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Rapid fluorescence imaging 
of human hepatocellular 
carcinoma using 
the β‑galactosidase‑activatable 
fluorescence probe SPiDER‑βGal
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Fluorescence imaging of tumours facilitates rapid intraoperative diagnosis. Thus far, a promising 
activatable fluorescence probe for hepatocellular carcinoma (HCC) has not been developed. 
Herein, the utility of the fluorescence imaging of HCC using a β‑galactosidase (β‑Gal)‑activatable 
fluorescence probe SPiDER‑βGal was examined. β‑Gal activity was measured in cryopreserved 
tissues from 68 patients. Live cell imaging of HCC cell lines and imaging of tumour‑bearing model 
mice were performed using SPiDER‑βGal. Furthermore, fluorescence imaging was performed in 27 
freshly resected human HCC specimens. In cryopreserved samples, β‑Gal activity was significantly 
higher in tumour tissues than in non‑tumour tissues. Fluorescence was observed in HCC cell lines. In 
mouse models, tumours displayed stronger fluorescence than normal liver tissue. In freshly resected 
specimens, fluorescence intensity in the tumour was significantly higher than that in non‑tumour liver 
specimens as early as 2 min after spraying. Receiver operating characteristic curves were generated 
to determine the diagnostic value of SPiDER‑βGal 10 min after its spraying; an area under the curve of 
0.864, sensitivity of 85.2%, and specificity of 74.1% were observed for SPiDER‑βGal. SPiDER‑βGal is 
useful for the rapid fluorescence imaging of HCC. Fluorescence imaging guided by SPiDER‑βGal would 
help surgeons detect tumours rapidly and achieve complete liver resection.

Liver cancer, the sixth most frequently diagnosed cancer worldwide and the fourth most common cause of 
cancer-related  mortality1, has a poor prognosis with a 5-year relative survival rate of 18.1%2. Hepatocellular 
carcinoma (HCC) accounts for most primary liver cancers. Surgical resection is one of the most effective treat-
ments for HCC. However, > 70% of patients have tumour recurrence within 5 years after hepatectomy for  HCC3. 
The presence of pathological cancer remnants after liver resection is a major recurrence  risk4. Therefore, even 
minute amounts of residual cancerous tissues must be prevented in preserved livers. To achieve complete resec-
tion, it is important to identify the location of the tumour intraoperatively and confirm that no cancer is exposed 
at the resected surface of the liver. A modality helping surgeons detect HCC intraoperatively is therefore highly 
desirable.

Fluorescence-guided surgery has been developed as a safe and reliable surgical  method5. Indocyanine green 
(ICG)6–12 and 5-aminolevulinic acid (5-ALA)13–15 are fluorescent molecules often used intraoperatively to facili-
tate the complete resection of HCC. Recently, activatable fluorescence probes, which are normally non-fluores-
cent but can be activated through cancer-specific enzymes, have been developed as novel fluorescent diagnostics 
that can specifically and rapidly image cancer after topical spraying. For example, a fluorescence probe targeting 
dipeptidylpeptidase IV has been used to detect oesophageal squamous cell  carcinoma16,17 and adenocarcinoma 
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of the oesophagogastric  junction18. Similarly, a gamma-glutamyl transpeptidase (GGT)-activatable fluorescence 
probe can reportedly detect ovarian  cancer19, breast  cancer20, lung  cancer21, liver  cancer22, superficial head and 
neck squamous cell  carcinoma23, and metastatic lymph nodes in colorectal  cancer24. However, target enzymes 
and fluorescence probes that are sufficiently effective for use in HCC have not been determined. β-galactosidase 
(β-Gal)-targeted fluorescence probes can help visualise ovarian cancer cells, and the small peritoneal metastases 
from ovarian cancer in  mice25,26. Recently, we reported that β-Gal is a target enzyme for detecting the peritoneal 
metastasis in gastric  cancer27. However, the fluorescence imaging of HCC using β-Gal-targeted fluorescence 
probes has not been reported.

