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Model guided extremum seeking 
control of electromagnetic 
micromirrors
Wanyan Sun1 & Yonghong Tan2*

In this paper, a simplified dynamic model is constructed to describe the main characteristic of 
electromagnetic micro-mirror. Then, based on the information provided by the derived simplified 
model, a model-guided extremum seeking control (MGESC) scheme with backtracking line search 
is developed, which can automatically estimate the best value of step-size at each search iteration 
to improve the performance of the control system for target tracking. Then, the convergence of 
the proposed MGES algorithm is proved. Finally, the experimental results and the simulations are 
presented to verify the proposed method.

Electromagnetic micromirror (EMM) as shown in Fig. 1 is a micro-electro-mechanical system (MEMS) device, 
which has the prominent advantage over other micromirrors in the aspects of lower power consumption, larger 
drive force, and larger deflection angle and so on1–3. Refs.4,5 presented the design and fabrication procedure of 
EMM as well as the piezoresistive sensor design for the measurement of deflection angle of EMM, but the open-
loop control is used for angle control, which may lead to obvious tracking error especially when the working 
condition is changed. In order to obtain satisfactory tracking control performance, the optimization-based 
control strategy is one of the interesting options.

Ref.6 proposed a Newton’s optimization method to determine the harmonic coefficients of electromagnetic 
micromirror but the computational load is a significant challenge for engineering application. A method of 
Proportion-Integration-Differential (PID) control with low pass filter (LPF) was proposed in Ref.7. However, 
specifying the optimal gains for PID controller is not an easy task since the optimization procedure, in this case, 
is a nonconvex problem. In our previous work8, it is shown that the slow-scanning axis in the EMM system 
participated in several resonant motions under the signals of resonant frequencies, especially in the resonant 
movement on the slow-scanning axis shown in Fig. 2, which was the main reason of the instability in the control 
of electromagnetic micromirror. Therefore, the driving control of the slow scanning axis has reliability require-
ments compared to the harmonic driving control of the fast-scanning axis. Hence, the advanced control method 
needs to be explored for the slow-scanning axis control compared to the current existing control methods, in 
which the parameters are tuned usually by empirical techniques.

As we all know, for the systems that are difficult to build an accurate model, while maintaining the stability 
and boundedness of the signal, the so-called extreme seeking control (ESC) has the advantage of autonomously 
finding the optimal system behavior for target tracking9,10. Therefore, it will be chosen as the strategy for the 
slow-scanning axis control of EMM. Now, two problems are faced in exploring extremum seeking algorithm for 
slow-scanning axis control. One is that the first-principle model of the scanning axis is difficult to be constructed 
due to the complex structure and the complicated fabrication process of micromirror5, another is that the step-
size of the ESC is tuned according to the empirical method9, which is not convenient for practical applications. 
Moreover, the selection of step-size based on empirical method cannot guarantee the best value of step-size is 
selected, which makes the ESC suffer from the slow convergence rate, which will degrade the control perfor-
mance. Recently, Refs.11,12 proposed the concept of offline model-guided extremum seeking optimization for the 
optimal calibration of engine compression ignition and fuel injection optimization, which has the capability to 
accelerate convergence with the support of known models.

Inspired by the above-analysis, in this paper, a model-guided extremum seeking control (MGESC) strategy 
is proposed for angle control of EMM system. In this strategy a simplified linear model to describe the main 
characteristic of EMM system is constructed. To specify the model structure such as the order and coefficients 
of the model13, a cost function minimization-based method is developed. Furthermore, for the improvement of 
target-tracking performance of EMM, the model-guided extremum seeking algorithm with backtracking line 
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search (BTLS) is proposed to search for the optimal control solution, and stabilize the system in the case that 
the resonance happens in the slow-scanning axis control. This method can automatically identify the best opti-
mization step-size of iteration for extremum search. Finally, the simulation shows that the proposed algorithm 
has achieve promising result.

