorbidities, drugs adopted, vital parameters and outcomes (therapeutic failure, stroke/TIA and 
major bleeding) were acquired from electronic medical records. Risk factors for each outcome were 
analyzed adopting topological data analysis. Machine learning was used to generate three different 
predictive models. We were able to identify specific risk factors and to engineer dedicated clinical 
prediction models for therapeutic failure (AUC: 0.974, 95%CI: 0.934–0.975), stroke/TIA (AUC: 0.931, 
95%CI: 0.896–0.940; Brier score: 0.13) and major bleeding (AUC: 0.930:0.911–0.939; Brier score: 
0.09) in critically-ill patients, which were able to predict accurately their respective clinical outcomes. 
Topological data analysis and machine learning techniques represent a concrete viewpoint for the 
physician to predict the risk at the patients’ level, aiding the selection of the best therapeutic strategy 
in critically ill patients affected by pre-existing atrial fibrillation.

Atrial fibrillation (AF) is a common arrhythmia that can often concur to complicate the clinical course of patients 
admitted for a critical illness: in this specific population, AF can be observed in up to 33% of the admitted 
subjects1. As largely known, patients with AF have an increased risk of adverse outcomes, such as thromboem-
bolic events, major bleeding (MB), cardiovascular and all-cause death2. Nowadays, the baseline assessment of 
thromboembolic and bleeding in the routine management of clinically stable AF patients represents a pivotal step 
for all the major international guidelines3. Notwithstanding, the management of AF in the critically ill patient 
is still object of debate4, being both thromboembolic and hemorrhagic risk difficult to be assessed for several 
confounding factors, as coagulation abnormalities, platelet number and function alterations, drug therapies, 
drug-drug and drug-pathology interactions which can occur in those patients.

While both CHA2DS2-VASc and HAS-BLED scores are almost universally recognized as the mainstay for 
the baseline evaluation of the “usual” AF patients, observational data suggest that the predictive ability of such 
scores is extremely limited in critically ill patients, due to the complex clinical status and to the overall clinical 
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severity5. Despite this, and in absence of specifically-designed risk scores, stratification with CHA2DS2-VASc and 
HAS-BLED is still recommended by experts also in critical illness6. This is in line with other indications for the 
AF management in an emergency care setting observed in several guidelines4. However, since the in-hospital 
occurrence of thromboembolism or bleeding in a critically ill patient could radically modify the prognosis7, more 
accurate solutions are required to correctly stratify the risk of this specific category of subjects.

Acutely ill patients are often admitted from emergency departments (ED) to critical care facilities in presence 
of declining clinical conditions. Older subjects affected by several comorbidities and one or more acute organ 
compromise are often admitted to intermediate care or stepdown unit (SDU) beds. This specific population is 
burdened by older age, a relatively higher number of chronic organ insufficiencies and a high prevalence of pre-
existing AF, which is often already treated according to current guidelines. In this setting, a good score should 
predict the requested outcome by considering not only the baseline risk, which can be evaluated with the already 
validated tools but also additive thromboembolic and hemorrhagic factors, as the acute pathologies leading to 
the hospital admission, blood count and coagulation abnormalities, procedures and therapies used to treat the 
critical illnesses. All these data can now be easily obtained with the increasing technological implementation of 
the emergency care system (defined as emergency department, subintensive care units and intensive care units), 
making this environment perfect for big-data collection. Medical information, such as demographic and clini-
cal data, pharmacological therapy, physiological signs, laboratory analysis and radiologic results can be easily 
collected bedside and shape big and heterogeneous datasets8. Classical statistical methods combined with topo-
logical data analysis (TDA) can be used to explain relationships between variables in large and complex datasets, 
especially in critical biomedical and medical phenomena. In this context, complex means that the phenomena 
under analysis cannot be reduced to the identification of binary correlation among the clinical variables, but it 
shall account for n-ary correlation. TDA has been experimentally applied in medical studies regarding cancer9 
and pulmonary embolism10.