This study focused on β-Gal as a candidate enzyme for the fluorescence imaging of HCC and aimed to exam-
ine the feasibility of using the SPiDER-βGal, β-Gal-targeted fluorescence  probe28, for the intraoperative rapid 
fluorescence imaging of HCC.

Results
β‑Gal activity in cryopreserved human HCC tissue samples. In the present liver tumour database, 
68 consecutive patients undergoing liver resection for HCC from January 2014 to December 2018 were selected 
for this study (Fig. 1a). We examined β-Gal activity at pH 5.0 and pH 7.4 in tumour and non-tumour liver paren-
chyma from cryopreserved tissue samples from these 68 patients. β-Gal activity at both pH 5.0 (Fig. 1b) and pH 
7.4 (Supplementary Fig. S1a) was significantly higher in tumour tissues than that in non-tumour tissues. How-
ever, the activity at pH 7.4 was lower than that at pH 5.0 in both tumour and non-tumour tissues. Furthermore, 
receiver operating characteristics (ROC) curves were generated to determine the sensitivity, specificity, and AUC 
for β-Gal activity in tumour and non-tumour tissues. At pH 5.0, the sensitivity, specificity, and AUC were 47.1%, 
77.9%, and 0.638, respectively (Fig. 1c); at pH 7.4, these values were 40.3%, 88.1%, and 0.630, respectively (Sup-
plementary Fig. S1b). The AUC was almost the same at both pH 5.0 and pH 7.4. Furthermore, we analysed the 
activity of GGT, a target enzyme of gGlu-HMRG in  HCC22, and found that GGT activity was significantly lower 
in tumour tissues than in non-tumour tissues (Supplementary Fig. S2). Based on these results, we performed 
fluorescence imaging using SPiDER-βGal.

Association between clinicopathological factors and β‑Gal activity. High β-Gal activity in 
tumour and low β-Gal activity in non-tumour tissues is a prerequisite for cancer-specific fluorescence imaging. 
Therefore, we determined the clinicopathological factors that could increase β-Gal activity in tumour tissues. 
β-Gal activity in the tumour tissue of individuals without hepatitis B virus (HBV) and hepatitis C virus (HCV) 
infections was significantly higher than that in individuals with HBV and HCV infections (Table 1). However, 
β-Gal activity in non-tumour tissues was not significantly different when assessed based on clinicopathological 
factors (Table 2). Consequently, β-Gal activity was significantly higher in HCC tissues than in non-tumour tis-
sues; however, no significant association was observed among the clinicopathological factors and β-Gal activity, 
except for the clinicopathological factors of HBV and HCV infections. 

Live cell imaging of cancer cells. To investigate the use of SPiDER-βGal, we treated HCC cell lines (Hep 
G2, HuH-7, PLC/PRF/5, and Li-7) and HUVECs with SPiDER-βGal (1 μM). The intracellular fluorescence sig-
nal in HCC cell lines increased after this treatment. However, intracellular fluorescence was low in HUVECs 
after 60 min of SPiDER-βGal treatment (Fig. 2a). In control HCC cell lines, intracellular fluorescence was almost 
negligible (Supplementary Fig. S3). Quantification of the fluorescence intensity of 10 randomly selected cells 
after SPiDER-βGal treatment revealed that the fluorescence intensity of HCC cell lines was significantly higher 
than that of HUVECs (Fig. 2b).

Images of tumours in four tumour‑bearing mouse models. Furthermore, we assessed the poten-
tial application of SPiDER-βGal for fluorescence imaging of tumours in four different tumour-bearing mouse 
models. We successfully established these four tumour mouse models using Hep-G2, HuH-7, PLC/PRF5, and 
Li-7 cells. After spraying the cut surface of tumours with 50 μM SPiDER-βGal, fluorescent signals were com-
pared with those in normal livers from Hep-G2, HuH-7, PLC/PRF5, and Li-7 tumour-bearing mice (Fig. 3a). 
In HuH-7, Li-7, and PLC/PRF5 tumour-bearing mice, fluorescence intensity was significantly higher in the 
tumour 30 min after spraying than that in the normal liver (Fig. 3b). However, in the Hep-G2 tumour-bearing 
mice, an increase in the fluorescence intensity was almost unobservable in subcutaneous tumours (Fig. 3b). All 
tumours were confirmed to be cancerous using haematoxylin and eosin staining (Supplementary Fig. S4). Only 
the subcutaneous tumours in Hep-G2 mouse models indicated a darker red colour when observed with naked 
eyes (Fig. 3a), and they possessed more red blood cells (RBCs) than the subcutaneous tumours in HuH-7, Li-7, 
and PLC/PRF5 mouse models in the histopathological analysis (Supplementary Fig. S4).