Modeling of EMM
Schematic of electromagnetic micromirror system.  Schematic of electromagnetic micromirror sys-
tem shown in Fig. 3a. In the EMM, the slow-scanning axis control, u(t) is the input voltage and y(t) is the output 
of the piezoresistive angle sensor used to measure the angle position of the slow-scanning axis in the EMM, 
respectively. The study in this paper just focuses on the angle control of slow-scanning axis. The output of con-
trol algorithm generated by the computer is sent out via D/A converter to produce driving electric current I(t) 
to drive the slow-scanning axis of the EMM. The piezo-resistive sensor (PRS) is used to measure the angle of 
EMM. The corresponding output voltage of the PRS, i.e., VFTPS is amplified by the linear amplifier to produce 
the output voltage y(t) , which is then sampled by the A/D converter to feedback to the computer. In the method 
of this paper, the behavior of the slow-scanning axis of EMM is considered as a black box as shown in Fig. 3b. 
Based on the structure shown in Fig. 3b, using the measured input and output of the EMM, the simplified model 
is established.

Establishment of simplified model.  It is known that the deflection mechanism of the EMM can be 
described by

 where y is the deflection angle, M is the mass moment of inertia, B is the damping coefficient, K is the spring 
constant of flexure, and Te is the electromagnetic torque which is described as8

(1)Mÿ + Bẏ + Ky = Te ,

Figure 1.   Electromagnetic micro-mirror.

Figure 2.   Main Resonant Movement in Slow-scanning Axis Control.
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 where Ф is the external magnetic field generated by the permanent magnets, u is the control voltage and R is the 
resistance of the spial coil, ri is the distance between the unit length of the coil and the axis of rotation on the ith 
coil, and θ is the angle between �I and �B . From (2) and the detailed analysis of torque to drive the mirror plate14, 
it is known that the relation between the control voltage and the drive torque has a complex mapping. However, 
based on the model described by formulas (1) and (2), it is not convenient to design a suitable controller to 
control the angle of the micromirror.

By ignoring the nonlinear factor, such as hysteresis15,16 in the EMM, a simplified model is used to describe 
the major dynamic behavior of the EMM. The purpose of building the simplified model is to use it to provide the 
initial search direction to ESC mechanism to speed-up the convergence and to obtain good control performance. 
Suppose the system can be described as

 with the simplified model

 where the parameter vector is

 and data vector is

(2)Te = H[�, u] =
�

R

n
∑

i=1

∮

Li

ridliu sin θ

(3)y(k) = ŷ(k)+ e(k),

(4)ŷ(k) = ψT (k)θ̂ (k),

(5)θ̂T (k) =
[

âk1 âk2 · · · âkm | b̂k1 b̂k2 · · · b̂km
]

1×2m

(6)ψT (k) =
[

−y(k − 1) −y(k − 2) · · · −y(k −m) | u(k − 1) u(k − 2) · · · u(k −m)
]

1×2m

Figure 3.   Schematic of Electromagnetic Micromirror System.
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 where u(k) and y(k) are discrete-time input voltage and output voltage sampled at time step k respectively; m is 
the model order. Define

 as the modeling error which is supposed to be a white noise with zero-mean value and variance σ2. Then, the 
following formula

 is defined as the cost-function to evaluate the modeling performance, where N is sample number, and

 is the error vector. It is known that the order of the model is to determine the structure of the model. Consider-
ing the incremental variation of the cost function, i.e.,

 the model order, m̂ , can be determined by checking whether

 is held, which means that no significant improvement of the cost function can be achieved, if so, then it adopts

Because the simplified model is a linearized model and the e(k) is assumed to be the white noise with zero-
mean value, the recursive least square (RLS) algorithm13 can be used to estimate the parameters of the model, 
which has simple structure and leads to unbians estimation of the environment with white noise. The corre-
sponding algorithm is as follows:

 where K(k) is the gain matrix, P(k) is the covariance matrix and θ̂ (k) is the estimation of the parameter vector.