Aims.  The main objective of this work is to train newer ML-based prediction models to predict the main AF-
related outcomes in the critically ill patient: specifically, we present a data-driven experiment to predict thera-
peutic failure (defined as in-hospital death or ICU transfer), stroke/TIA and MB in critically ill patients affected 
by pre-existent AF. The decision to use TDA as a tool for data investigation and feature selection technique shall 
be rooted in the complexity of the cohort of critically ill patients reported in this paper. For the sake of complete-
ness, the cohort under analysis contains patients with several degrees of criticality because of both their comor-
bidities and clinical history. In such complex cohorts, the events such as therapeutic failure (TF), stroke/TIA and 
MB cannot be modelled as functions of a given fixed set of variables. Thus, there is the need to identify for each 
cohort the right set of variables. In addition, the modelling phase shall consider that these patients might show 
conditions that are caused by the simultaneous occurrence of multiple other conditions. In this view, TDA is a 
suitable tool to identify higher dimensional correlations. This decision is supported by several papers that have 
been published in the last decade11–17.

Patients and methods
The study was approved by the institutional review board named CERM (Comitato Etico Regione Marche), 
Prot. 168/2018, June 21st, 2018. The written informed consent to the use of personal data for research purposes 
was required for all the subjects admitted to the hospital. All patients were treated according to the clinical 
guidelines current at the moment of the hospital admission. AFICILL (Atrial Fibrillation In Critically ILL) is 
a retrospective cohort study enrolling medical critically ill patients affected by pre-existing AF admitted to the 
SDU of the internal and sub-intensive medicine department of the Azienda Ospedaliero-Universitaria “Ospedali 
Riuniti”, Ancona, Italy. Full details regarding the data collection procedure are reported in a previous paper5: we 
retrospectively considered a cohort of critically ill patients with pre-existing AF admitted to the internal medi-
cine department of the Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy. This department 
implemented, since January 01st 2002, an electronic medical record system (eMRS) for inpatients’ management. 
Discharge diagnoses are encoded according to ICD-9-CM. Thus, we selected all consecutive patients admitted 
with a concurrent AF diagnosis (ICD-9: 427.31) in the timeframe January 01st 2002–August 03rd 2007. This 
timeframe was chosen to optimize data collection and obtain a homogenous population in terms of clinical 
management and antithrombotic drugs use since all the patients were classified and treated according to one 
single guideline18. Moreover, the absence of direct oral anticoagulants allowed us to achieve a population with 
a similar stroke/TIA and MB risk. We then evaluated every single patient analyzing all the information in the 
discharge report. The anonymized dataset is publicly available19. The risk stratification was performed adopting 
the data available for each patient and collected on the day of admission in our department. Additionally, since 
this was a retrospective study and both haemorrhagic and ischemic risk could change rapidly during a criti-
cal illness, we have calculated the global patient’s risk by considering the AF-related therapies and procedures 
performed during the whole hospital admission. Further implementations of our system should be able to 
evaluate the modifications of haemorrhagic and thrombotic risk in real-time, allowing the clinician to reassess 
the patient when certain clinical conditions change during the critical illness. The main study outcome was the 
therapeutic failure (TF), defined as the composite of death that occurred during SDU admission or transfer to 
ICU due to the worsening of clinical conditions, requiring more intensive and invasive management according 
to the clinical evaluation of the attending physicians. Occurrence of concurrent clinical events during the SDU 
admission was also reported, with a specific interest in incident stroke or transient ischemic attack (stroke/
TIA) and MB according to the ISTH definition20. To predict TF, stroke/TIA and MB with validated scores, we 
calculated, respectively, the APACHE-II score, the CHA2DS2-VASc score and the HAS-BLED score according 
to their original definitions21–23.
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Methodology for data analysis.  We adopted a methodology accounting for several steps: (1) data pre-
processing; (2) topological methods for dataset visualization and features selection; (3) training of interpret-
able machine learning (ML) classifiers. The dataset contained both multiple clinical and target variables19. The 
process focuses on one target variable per time by dropping out the remaining ones. The first step was to delete 
columns with missing data, then categorical variables were transformed into dummy variables to increase the 
dimensionality of the dataset.