Fluorescence imaging of freshly resected human HCC specimens. Freshly resected human HCC 
samples, obtained from 27 consecutive patients from May 2019 to March 2020, were sprayed with SPiDER-βGal 
(50 μM) and imaged every 2 min up to 30 min. The patient clinicopathological characteristics are indicated 
in Supplementary Table S1. Fluorescence intensities were measured in both tumour regions and non-tumour 
liver regions (Supplementary Fig. S5). Representative fluorescence images (Case 22) are displayed (Fig. 4a). The 
fluorescence intensity rapidly increased in the tumour, but not in the non-tumour tissue (Fig. 4b). The median 
fluorescence intensities of tumours in 27 patients were significantly higher than those of non-tumour tissues 
2 min after spraying with SPiDER-βGal (50 μM) (Fig. 4c). In tumour samples of 27 patients, the fluorescence 
intensity increased with time, whereas that of non-tumour tissue displayed limited variation. ROC curves were 
constructed to determine the diagnostic value of the increase in fluorescence intensity in tumour and non-
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tumour tissues at 10 min and 30 min. The sensitivity, specificity, and AUC, 10 min after spraying were 85.2%, 
74.1%, and 0.864 (Fig. 4d, Supplementary Fig. S6a) and those 30 min after spraying were 85.2%, 81.5%, and 
0.868, respectively (Fig. 4e, Supplementary Fig. S6b). A rapid and sufficient diagnostic potential was achieved 
after 10 min of topically spraying SPiDER-βGal.

Discussion
Fluorescence-guided surgery is potentially safer and more reliable for liver surgery than conventional surgery. 
Several previous studies have reported the use of  ICG6–11 and 5-ALA13–15 as fluorescence imaging agents in liver 
cancers. However, both ICG and 5-ALA requires preoperative administration for cancer imaging. On the other 
hand, activatable fluorescence probes do not require preoperative preparation and can detect cancers simply 
through topical spraying, whenever surgeons need to identify cancer. Our current study suggested that SPiDER-
βGal is useful for cancer diagnosis in freshly resected human HCC specimens.

Figure 1.  β-galactosidase (β-Gal) activity at pH 5.0 in cryopreserved human hepatocellular carcinoma (HCC) 
tissue samples. (a) Schematic representation of the protocol for the selection of cryopreserved human HCC 
tissue samples. (b) Normalised β-Gal activity at pH 5.0 in tumour and non-tumour liver parenchyma tissues 
from 68 cryopreserved human HCC samples is shown. Open circle symbols indicate the mean of normalised 
β-Gal activities in tumour and non-tumour tissues. Normalised β-Gal activity in tumour tissue was significantly 
higher than that in non-tumour tissue (**p < 0.01). A two-tailed paired t-test was used. (c) Receiver operating 
characteristic (ROC) curve of β-Gal activities showing the diagnostic value of measuring β-Gal activity. (AUC: 
0.638, Sensitivity: 47.1%, Specificity: 77.9%). The yellow line is a 45° straight line tangent to the ROC curve.
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In live-cell imaging using SPiDER-βGal, Hep-G2 cells exhibited fluorescence; however, the Hep-G2-derived 
subcutaneous tumours in mice, which possessed more RBCs than the other cell line-derived subcutaneous 
tumours, showed a slight increase in fluorescence intensity after application of SPiDER-βGal. Furthermore, hae-
moglobin reportedly quenches  fluorescence29. Therefore, haemoglobin in the RBCs of Hep-G2-derived tumours 
may have influenced the difference observed in the live-cell imaging and mouse model imaging results.