Model guided extremum seeking control scheme
Based on the obtained simplified model:

 where

 and

 the corresponding discrete-time state space model can be derived by

 where

 is the state vector, uis(k) is the control voltage yis(k + 1) is the output of EMM, i is the iteration index and k is the 
sampling step. Moreover, in (19),

(7)e(k) = y(k)− ŷ(k)

(8)V(m,N) = ET (k)E(k) =

N
∑

k=1

e2(k),

(9)ET (k) =
[

e(1) e(2) · · · e(k)
]

1×k

(10)�V(m̂,N) = V(m̂,N)− V(m̂+ 1,N)

(11)�V(m̂+ 1,N) ≪ �V(m̂,N).

(12)m = m̂.

(13)θ̂ (k) = θ̂ (k − 1)+ K(k)(y(k)− ψT θ̂ (k − 1)),

(14)K(k) = P(k − 1)ψ(k)(ψT (k)P(k − 1)ψ(k)+ 1)−1
,

(15)P(k) = (I − K(k)ψT (k))P(k − 1).

(16)A(z−1)yi(k) = B(z−1)xi(k),

(17)A(z−1) = 1+ as,1z
−1 + · · · + as,mz

−m

(18)B(z−1) = bs,1z
−1 + · · · + bs,mz

−m
,

(19)Xi
s(k + 1) = FsX

i
s(k)+ Gsu

i
s(k),

(20)yis(k) = CsX
i
s(k),

(21)Xi
s(k + 1) =













xis,1(k + 1)

xis,2(k + 1)

· · ·
xis,m−1(k + 1)

xis,m(k + 1)










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 is the state transfer matrix,

 is the input matrix and

 is the output vector. In addition, the parameters hs,1, hs,2, hs,3, · · · , hs,m in the input matrix can be expressed as

In order to develop the model-guided extremum seeking algorithm with backtracking line search, define

 as the cost function of extremum seeking control at the ith iteration of step k + 1 , where rs(k + 1) is the target 
trajectory at step time k + 1 , ui+1

s (k) is obtained based on the steepest descent method at step k for the (i + 1)th 
iteration, i.e.,

 where

 and

 where ∇J is(k + 1) is the gradient of the cost function with respect to the input at the ith iteration of step k + 1 . 
From (29), it is noted that the gradients ∂y

i
s(k+1)

∂ sx1(k+1)
∂sx1(k+1)

∂uis(k)
 can be estimated based on the state-space model shown 

in (19) and (20). Therefore, different from the traditional ESC scheme without relying on any system models, 
the MGESC scheme uses the information provided by the simplified model as the start of iteration to search for 
the optimal or at least the sub-optimal solution of the control within each sampling step.

Moreover, the convergent performance of the MGESC is dependent on the appropriate selection of step size 
�
k
s  at each step. In order to obtain the optimal step-size of extremum seeking process within each sampling step, 

the backtracking line search (BTLS) technique17 is applied to choosing the best step size �ks  from the candidates 
of step size, and the corresponding flowchart of backtracking procedure is shown in Fig. 4.

From Fig. 4, the algorithm of BTLS can be concluded as.

1.	 Choose the initial values of � > 0,  and ρ, c ∈ (0, 1).

2.	 Let � = �   and repeat � = ρ�, until

where pk+1 = −∇J1s (k + 1).
3.	 In the end, let �ks = �.

With the BTLS algorithm, the extremum seeking algorithm is more flexible in search for the best optimization 
step size from the candidates of step sizes, which is better than the extremum seeking algorithm with fixed step 
size chosen via empirical method. By using the BTLS approach, the corresponding MGESC with BTLS algorithm 
is obtained by repeating the implementation of (19), (20), and (26)–(29) at each step, until the stop criterion

(22)Fs =













0 1 0 · · · 0

0 0 1 · · · 0

.

.

.
.
.
.

.

.

. · · ·
.
.
.

0 0 0 · · · 1

−as,m −as,m−1 −as,m−2 · · · −as,1













m×m

(23)Gs = [hs,1 hs,1 · · · hs,m]
T

(24)Cs = [ 1 0 · · · 0 ]

(25)

hs,1 = bs,1
hs,2 = bs,2 − as,1hs,1

hs,3 = bs,3 − as,2hs,1 − as,1hs,2
.
.
.

hs,m = bs,m − as,m−1hs,1 − · · · − as,1hs,m−1.

