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Smart‑cut‑like laser slicing of GaN 
substrate using its own nitrogen
Atsushi Tanaka1,2*, Ryuji Sugiura3, Daisuke Kawaguchi3, Toshiki Yui3, Yotaro Wani3, 
Tomomi Aratani3, Hirotaka Watanabe1, Hadi Sena1, Yoshio Honda1, Yasunori Igasaki3 & 
Hiroshi Amano1,2

We have investigated the possibility of applying lasers to slice GaN substrates. Using a sub-
nanosecond laser with a wavelength of 532 nm, we succeeded in slicing GaN substrates. In the 
laser slicing method used in this study, there was almost no kerf loss, and the thickness of the 
layer damaged by laser slicing was about 40 µm. We demonstrated that a standard high quality 
homoepitaxial layer can be grown on the sliced surface after removing the damaged layer by 
polishing.

Gallium nitride (GaN) is of particularly several applications as a wide-bandgap semiconductor material, among 
which light-emitting diodes (LEDs) and high-frequency devices are already in practical use. GaN is also a suitable 
material for power devices owing to its high critical electric field strength and high electron saturation velocity; 
although this application is still in the research phase, it is being actively studied1–19. For LEDs and high-frequency 
devices, the device layer of GaN crystal is grown on foreign substrate. However, the epitaxial layer grown on 
a GaN substrate has higher quality with lower dislocation density than that grown on a foreign substrate. To 
improve device quality and reliability, a GaN-on-GaN structure is required. Particularly for power device use, the 
epitaxial layer grown on a GaN substrate as device layer is required, because there are many reports indicating 
that dislocations affect the characteristics of GaN power devices20–26. However, a GaN substrate is more expensive 
than competing power device materials such as Si and SiC, and this is one of the serious barriers to its widespread 
adoption in power devices. To cut a GaN substrate from the GaN crystal bulk, a wire saw is used conventionally, 
and using a wire saw causes kerf loss greater than the diameter of the wire. Typically, the diameter of the wire 
saw is greater than 150 µm and the total kerf loss is greater than 200 µm. To reduce the kerf loss and cost of GaN 
substrates, various new slicing and thinning methods have been attempted27–35. However, none of them have 
been put to practical use. In this paper, we report on a newly developed laser slicing method for minimizing the 
loss of GaN substrates and demonstrate its practicality as a semiconductor processing technique.

Experiments
As a slicing target, commercially available both-side-polished n-type wurtzite GaN (0001) c-plane substrates 
with a thickness of 400 µm were used in this study. A sub-nanosecond 532 nm green laser with a peak power 
density of 2.5 × 1011 W/cm2 and a beam diameter of 1 µm was used for slicing. This wavelength is chosen because 
it is not absorbed by GaN, it has sufficient photon energy that reaches the band gap of GaN through two-photon 
absorption and it is easy to focus and obtain. This laser was equipped with a spatial light modulator (LCOS-SLM, 
Hamamatsu Photonics) to compensate for the spherical aberration due to the relatively high refractive index of 
GaN, which is 2.4 for the light with wavelength of 532 nm36. This laser is irradiated from the N-face of a GaN 
substrate, and a flat plane was formed by laser dents at a depth of 340 µm from the N-face, imagining slicing 
out a 340 µm wafer. In this method, such a plane was formed by the following two steps laser scanning: The first 
step scanning was to form laser dents at 8 µm intervals horizontally and 10 µm intervals vertically, using a pulse 
energy of 1.6 µJ. The second step was to form laser dents at 1 µm intervals horizontally and vertically, using a pulse 
energy of 0.6 µJ. The first step of scanning was to define the plane with relatively large dents, and the second step 
was to crack the plane. This was to make the plane as uniform as possible, avoiding that formed metallic droplets 
of precipitated Ga at the laser dents affect the surrounding focus depth. Figure 1a shows schematic images of 
the slicing process. We have not yet worked on reducing the processing time; however, the processing speed by 
laser scanning was about 20 cm2/s. After the slicing plane was formed in the GaN substrate, the slicing process 
was completed by sticking each side of the GaN substrate to a jig and then pulling it away manually (Fig. 1b).
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Results and discussion
Figure 2 shows photographs of a laser-sliced 5 × 5 mm square substrate. The surface of the sliced sample has a 
metallic luster due to the precipitated Ga, indicating that the decomposition of GaN to Ga and N in the GaN 
substrate is induced by laser irradiation. The density of Ga is 5.9 g/cm3 and the density of nitrogen is 1.3 × 10−3 g/
cm3, both of which are smaller than the GaN density of 6.2 g/cm3. It is considered that the volume of decomposed 
region expands owing to the decomposition at the laser focus, and cracks are generated by pressure in the plane 
direction, forming the cut plane. To demonstrate this process and confirm that N2 plays a major role in this 
process, we conducted the experiment as follows.

Only the first step of laser scanning was carried out at the center of the sample, leaving 700 µm of the sample 
periphery unscanned. At this point, there seemed to be very few Ga precipitates and the scanned area was still 
almost transparent (Fig. 3a). The sample was then heated to 350 °C on a hot plate. The center of the substrate 

Figure 1.   Schematic images of laser slicing. (a) Laser irradiation. (b) Separation.