Fluorescence imaging of freshly resected human HCC specimens with SPiDER-βGal is useful; however, the 
difference in the increase in fluorescence intensity between the tumour and normal liver in a freshly resected 
human sample during imaging using SPiDER-βGal was greater than the difference in the degree of β-Gal activ-
ity of the lysate between the tumour and normal liver. Tumours that showed a slight increase in fluorescence 
intensity exhibited a reddish colour in white light image (particularly in cases 7, 9, 18, 20, and 25; Supplementary 
Fig. S5). We also analysed the association between other clinicopathological factors and the increase in fluores-
cence intensity within the tumour (Supplementary Table S2). There were no statistical differences between each 
clinicopathological factor. Thus, the colouration of tissue samples may influence the fluorescence intensity, as in 
our mouse model imaging of the Hep-G2-derived tumour.

In a previous study, gGlu-HMRG, a GGT-targeted fluorescence probe, has been reported as a useful tool 
for the detection of liver  cancers22. We also measured the activity of GGT in cryopreserved human HCC and 
liver parenchyma tissue samples and found that it was not upregulated in tumour tissues, compared with that 
in non-tumour tissues (Supplementary Fig. S2). Based on the results, it was suggested that the colouration of 
tissue samples may also have influenced the results of fluorescence imaging with gGlu-HMRG, in line with the 
observations for SPiDER-βGal.

Table 1.  Association between clinicopathological factors and β-galactosidase (β-Gal) activity in hepatocellular 
carcinoma (HCC) tumour tissues. β-Gal activity in HCC tumour tissues was analysed in relation to 
clinicopathological factors. β-Gal activity in the tumour tissue of patients not infected with hepatitis B virus 
(HBV) and hepatitis C virus (HCV) was significantly higher than that in the tumour tissue of patients infected 
with HBV and HCV. On analysing other clinicopathological factors (sex, age, BMI, background liver, AFP, 
PIVKAII, ICG, and grade of liver damage), β-Gal activity in the tumour tissues was not significantly different. 
A two-tailed Mann–Whitney U-test was used to analyse data. BMI; body mass index, NL; normal liver, 
CH; chronic hepatitis, LF; liver fibrosis, LC; liver cirrhosis, Non-B; patients not infected with HBV, Non-C; 
patients not infected with HCV, AFP; alpha-fetoprotein, PIVKAII; protein induced by vitamin K absence or 
antagonist-II, ICG; indocyanine green. Liver damage was defined based on the General Rules for the Clinical 
and Pathological Study of Primary Liver Cancer, Edition 6, Revised  Version35.

Variable n β-galactosidase of tumour median (range) p-Value

Sex
Male 58 0.214 (0.070–0.667)

0.534
Female 10 0.262 (0.126–0.612)

Age
 < 70 32 0.285(0.0702–0.67)

0.194
 ≥ 70 36 0.208 (0.102–0.612)

BMI
 < 22 24 0.198 (0.070–0.612)

0.266
 ≥ 22 44 0.284 (0.102–0.667)

Maximum tumor size
 < 25 mm 34 0.207 (0.070–0.416)

0.261
 ≥ 25 mm 34 0.317 (0.103–0.667)

Differentitation
Well differentiated 24 0.214 (0.102–0.667)

0.532
Moderately, poorly differentiated 44 0.249 (0.070–0.612)

Background liver
NL, LC 26 0.202 (0.070–0.574)

0.294
CH/LF 42 0.313 (0.102–0.667)

Hepatitis virus
HBV, HCV 27 0.206 (0.070–0.612)

0.049
Non-B, Non-C 41 0.321 (0.103–0.667)

AFP
 < 10 ng/mL 45 0.199 (0.070–0.605)

0.239
 ≥ 10 ng/mL 19 0.313 (0.103–0.667)

PIVKAII
 < 40 mAU/mL 32 0.207 (0.070–0.667)

0.360
 ≥ 40 mAU/mL 32 0.309 (0.123–0.612)