(26)J is(k + 1) =
1

2
[eis(k + 1)]2 =

1

2
[rs(k + 1)− yis(k + 1)]2

(27)ui+1
s (k) = uis(k)+�uis(k),

(28)�uis(k) = −�
k
s∇J is(k + 1)

(29)
∇J is(k + 1) =

∂J is(k + 1)

∂uis(k)

= −(rs(k + 1)− yis(k + 1))
∂yis(k + 1)

∂ sx1(k + 1)

∂ sx1(k + 1)

∂uis(k)

(30)J1s (k + 1)(u1(k)+ �pk+1) ≤ J1s (k + 1)(u1(k))+ c�∇J1s (k + 1)pk+1

(31)J is(k + 1) ≤ ε,
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 where ε is supposed to be 10−8 , is satisfied. Thus, it leads to

Figure 5 illustrates the corresponding flowchart of the MGESC with BTLS algorithm.
Note that xis,1(k + 1) and xis,2(k + 1) are assigned to xi+1

s,1 (k) and xi+1
s,2 (k) , respectively after the calculation of 

the simplified model shown as (19) and (20). In addition, in the MGESC with BTLS algorithm, the angle position, 
y(k) , is assigned to y1s (k)  as the starting value of the iteration in the extremum seeking mechanism. It is calculated 
to obtain the prediction of the output, i.e., yis(k + 1) . Then substitute yis(k + 1) in J is(k + 1) and check whether 

(32)uis(k + 1) = ui+1
s (k).

Figure 4.   Flowchart of backtracking line search.

Figure 5.   Flowchart of MGESC with BTLS algorithm.
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stop criterion shown as (31) is satisfied. If so, the optimal solution of control is achieved, otherwise the extremum 
seeking control based on the obtained model continues the itserative calculation. The BTLS method chooses 
the best optimization step size �ks  from the candidate step sizes for each extremum search at sampling step k.

Remark 1   From Eqs. (27)–(29), it can be seen that the performance of the ESC control scheme depends on 
the optimization step-size as well as the accurate estimation of the gradient. If the estimation of gradient is not 
correct, it may lead to poor control performance. Therefore, the MGESC method proposed in this paper uses 
the information provided by the simplified model to start the optimal search to obtain the accurate gradient 
estimation. On the other hand, the best-selection of step-size also has an important impact on the performance 
of the control system. Therefore, the BTLS method used in this paper can seek the best result from the candidates 
of the optimization step-size. The combination of these two aspects can ensure that the satisfactory result can 
be obtained for the ESC system.

Modeling and simulation results
In this section, the experiments of modeling are all based on the dSPACE platform including D/A (DS2012) and 
A/D (DS2004) converters, which connect the dSPACE with the EMM. Figure 6 shows the connection board of 
dSPACE where plug 1 is used to send out the control signal to the EMM to drive the slow-scanning axis while 
plug 2 is used to receive the amplified voltage denoting the angle position of mirror plate measured by the PRS. 
In addition, the sampling frequency is 5 kHz.

Building simplified model.  By neglecting the effect of nonlinear factors such as hysteresis15,16, the sim-
plified model to describe the deflection angle of mirror plate of the EMM, driven by the slow-scanning axis is 
established by estimating the parameters θT (k) by the modeling method as shown in Modeling of EMM.

In the experiment of modeling the simplified model, the slow-scanning axis of EMM is excited by the input 
voltage with the form: u(k) = 2e

−k
3500 sin(2π × 300× e

−k
3500 ) (V). By using the measured input and output data 

of EMM as well as the modeling method provided by Modeling of EMM, it obtains the model order result, 
i.e., m̂ = 2, while �V(3,N) = 0.308, (N = 13927) and �V(2,N) = 4.1104, (N = 13927) . Thus, it leads to 
�V(3,N) ≪ �V(2,N), (N = 13927) and the model order is chosen as m = 2.

Then, the parameter convergence process of the simplified model using the RLS algorithm is shown in Fig. 7. 
The corresponding estimation of the model parameter vector is

Performance of model‑guided extremum seeking scheme.  Based on the estimated parameters, the 
corresponding state-space model is constructed, i.e.

 where the physical meaning of xis,1(k) denotes the angle position of the mirror plate while xis,2(k) represents the 
velocity of angle.