Figure 2.   Photographs of laser-sliced 5 × 5 mm square GaN substrates. (a) Separated part of GaN substrate with 
thickness of 60 µm. (b) Separated part of GaN substrate with thickness of 340 µm.
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swelled, and interference fringes were observed. As shown in Fig. 3b, after cooling to room temperature, there 
was still space inside, and interference fringes remained. This indicates that the nitrogen in the large dents 
expanded owing to heat and formed a separation plane. Since the photographs in Fig. 3 were taken under white 
LED light, assuming the central wavelength was 560 nm, the thickness of the swollen space in the GaN substrate 
was estimated to be about 2.5 µm at the thickest point on the basis of nine interference fringes, which means 
2.52 = 0.56/2 × 9 µm. This experiment revealed that our method is a type of smart cut32,33,37–39, using a laser 
instead of an ion implantation, and using its own gas atoms, N, instead of hydrogen ions; hard and brittle GaN 
can withstand this process. Therefore, this result suggests the possibility of applying this method to the process-
ing of future wide-bandgap semiconductor materials with gas atoms as components such as gallium oxide and 
aluminum nitride. Furthermore, since a laser is used as the cutting source instead of an ion implantation, it is 
possible to create a cutting plane at any depth as long as the laser can be focused.

Figure 4 shows laser microscopy images of the sliced surface of Ga-face (Fig. 4a,b) and N-face (Fig. 4f,g), scan-
ning electron microscopy (SEM) images of sliced surface of Ga-face (Fig. 4c: the sliced surface, 4d: the laser dent 
depth) and N-face (Fig. 4h: the sliced surface, 4i: the laser dent depth), atomic force microscopy (AFM) images 
of sliced surface of Ga-face (Fig. 4e) and N-face (Fig. 4j) for evaluating the condition of the sliced surface of the 
sample shown in Fig. 2. As for the roughness of these surface, the unevenness caused by large focus fluctuations 
was determined to be around 10–20 µm on each side from Fig. 4a,f. The depth of large dents generated by the 
first scanning was determined to be around 10 µm on each side from Fig. 4d,i. The depth of small dents gener-
ated by second scanning was determined to be around 300 nm on the sliced surface of Ga-face from Fig. 4e and 
around 60 nm on the sliced surface of N-face. The reason why the surface morphology does not differ so much 
between the Ga-face and N-face in the laser microscopy images is thought to be that the laser slice is progressed 
by almost lateral cracks and also the shape of the large dents, which are thought to be the main cause of the 
roughness of the surface, does not differ between on Ga-face and on N-face. The reason why the shapes of the 
large dents are almost same on both sides is thought to be that the large dents are almost cracks caused by the 
expansion of the volume at the dents owing to the ablation of GaN. The generation of nitrogen gas is thought 
to be the main reason of the expansion of the volume. On the other hand, the depth of the small dents is deeper 
on the Ga-face than N-face. We consider this is because the Ga precipitation mainly determine the shape of the 
small dents, as the nitrogen can escape laterally owing to laterally spread of cracks during the second scan. In 
one pulse of the laser, precipitated Ga increases the absorption of the laser, and Ga precipitation extend for laser 
irradiation direction, which is Ga-face side of GaN substrate with thickness of 340 µm from slicing plane in this 
experiment. To estimate the depth of damage caused by laser slicing, three-dimensional photoluminescence (PL) 
observation of GaN was carried out using a multiphoton microscope40,41.

The results are shown in Fig. 5. As shown in Fig. 5b, damage at about 10 µm intervals was observed as a bright 
contrast around the sliced surface in near-band-edge emission (365 nm), which was probably caused by the first 
scanning owing to the spacing of the laser dents. The bright contrast extends linearly in the a direction, in which 
GaN easily cleaves. This suggests that the local nitrogen pressure generated by the large dent formed during the 

Figure 3.   Photographs and cross-sectional schematic images of GaN substrates containing nitrogen bubbles. 
(a) After laser irradiation before heating. (b) After heating.
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Figure 5.   Evaluation of damage caused by laser slicing with multiphoton microscope. (a) Schematic cross-
sectional view of multiphoton microscopy observation at the slice plane from the back side of the sample. (b) 
PL (365 nm) image observed at sliced surface. The damage generated by laser scanning is observed as a bright 
contrast. (c) PL (365 nm) image observed at a depth of 37 µm from the sliced surface (b). Strong linear bright 
contrasts show damage. Pale bright contrasts do not show damaged areas, but the area where the original 
properties of the substrate are slightly different, regardless of the extent of laser damage. Typical laser-damaged 
areas are encircled in red. (d) PL (365 nm) image observed at a depth of 42 µm from the sliced surface (b). The 
deep-laser-damaged area encircled in red is barely visible. (e) PL (365 nm) image observed at a depth of 79 µm 
from the sliced surface (b). Almost no damage contrast is visible even at the position of the deep-laser-damaged 
area (orange circles). Black dots are dislocation defects that originally exist in the GaN substrate. In (b–d) 
dislocations are difficult to recognize by multiphoton microscopy because of the depth of observation. (f) PL 
(365 nm) image of the GaN substrate that contain only substrate-derived crystal defects for comparison.