Topological data analysis.  We performed TDA for the three study outcomes (TF, stroke/TIA and MB) 
adopting the Kepler Mapper24 algorithm. Mapper needs raw data (or samples), a clustering method (DBSCAN) 
that returns the number of clusters, and a filter function computed on the cluster’s members, named lens, and 
the percentage of overlaps among bins. For the sake of clarity, DBSCAN is an unsupervised based method for 
grouping (i.e., clustering) points relying on a metric space. In the beginning, DBSCAN selects a sample and puts 
it into the first cluster. In the subsequent iterations, the algorithm identifies the points that are closed (i.e., the 
distance is below a given threshold) to the first sample. Thus, the algorithm looks for their respective neighbours 
that will be added to the first cluster. If the algorithm does not find new neighbours it selects another point from 
the dataset and repeats the previous procedure to build the second cluster, and so on25. We recall that this paper 
aims to investigate the reliability of CHA2DS2-VASc score and HAS-BLED for the cohort under analysis and 
not to judge the quality of the doctor’s final diagnosis, i.e., bleeding or thrombosis. To this end, we have used 
them as lenses for the construction of the Mapper graphs. These lenses should be able to highlight if the dataset 
can be immediately partitioned into independent subgroups (disconnected subgraphs) that would confirm that 
there are clusters of patients showing clinical characteristics that would make easier their detection. To interpret 
Mapper graphs, we have cross-referenced the values of the lenses with the actual outcomes, which are binary 
evaluations (negative/positive). For both the scores we have found that patients who have received the lowest or 
highest score values agree with the actual outcomes, respectively negative and positive. However, patients with 
intermediate score’s values do not correspond always to a specific actual outcome and can be misclassified. It 
means that intermediate scores are “grey areas”, and further analysis is needed to overcome the uncertainty. We 
provide a more extensive description of this method in the S1File (Supplementary Methods). The new dataset 
was visualized using TDA and relevant topological structures were compared with statistical tests. The output of 
the statistical analysis was used for selecting relevant features.

Interpretable machine learning.  We last divided the dataset into a training and a test set, respectively 
with 70% and 30% of the samples. The training set was fed into a ML algorithm trained with automatic param-
eters tuning and k-fold cross-validation, i.e., k = 10, to achieve the highest accuracy. In this paper we have trained 
XGBoost, which is one of the most popular ML algorithms, regardless of the type of prediction task, either 
regression or classification, and is deemed to provide better solutions than other systems, becoming the "state-
of-the-art” ML algorithm when dealing with structured data. XGBoost is a decision-tree-based ensemble ML 
algorithm that uses a gradient-boosting framework26. Since its introduction, XGBoost has not only been credited 
with winning numerous competitions but also for being the driving force under the hood for several cutting-
edge applications. For the love of completeness, in the past we have challenged other ML techniques in the same 
dataset27. However, generally, those techniques are not suited for interpretability, and they are considered “black 
boxes”. In this paper, we have enhanced the request to have interpretable methods toward personalized diagnosis 
and patients’ management as we did in other studies9. To achieve the highest accuracy, we have combined the 
Scikit Learn Pipeline and GridSearch methods to select the best hyper-parameters for each XGBoost instance28,29. 
With best hyper-parameters, we meant the assignment of the parameters such that they maximize the classifier’s 
accuracy as reported in the confusion matrix. In this paper, we have grid-searched both the number of estima-
tors [5, 10, 50, 100, 200, 300, 500] and the max depth: [5, 10, 15, 20, 25]. In addition, to reduce the risk of overfit-
ting, we have implemented the early-stopping strategy with a grid-search approach over hyper-parameters30,31. 
The performances of the trained algorithm were evaluated on the test set and reported by confusion matrix and 
by Area Under Curve (AUC) Receiver Operating Characteristic Curve (ROC). The McNeil method32 was used 
to test the statistical significance of the difference between the AUCs. Tools for ML models’ interpretation devel-
oped by information theory can detect the presence of any biases in the trained model. The same tools are used 
to pinpoint the relevance of each input feature referring to the trained model. To complete the interpretation of 
ML outputs, we have adopted interpretability methods. In the context of ML, interpretability means the ability 
to explain and validate the decisions of a predictive model to enable fairness, accountability, and transparency 
in algorithmic decision-making. In addition, the interpretation shall be provided in a human-readable format. 
Ideally, interpretation should be able to support the users, i.e., doctor and patient, to understand the “what, why, 
and how” of the ML behavior33.