From the experimental results, it is seen that the open-loop step response of the EMM shown in Fig. 8 is 
affected by random noise. This is because electromagnetic interference acts on the measurement signal of the 
piezoresistive sensor. It is also found out that the proposed MGESC strategy has demonstrated good characteristic 

θT (k) = [ as,1 as,2 bs,1 bs,2 ] = [−0.6434, −0.1371, 0.4563,−0.0069].

[

xis,1(k + 1)

xis,2(k + 1)

]

=

[

0 1

−0.1371 −0.6434

][

xis,1(k)

xis,2(k)

]

+

[

0.4563

0.2936

]

uis(k)

yis(k) = [ 1 0 ]

[

xis,1(k)

xis,2(k)

]

Figure 6.   Connection board of dSPACE.
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of noise-suppression. In the noise suppression experiment, the EMM is placed close to the radio noise genera-
tor, which generates electromagnetic random noise with a mean value of zero and a variance of 0.025. Figure 9 
shows that the noise suppression result of the proposed MGESC method in time-domain while Fig. 10 is the 
corresponding spectrum of the noise elimination performance of the MGESC scheme. It is seen that the high-
frequency noise has been removed when the proposed MGESC scheme is applied to the EMM. For comparison, 
the secondary filtering approach developed in Ref.8 is also used to suppress the influence of noise on the output 
measurement of EMM. Figure 11 shows the corresponding filtering result of the secondary filter in time-domain. 
On the other hand, Fig. 12 illustrates the secondary filtering result of the output of EMM in frequency domain.

From Figs. 9, 10 and 12, it is seen that the capability of noise suppression of the proposed MGESC method 
is very similar to that of the secondary filter. However, the MGESC scheme does avoid the complicated design 
process of the secondary filter8. However, by comparing Figs. 9 with 11, it is known that the MGESC scheme has 
achieved smoother filtering result than that of the secondary filtering method.

Figure 7.   Convergence process of parameter estimation.

Figure 8.   Open-loop step response of EMM disturbed by random noise.
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Remark 2   It can be seen from Figs. 10 and 12 that the MGESC strategy proposed in this paper has a noise sup-
pression effect. This filtering effect is like the secondary filter. However, due to this noise suppression function, 
there is no need to specially design a secondary filter to filter out the interference of random noise to the system. 
This simplifies the design of the system, which is an interesting advantage of the MGESC method.

Subsequently, the simulation results on angle control of the EMM will be presented in the following.
In the simulation, the EMM is described by:

 where e(k) is supposed to a white noise sequence with zero-mean value and variance 0.15. It is also assumed 
that the simplified model is of the form, i.e.,

y(k) = −0.66y(k − 1)− 0.139y(k − 2)+ 0.44u(k − 1)− 0.0072u(k − 2)+ e(k)

Figure 9.   Noise suppression of the MGESC scheme in time-domain.

Figure 10.   Spectrum analysis of the noise suppression using MGESC scheme.
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It is seen that the model residual of parameters exists in the simplified model. Based on this setup, the cor-
responding simulation results will be presented in the following.

First, the open-loop control scheme is applied to the EMM, the corresponding open-loop response is shown 
in Fig. 13. It is seen that the absolute tracking error bound of the system is 1.2639°. Moreover, the effect of noise 
can also obviously be seen in the tracking error. Apparently, it is not a satisfactory response. In order to reduce 
the tracking error, the proposed MGESC method is applied to the target trajectory tracking of the EMM. Fig-
ure 14 shows the control response of the MGESC strategy with a fixed step size of 0.97. The absolute tracking 

[

xis,1(k + 1)

xis,2(k + 1)

]

=

[

0 1

−0.1371 −0.6434

][

xis,1(k)

xis,2(k)

]

+

[

0.4563

0.2936

]

uis(k)

yis(k) = [ 1 0 ]

[

xis,1(k)

xis,2(k)

]

.

Figure 11.   Noise suppression of the secondary filter in time-domain.