Figure 6.   Photographs (upper) and white interference microscopy images (lower) of the samples after epitaxial 
growth. (a) Schematic image of experimental process. (b) Sample thinned by 18 µm. The arithmetic mean height 
of the area is 24 nm. (c) Sample thinned by of 47 µm. The arithmetic mean height of the area is 2.1 nm. (d) 
Sample thinned by 77 µm. The arithmetic mean height of the area is 7.2 nm. (e) Sample grown on commercially 
available epi-ready GaN substrate. The arithmetic mean height the of area is 8.0 nm.
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first scanning causes cracks or similar distortions in the weak direction of the GaN crystal. In addition, when 
large dents that are close to each other align in the a direction, they seem to interact with each other, and a bright 
contrast is observed as a line connecting the dents. In Fig. 5, the large dents are arranged in a grid as shown 
in Fig. 1, so the large dents lined up vertically and bright lines appeared vertically. As shown in Fig. 5b–d, this 
damage caused by the interaction of large dents is observed to be particularly deep. This suggests that we need to 
pay attention to the relationship between the arrangement of the large dents and the crystal orientation when we 
try to suppress the damage caused by the large dents. Regarding the depth of this damage caused by the interac-
tion of large dents, the damage was observed at sites as far as 42 µm from the slicing plane at the deepest point.

To determine how the damage caused by laser slicing affects the crystal quality of the epitaxial layer grown on 
the sliced surface and the extent to which thickness should be decreased after laser slicing before epitaxial growth, 
we grew the epitaxial layer by metal organic vapor phase epitaxy (MOVPE) on the Ga surface of sliced samples 
whose thicknesses were decreased by various amounts by polishing them. The thickness of the epitaxial layer 
was 8 µm, assuming a typical vertical power device. In this study, we prepared samples with polishing amounts 
of 18 µm, 47 µm, and 77 µm and also a commercial epi-ready GaN substrate without slicing and polishing for 
comparison. In this experiment, we used 1 × 1 cm square samples. The results are shown in Fig. 6. As estimated 
above, when the amount of thickness decrease was less than 40 µm, the surface morphology of the epitaxial layer 
became rough. On the other hand, the roughness of the epitaxial layer surface was almost the same as that of 
the epitaxial layer grown on the commercially available epi-ready surface when the thickness decrease was more 
than 47 µm. With careful observation, they appear to have differences. However, the differences in the surfaces 
shown in Fig. 6c–e are within the range that appears as an in-plane distribution in the normal epitaxial growth 
of 2-in. wafers owing to its crystallinity distribution. Therefore, we do not think that the difference between 
the surface shown in Fig. 6c,d is due to laser damage or polishing. Figure 7 shows multiphoton microscopy PL 
images of the epitaxial layer/substrate interfaces of the samples. It is only on the substrate side of the sample 
thinned by 18 µm (Fig. 7b, bottom) that dark lines and dark areas are observed. These are probably because the 
crystalline parts of the damaged layer observed in Fig. 5 are mechanically and chemically weak, and cracks and 
holes were formed by the pressure and chemical agent of slurry applied for polishing. In the epitaxial layer, the 
epitaxial layer can be grown even on the cracks; however, clusters of dislocations are generated. On the holes, 
no epitaxial layer grows and voids remain. These are thought to cause the deterioration of the epitaxial surface 
morphology shown in Fig. 6.

Conclusion
In this study, a sub-nanosecond 532 nm green laser equipped with LCOS-SLM was used slicing a GaN substrate. 
The laser slicing was carried out on the basis of a smart-cut-like principle, with almost no kerf loss, and the dam-
age caused by laser irradiation had been shown to reach a depth of about 40 µm from the cutting surface. We 
also demonstrated that after removing the damaged layer of about 40 µm thickness, the laser-sliced surface is as 
suitable as a commercially available epi-ready GaN substrate for epitaxial growth.

Figure 7.   Multiphoton microscopy PL (365 nm) images of epitaxial layer (upper) and epitaxial layer/substrate 
interface (lower). (a) Cross-sectional schematic image showing the depth of observation. (b) Sample thinned 
by 18 µm. The red dashed circle indicates cracks, and the yellow dashed circle indicates holes on the substrate 
side immediately below the epitaxial layer/substrate interface. The generated dense dislocations (red circle) 
and voids (yellow circle) are observed in the epitaxial layer above the cracks and holes, respectively. The other 
dispersed black dots in the epitaxial layer are dislocations that originally existed in the substrate and propagated 
into the epitaxial layer. (c) Sample thinned by 47 µm. No dislocations are generated. (d) Sample thinned by 
77 µm. No dislocations are generated. (e) Sample grown on commercially available epi-ready GaN substrate. No 
dislocations are generated.
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