Results
We defined and performed the analysis on a final dataset of 1326 patients regarding the three study outcomes (TF, 
stroke/TIA and MB), originally described by 46 clinical variables. The full dataset is available in Mendeley Data 
repository19. A synthesis of the database structure is reported in Table S2. Originally, 1705 consecutive patients 
with pre-existing AF were evaluated5. After excluding those admitted for an elective cardioversion procedure 
and patients complicated by trauma (excluded for an increased, non-AF-related bleeding risk), we obtained a 
cohort of 1326 patients. We observed a total of 188 (14.1%) TF, with 152 deaths and 36 ICU transfers. After 
the SDU admission, 199 (15.0%) patients developed stroke/TIA while 140 (10.6%) complicated their clinical 
course with MB. In the selected cohort of patients, the median of APACHE-II score was 16 [4], the median of 
CHA2DS2-VASc was 4 [2] and the median of HAS-BLED was 2 [1].
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Therapeutic failure.  The analysis of the topological graph for the TF outcome (Fig.  1, Panel A) high-
lights that the patients labelled as “ICU transfer” cluster into two specific subgroups (red nodes). However, 
some of the patients labelled as “ICU transfer” have also some similarities with patients labelled as “in-hospital 
death” (yellow nodes). The patients included in the “yellow” groups are also connected to those included in the 
“blue nodes” and “green nodes” groups, which have a less easily characterizable risk profile. “Blue” and “green” 
patients are less easily detachable but, while they share several features, they do have a differential risk profile. 
The “green” group is characterized by patients with average age 83 ± 7 years, mean (± SD) systolic blood pressure 
(SBP) 98.09 ± 31.05 mmHg and diastolic blood pressure (DBP) 59.37 ± 16.81 mmHg and contains only patients 
not treated with angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (ACEi/ARBs). All 
the patients of the “green” group have reported intravenous amine use and concomitant systemic infections. 
The average age for the “blue” group is 79 ± 9 years, with a mean (± SD) SBP 128.09 ± 25.43 mmHg and DBP 
76.68 ± 14.23 mmHg. This group contains equally distributed patients with and without ACEi/ARBs. All the 
patients in the “blue” group were not treated with intravenous amine use and did not report concomitant sys-
temic infections. Blue and green groups represent patients with clinical similarities but with different clinical 
outcomes.

Stroke/TIA.  The analysis of the topological graph related to the “stroke/TIA” event (Fig. 1, Panel B) reveals 
that there are only few patients who would have almost certainly experienced the event (with stroke/TIA, “dark-
red” nodes) and who almost would not have certainly experienced the event (without stroke/TIA, “dark-blue” 
nodes), that do not share any similarities. Most of the patients shape the circular motifs in the plot, with variable 
ranging risk. Specifically, we highlight three main subgroups: the “light-blue” group contains patients with lower 
CHA2DS2-VASc scores (2–3). The nodes with a score equal to 3 are connected to the “green” nodes characterized 
with a medium–low score (4). The green nodes are connected to the nodes with medium–high scores (5–7).

Major bleeding.  The analysis of the topological graph related to the MB event (Fig.  1, Panel C) reveals 
that there are only a few patients who would almost certainly have experienced the event (with MB, “dark-red” 
nodes) and who would not have almost certainly experienced the event (without MB, “dark-blue” nodes) that do 
not share any similarities. Most of the patients are arranged in circular motifs, with variable ranging risk. Specifi-
cally, we highlight three main subgroups: the “light-blue” group contains patients with low HAS-BLED scores 
(1–2). The nodes with a score equal to 2 are connected to the “green” nodes characterized with a medium score 
(3). The “green” nodes are connected to the nodes with higher HAS-BLED scores (4–5).