Figure 12.   Spectrum analysis of the noise suppression using secondary filter.
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error obtained is less than 0.1913°, which is much smaller than the open loop control, but it is not acceptable 
for precision angle control of EMM.

In order to find a proper value of step-size, λ = 0.98 and λ = 0.99 are selected. The corresponding control 
response of the MGESC with λ = 0.99 and λ = 0.98 are shown in Figs. 15 and 16, respectively. It is seen that the 
absolute tracking error of the case that λ = 0.99 is within the bound of 0.2° while the absolute tracking error of 
the MGESC with λ = 0.98 is less than the error bound of 0.055°.

Figure 13.   Tracking performance of the open-loop control.

Figure 14.   Tracking performance of the MGESC with fixed λ = 0.97.
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According to Figs. 14, 15 and 16, it is known that the value of optimization step-size has significant influence 
on the control performance of the MGESC strategy. The proposed MGESC method has shown its great potential 
in target tracking of the EMM. However, the selection of the step-size by empirical method is difficult and time-
consuming, which cannot guarantee the best solution of control. Thus, seeking an optimal value of step-size will 
lead to the satisfactory control response of EMM.

In this paper, the proposed MGESC with BTLS method will provide us with the possibility to find the best 
value of step-size. Figure 17 shows the tracking control performance of the MGESC with BTLS method while 
Fig. 18 illustrates the search process of the step-size. Figure 17 shows that the initial value of the step-size has a 
significant impact on the system performance. From Fig. 17, it is seen that the initial absolute tracking error of 

Figure 15.   Tracking performance of the MGESC with fixed λ = 0.99.

Figure 16.   Tracking performance of the MGESC with fixed λ = 0.98.
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the MGESC method is 0.13°. After t = 0.0002 s., the absolute tracking error of the MGESC is reduced to within 
the error band of 0.035°. Figure 18 illustrates that when the initial value of the step-size is 1, it results in a larger 
initial absolute value error. When t = 0.0002 s., the step-size converges to the optimal value of 0.2, the correspond-
ing absolute value of the tracking error quickly enters the error band of 0.035°.

By comparing with cases where λ = 0.97, 0.98 and 0.99, the proposed MGESC with BTLS scheme has achieved 
the best tracking result. In addition, Fig. 18 also shows that the step-size search converges very fast to the optimal 
value, which leads to the satisfactory tracking response of EMM.

Moreover, by comparing with the case of open-loop control shown in Figs. 13, 14, 15, 16 and 17 have shown 
that the effect of random noise acting on the system has been removed by the proposed MGESC method. Thus, 
the noise suppression ability of the MGESC has been proved again by the simulation results.

Conclusion
In this paper, the model-guided extremum seeking control scheme is proposed for the angle control by con-
trolling the slow-scanning axis of electromagnetic micromirrors. Different from the other ESC strategies, the 
proposed method uses the information provided by the developed simplified model of the EMM as the start 

Figure 17.   Tracking performance of the MGESC with BTLS method.

Figure 18.   Search process of step-size using BTLS method.
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value to search for the best to improve the control performance of the system. The convergence of the MGESC 
scheme is also proved. In order to further improve the control performance, the backtracking line search strategy 
of step-size is presented. Simulation results show that the optimization step-size has significant influence on the 
tracking performance of the EMM system. By comparing with the open-loop control, and the MGESC method 
with fixed step-size, the proposed MGESC with BTLS method has obtained promising control response.

It is noted that even though the driving principle and mechanism of electromagnetic micromirrors are dif-
ferent from other types of MEMS micro-mirrors, such as electrostatic, electrothermal and piezoelectric actuated 
MEMS micro-mirror, the control scheme may still be used to control these micro-mirrors suppose the simplified 
model of these micro-mirrors are available. Moreover, the fast-scanning axis of the micro-mirror usually works 
around the resonant frequency about 20 kHz, which is controlled by a frequency lock controller. It does not seem 
to require the use of the control strategy, which is the same as that used in the slow scanning axis.

Moreover, the proposed control scheme also shows the capability to suppress the noise of the system, which 
is an interesting phenomenon worth to study further in the future.
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