ICG
 < 15% 37 0.213 (0.070–0.667)

0.526
 ≥ 15% 29 0.215 (0.102–0.504)

Liver damage
A 65 0.213 (0.070–0.667)

0.550
B, C 3 0.280 (0.185–0.371)
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In our fluorescence imaging analysis of freshly resected human HCC specimens using SPiDER-βGal, fluo-
rescence was observed not only in tumour tissues but also in the vasculature, such as in Glisson’s capsule or 
hepatic veins (particularly in cases 3, 4, 7, 14, and 27; Supplementary Fig. S5). Although the β-Gal activity of 
these vasculatures was not evaluated, we need to be careful when analysing the clinical images because of the 
potential of the fluorescent vessels that may result in false-positive results.

β-Gal is present in the lysosome and is active in an acidic environment. In resected specimens, blood flow is 
disrupted; hence, it is difficult to determine if the cellular and organellar pH is maintained. We analysed β-Gal 
activity in cryopreserved human HCC tissues at pH 7.4 and 5.0 and found that β-Gal activity was lower at pH 7.4 
than at pH 5.0 in both tumour and non-tumour tissues. At pH 7.4, the enzyme activity was significantly higher 
in tumour tissues than that in non-tumour tissues. The AUC of β-Gal activity at pH 7.4 was almost the same as 
that at pH 5.0. Based on differences between tumour and non-tumour tissues, we determined that changes in 
pH had limited effects on the outcomes of fluorescence imaging.

Tumour β-Gal activity has been reported to be especially high in breast cancer, colon  cancer30, and  gliomas31. 
With respect to the β-Gal activity in HCC, one study using 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside 
(X-Gal) staining has reported that some HCC liver tumour cells express β-Gal32; however, details of β-Gal activity 
in HCC remains unknown. Our results suggested that individuals without HBV and HCV infections have high 
β-Gal activity in tumour tissues. HCV core protein was reported to inhibit HCC cell replicative  senescence33. 
Further, β-Gal is known to be a senescence  marker34. So, β-Gal activity may be influenced by a hepatitis virus 
infection. In order to improve the diagnostic performance of the β-Gal-targeted fluorescence probe, further study 
of the association between the hepatitis virus and β-Gal are necessary in the future.

Thus, this study indicates that SPiDER-βGal is useful for the rapid fluorescence imaging of human HCC. 
SPiDER-βGal might be applicable for intraoperative diagnosis. In particular, fluorescence-guided surgery using 
SPiDER-βGal is considered useful for determining whether the tumour is exposed at the resected liver sur-
face. Fluorescence-guided surgery with SPiDER-βGal might facilitate complete liver resection and reduce HCC 
recurrence.

Table 2.  Association between clinicopathological factors and β-galactosidase (β-Gal) activity in non-tumour 
liver parenchyma tissues. β-Gal activity in non-tumour liver parenchyma tissues was analysed in relation to 
clinicopathological factors. β-Gal activity in non-tumour was not significantly different when divided into 
two groups according to clinicopathological factors (sex, age, BMI, background liver, AFP, PIVKAII, ICG, and 
grade of liver damage). Data were analysed using a two-tailed Mann–Whitney U-test. BMI; body mass index, 
NL; normal liver, CH; chronic hepatitis, LF; liver fibrosis, LC; liver cirrhosis, Non-B; patients not infected with 
HBV, Non-C; patients not infected with HCV, AFP; alpha-fetoprotein, PIVKAII; protein induced by vitamin 
K absence or antagonist-II, ICG; indocyanine green. Liver damage was defined based on the General Rules for 
the Clinical and Pathological Study of Primary Liver Cancer, Edition 6, Revised  Version35.