Topology‑driven feature selection.  To train a ML classifier to predict if a new unseen patient has the 
probability to experience a certain clinical event, it would be better if the classes (for example healthy and ill) 
used for the training are strongly separated, with no overlaps among samples. TDA underlined that the cohort 
is not naturally separated into independent subgroups. Thus, there is the need to detect the features that can 
improve the separation, dropping those variables which don’t allow to discriminate the risk. To this extent, we 
combined the TDA output with standard statistic tests. Specifically, we evaluated the dependency among the 
clinical variables and the target variable under modelling by performing the χ2 test with the Yates correction for 
continuity to evaluate the dependency among categorical features and the target variable. The F-value was used 
to study the dependencies of the discrete variables on the target variable. This procedure can be represented as 
follows: the algorithm takes as input all the clinical features and one clinical outcome at a time (TF, stroke/TIA 
and MB), then (1) Kepler Mapper is used to build a topological graph representing the dataset, (2) DBSCAN is 
used as clustering method, (3) The percentage of overlaps among bins were selected after different manual tests, 
(4) TF, CHA2DS2-VASc and HAS-BLED are used as lenses accordingly to the outcome under analysis, (5) rel-
evant topological structures belonging to both positive and negative clusters are compared with statistical tests, 
(6) the output of the statistical analysis is used for selecting relevant features. The results of this analysis are in 
S3 Table, where we report only the features obtaining a p value < 0.05. This step is crucial to reduce the number 
of the original clinical variables by removing the ones that are not related to the target variables. The initial set 
contained 46 variables, the reduced adopted for the analysis accounted of: 19 clinical variables used by the ML 
model of the Therapeutic Failure target variable, 19 clinical variables needed by the ML model of the Stroke/TIA 
target variable and 15 clinical variables required by the ML model for the prediction of the Major Bleeding target 
variable.

Machine learning classifiers.  The features identified with the statistical tests were used as input for ML. 
Modelling of the XGBoost algorithm was executed by evaluating different combinations of the main parameters. 
To tame the unbalancing among classes in the dataset when splitting the dataset into a train (70%) and a test 
(30%) set, we have imposed an equal distribution of positive samples in both subsets. Moreover, we adopted a 
tenfold cross-validation to increase the reliability of the algorithm. Models’ performances were evaluated using 
the classification error, that is the percent of incorrect classifications, with a minimum possible score equal to 0 
(S2 Fig). The performances of the selected pipelines are reported in terms of average AUC-ROC on the testing 
set and corresponding 95%CI.

For TF, we have compared the ML-based score with the APACHE-II score. The APACHE-II was able to pre-
dict significantly the therapeutic failure or the transfer to ICU with an AUC of 0.953 (95%CI: 0.931–0.976). The 
ML-based solution for TF (best configuration: max-depth = 5 and number-of-estimators = 100) reached a slightly 
greater accuracy with an AUC of 0.974 (95%CI: 0.934–0.975, Fig. 2, Panel A; p < 0.0001 when comparing the two 
ROC curves). As previously reported for the same cohort under analysis5, the CHA2DS2-VASc score was not able 
to predict significantly the in-hospital occurrence of stroke/TIA (AUC:0.545;95%CI:0.489–0.601)5. The newly 
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Figure 1.   Topological data analysis results for (A) “therapeutic failure”; (B) “stroke/TIA” and (C) “major 
bleeding”. This output figure has been generated with Kepler Mapper 2.0.124. Legend: ICU = intensive care unit.
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Figure 2.   Predictive ability of machine-learning derived models for (A) “therapeutic failure”; (B) “stroke/TIA”; 
(C) “major bleeding”.
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developed ML-based solution for stroke/TIA (best configuration: max-depth = 5 and number-of-estimators = 50) 
got an AUC of 0.931 (95%CI: 0.896–0.940; Fig. 2, Panel B; p < 0.0001 when comparing the two ROC curves, 
Brier score 0.13). Similarly, the HAS-BLED score was not able to predict significantly the in-hospital occurrence 
of MB (AUC: 0.503; 95%CI: 0.453–0.554)5. The newly developed ML scoring system for major bleeding (best 
configuration: max-depth = 5 and number-of-estimators = 50) outperformed the clinical score with an AUC of 
0.930 (95%CI: 0.911–0.939, Fig. 2, Panel C; p < 0.0001 when comparing the two ROC curves, Brier score 0.09). 
Brier score for TF was not computed since this score was designed for dealing with only binary classifiers.