Variable n β-galactosidase of non-tumour median (range) p-Value

Sex
Male 58 0.181 (0.009–0.477)

Female 10 0.177 (0.009–0.385) 0.550

Age
 < 70 32 0.185 (0.010–0.477)

 ≥ 70 36 0.179 (0.018–0.386) 0.544

BMI
 < 22 24 0.175 (0.009–0.385)

 ≥ 22 44 0.184 (0.010–0.477) 0.510

Background liver
NL, LC 26 0.169 (0.009–0.385)

CH/LF 42 0.185 (0.010–0.477) 0.284

Hepatitis virus
HBV, HCV 27 0.170 (0.009–0.372)

Non-B, Non-C 41 0.187 (0.087–0.477) 0.209

AFP
 < 10 ng/mL 45 0.182 (0.009–0.477)

 ≥ 10 ng/mL 19 0.176 (0.010–0.413) 0.537

PIVKAII
 < 40 mAU/mL 32 0.175 (0.010–0.413)

 ≥ 40 mAU/mL 32 0.185 (0.009–0.477) 0.529

ICG
 < 15% 37 0.187 (0.010–0.413)

 ≥ 15% 29 0.169 (0.009–0.477) 0.381

Liver damage
A 65 0.182 (0.009–0.477)

B, C 3 0.172 (0.168–0.194) 0.584
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Methods
Cryopreserved human HCC tissue samples. Tissue samples from the site of tumour and non-tumour 
liver parenchyma were harvested and cryopreserved from patients undergoing a curative liver resection at the 
University Hospital of Kyoto Prefectural University of Medicine (KPUM). A consort flow chart is provided in 
Fig. 1a. The liver tumour database searched from January 2014 to December 2018 revealed 189 patients. The 111 
patients, from whom tissue samples could not be harvested, were excluded. Of the remaining 78 patients, those 
with metastatic liver cancer (n = 1), anisakiasis (n = 1), benign liver tumour (n = 3), cholangiocellular carcinoma 
(n = 4), and combined hepatocellular-cholangiocellular carcinoma (n = 1) were excluded. Finally, 68 consecutive 
patients were included in this study. The Institutional Review Board of KPUM examined and approved the study 
protocol (approval number: ERB-C-67) in accordance with the tenets of the Declaration of Helsinki. Written 
informed consent was acquired preoperatively from all patients. Among the 68 patients, alpha-fetoprotein (AFP) 
and protein induced by vitamin K absence or antagonist-II (PIVKAII) could not be measured in four patients 
and two patients did not have ICG data.

Figure 2.  Fluorescence imaging of live cells. (a) Fluorescence live cell imaging of hepatocellular carcinoma 
(HCC) cell lines (Hep-G2, HuH-7, PLC/PRF/5, and Li-7) and HUVECs using SPiDER-βGal (1 μM). 
Fluorescence was determined using a TRITC filter (left) and Brightfield images (right); images were captured 
using a Keyence BZ-X800 with a TRITC filter (Excitation: 545/25 nm, Emission: 605/70 nm, Exposure time: 
2 s). Scale bar = 100 μm. (b) The average fluorescence intensity of 10 randomly selected live cells imaged with 
SPiDER-βGal was determined using ImageJ (n = 10). Fluorescence intensity was significantly higher in HCC cell 
lines than in HUVECs (**p < 0.01). A two-tailed Mann–Whitney U-test was used. Error bars represent standard 
error (SE) values.
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Cell lines and culture. Four HCC cell lines and human umbilical vein endothelial cells (HUVECs) were 
used in this study: Hep-G2, HuH-7, and Li-7 cell lines (RIKEN Bioresource Center, Japan); PLC/PRF/5 cell line 
(JCRB Cell Bank, Japan); HUVECs (provided by T.K., Tokyo, Japan). HuH-7, Hep-G2, and PLC/PRF/5 cells 
were cultured in DMEM (Nacalai Tesque, Inc.,Japan). Li-7 cells were cultured in RPMI1640 (Nacalai Tesque) 
Both medium contained 10% heat-inactivated foetal bovine serum (Gibco, MA, USA), penicillin (100 U/mL) 
and streptomycin (100 μg/mL) (Nacalai Tesque). HUVECs were cultured in Endothelial Cell Basal Medium-2 
(Lonza, Switzerland) and Endothelial Cell Growth Medium-2  SingleQuots[™] Supplements and Growth Factors 
(Lonza) in collagen I-coated dishes (AGC TECHNO GLASS, Japan). All cells were cultured at 37 °C in a humidi-
fied atmosphere containing 5%  CO2.