Global machine learning interpretation.  The relevance of every single input variable for the trained ML 
model was computed by Skater. For the TF prediction model, the most important features were SBP, intravenous 
amine use and age. These variables reached an importance score between 0.15 and 0.10, followed by ACEi/ARB 
(0.05), cardiogenic shock (0.04) and stroke/TIA (0.04). In general, the features with less global impact were 
Propafenone/Flecainide use, alcohol abuse, electric cardioversion and gender, as shown in Fig. 3, Panel A. For 
the stroke/TIA prediction model, the most important feature was acute heart failure (AHF) with a score of 0.16, 
followed by SBP (0.10) and by the use of LMWH at admission (0.10). The variable and their relevance for the 
ML model trained to predict stroke/TIA are shown in Fig. 3, Panel B. For the MB prediction model, the most 
important features were the type of anticoagulant (LMWH) at the admission (0.21) followed by AHF (0.12). The 
features and their relevance for this machine model are shown in Fig. 3, Panel C. Less relevant variables can-
not be discarded since they are relevant for the classification of single patients as underlined by Local Machine 
Learning Interpretation (LIME). In other words, even characteristics that contribute marginally to the global 
prediction can be discriminant for the single patient.

Local machine learning interpretation.  LIME allowed us to characterize every single patient’s risk 
starting from the features selected by the ML algorithm: by considering the same Skater variables, LIME assigns 
a specific, patient-dependent weight to each feature, which can be less relevant for the global model but discrimi-
nant for the single subject9. LIME’s plot interpretation is straightforward: given the probability P(Ci) of a patient 
to be classified in one of the ith classes (e.g., P(C1) = 0.90, P(C0) = 0.10), by subtracting from P(Ci) the weights of 
the variables characterizing the i-th class it is possible to compute what would be the new probability to belong 
to the current class or the others. Thus, LIME can give specific information regarding the individual risk of each 
analyzed patient calculated based on the global features. An example of LIME capabilities is described in the S1 
File (Supplementary Methods). Experienced readers might doubt the choice of LIME instead of SHAP (SHapley 
Additive exPlanation). It is known that the former might be less accurate, but LIME is faster than SHAP33 The 
LIME histogram can be found in the supplementary material and they are depicted in the S3–S5 Figs. In addi-
tion, we remark that the accuracy of global machine learning interpretation is more important for the scope of 
this paper, which is the definition of new smart scoring systems for the diagnosis of the three target variables.

Discussion
The critically-ill patient is considered at high risk of both haemorrhagic and thromboembolic complications 
for several, different mechanisms34: despite their increasing complexity, there are no specific indications on the 
management of these subjects, especially regarding anticoagulation, in the setting of critical care, mainly due 
to a lack of reliable clinical predictors of stroke/TIA and MB. Patients with pre-existing AF admitted for criti-
cal illness have a baseline thromboembolic risk which could be further raised by other factors related to the 
coexistent acute pathology, its treatment, organ dysfunctions and systemic inflammation35. CHA2DS2-VASc is 
a generic marker of risk, proven to be useful in several settings different from its original scope36. However, it 
is not validated for the critical illness, where it could be representative of the subject’s baseline risk, not consid-
ering the factors associated with the critical care environment. According to our results, CHA2DS2-VASc was 
not able to predict the individual risk to develop a stroke/TIA during the hospitalization and, consequently, to 
guide safely the patient’s management5. Our approach reached a good accuracy in predicting stroke/TIA during 
the hospitalization, sharing some items with CHA2DS2-VASc score, such as CHF, age, previous stroke/TIA and 
vascular disease, confirming the robustness of these features even in this setting. We also underlined the impor-
tance of some critical-care specific items, which could carry a major weight in the prediction of this outcome, 
such as admission diagnosis (i.e. AHF, ACS), physiologic parameters (SBP, DBP), and therapeutic management. 
We were also able to emphasize the role of some comorbidities, such as chronic lung and kidney disease, and 
the importance of the anticoagulant approach preceding the admission. Of note, both COPD37 and CKD38 have 
already been identified as adjunctive risk factors for stroke/TIA during AF but, despite their high prevalence, 
they are not included in commonly used risk scores.

Similarly, the HAS-BLED score did not show any accuracy in discriminating patients undergoing MB dur-
ing the hospitalization in this cohort5. Again, the individual bleeding risk could be raised due to several factors 
which are commonly observed in the acute phase of a disease. Stress ulcers7, consumption of coagulation factors 
and reduction of platelet count are commonly observed in critical care. Several drugs, such as antiplatelets, are 
often needed in the acute phase of certain diseases, such as ACS, but can exponentially increase the bleeding 
risk, especially in presence of organ dysfunctions39.

Our method accurately predicted MB following hospitalization. Some HAS-BLED features such as age, anae-
mia, previous gastrointestinal bleeding, low TTR and antiplatelet drugs use were associated with MB, thus con-
firming the validity of these items even in the acutely ill patient. Comorbidities and specific factors for critical 
illness, such as the acute diseases leading to hospitalization, physiological parameters at the admission and the 
anticoagulant therapy were also associated with MB. We also engineered an accurate prediction model for TF, 
accounting for both general and disease-specific factors. Interestingly, both stroke/TIA and MB carried a major 
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Figure 3.   Skater results for (A) “therapeutic failure” (B) “major bleeding” (C) “stroke/TIA”.
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weight in the determination of this outcome, underlining the urgent need for specific models able to accurately 
predict thromboembolic and bleeding events in this setting to improve medical management and reduce in-
hospital mortality.

Our paper also underlines a significant aspect related to the use of clinical scores in the management of AF 
patients: in the last years, several scores have been proposed to replace both CHA2DS2-VASc and HAS-BLED, 
with limited results in obtaining a significant improvement in prediction ability when tested outside the original 
validation cohorts40. A systematic review highlighted that most of the scores reported a similar predictive ability 
irrespectively of a larger number of items considered and differential use of weighting, with both CHA2DS2-VASc 
and HAS-BLED resulting among the most effective in determining the future outcomes risk40. A good clinical 
score is represented by the balance between evidence, practicality and robustness41: the results presented in this 
paper can illustrate that a more advanced analytical strategy can be useful to obtain a more accurate model, 
both considering a set of usual strong risk factors and more specific clinical characteristics. The emergency-care 
environment is becoming the ideal place to apply ML techniques in clinical practice, mainly due to its techno-
logical implementation: the wide use of electronic medical records, daily updated with drug therapy modifica-
tions, laboratory analysis data and physiological parameters allows the generation of large, dynamic datasets. 
The software integration of this data flow with ML algorithms will allow the clinician to easily obtain a real-time 
estimate of both thrombotic and bleeding risk. Moreover, the spreading use of mobile apps among physicians 
would allow a larger use and application of these methods. Notwithstanding, it’s important to underline how the 
clinical use of prediction models should assist and inform the clinical decision, rather than replace the clinical 
assessment and evaluation41.

Study limitations
The main limitation is related to the study design, being a retrospective observational analysis of a cohort not 
primarily identified for research purposes. Some features, such as the time since the AF diagnosis, were not 
available and should be considered in further implementations of the model. Larger and external, multi-centre, 
prospective validations of these models will be required to confirm our results and to substantiate our methods. 
Moreover, since the thrombotic and the haemorrhagic risk of the critically ill patient changes dynamically as 
his pathology evolves, validation should be performed with a dynamically updated dataset, whose results would 
update daily the physician on the risks according to physiological parameters, laboratory analysis results, thera-
pies and procedures performed. Moreover, it is necessary to underline that the deployment of such a solution in 
a real-life clinic might be unfeasible or at least feasible only in strongly-digitized countries: the implementation 
of such an algorithm in most hospitals, today, can be limited by technological, ethical and legislative barriers 
that could strongly limit the implementation of our approach in the clinical practice. Despite these limitations, 
currently several ongoing efforts are trying to solve these issues: for example, the European Commission has 
released a list of 7 requirements, ranging from ethical to technical indications, which could help to translate 
artificial intelligence projects into real-life applications42. Several authors, however, are investigating to solve 
legal, ethical and technical issues that might prevent the adoption of ML-based solutions in real-life situations43.

Conclusions
In critically ill patients with pre-existing AF, the classical risk scores adopted to predict stroke/TIA and MB are 
not effective and should not be used to guide the therapeutic approach during a hospitalization into such a high 
level of clinical complexity. Big data analysis with TDA allowed us to identify specific risk factors associated 
with stroke/TIA and MB in this clinical setting. ML techniques were able to outperform classical risk scores. 
Moreover, in this paper we have also challenged tools to debug the ML models and understand the classification 
outputs. We believe this is a seminal step toward the instrumentation of a ML framework compliant with the 
GDPR-22nd article “right to be informed”.

Data availability
AFICILL Database is publicly available at: https://​doi.​org/​10.​17632/​c87p2​93wpb.4 (DOI) or https://​data.​mende​
ley.​com/​datas​ets/​c87p2​93wpb/4 (Mendeley Data).
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