Preparation of cryopreserved HCC tissue lysates. Cryopreserved tissues were suspended in CelLytic 
M (Sigma-Aldrich, MO, USA) and finely chopped using scissors. Thereafter, the chopped tissues were homog-
enised using an ultrasonic homogeniser on ice. The lysed tissues were centrifuged (14,000 × g for 10 min at 4 °C) 
to pellet cellular debris. The supernatant was then harvested and assessed for protein concentration using a 
BCA protein assay kit (Pierce, MA, USA), in accordance with the manufacturer’s instructions. Subsequently, the 
supernatant was diluted to 1 mg/mL with D-PBS (Nacalai Tesque).

Evaluation of β‑Gal activity. β-Gal activity was evaluated in 96-well black plates (CORNING, MA, USA) 
using acetate buffer (pH 5.0) (Nacalai Tesque) or D-PBS (pH 7.4) and a FluoReporter lacZ/Galactosidase Quan-
titation Kit (Thermo Fisher Scientific, MA, USA), in accordance with the manufacturer’s instructions. First, 
tissue lysate samples (1 mg/mL protein concentration, 10 μL/well) were added to triplicate wells. Thereafter, 
3-carboxyumbelliferyl β-D-galactopyranoside (1.1  mM) prepared in acetate buffer (pH 5.0; 100 μL/well) or 
D-PBS (pH 7.4) was added to the wells. Acetate buffer (10 μL/well) and 7-hydroxycoumarin-3-carboxylic acid 
(0.1 mM) diluted with acetate buffer (100 μL/well) or D-PBS (pH 7.4) (10 μL/well) and 7-hydroxycoumarin-
3-carboxylic acid (0.1 mM) diluted with D-PBS (100 μL/well) were added to triplicate wells as a reference stand-
ard. For the β-Gal activity assay at pH 5.0, the plates were incubated for 30 min (5%  CO2, 37 °C). Then, 50 μL 
of  Na2CO3 (0.2 M in  H2O) was added to all wells to terminate the reaction and the fluorescence intensity (Ex/
Em: 390/460 nm) was measured using a micro plate reader (SpectraMax M2, Molecular Devices, CA, USA). 
For the β-Gal activity assay at pH 7.4, the plate was incubated for 30 min (5%  CO2, 37 °C). Subsequently, the 
fluorescence intensity was measured. The intensity of each sample was normalised against that of the reference 
standard.

GGT activity assay. GGT activity was evaluated in 384-well black plates using fluorescence probes (gGlu-
HMRG and HMRG). Tissue lysates (1  mg/mL protein concentration, 5 μL/well) and fluorescence probes 
(1.33 μM in D-PBS, final: 1 μM) were added to each well. HMRG was used as a reference standard, and gGlu-
HMRG was used as a fluorescence probe. Fluorescence intensity was measured using an EnVision multilabel 
plate reader (Perkin Elmer, MA, USA) every minute for 120 min (FITC filter; Ex/Em: 485/535 nm). The results 
of the gGlu-HMRG assay were normalised to those of the HMRG assay, which was concurrently performed. 
GGT activity was determined using the following formula:

Live cell imaging. Cells (1.0 ×  104 cells/dish) were seeded in the centre of 35-mm glass-bottom dishes (Mat-
sunami glass, Japan) and incubated in an atmosphere containing 5%  CO2 at 37 °C for 1–2 d. Thereafter, the 
cells were washed twice with Hanks’ Balanced Salt solution (HBSS; Nacalai Tesque). Next, SPiDER-βGal (1 μM) 
was added to the dishes, and the cells were incubated in 5%  CO2 at 37 °C for 60 min. Fluorescent images were 
obtained using a Keyence BZ-X800 with the TRITC filter (Ex: 545/25 nm, Em: 605/70 nm, Exposure time: 2 s). 
Bright-field images were captured simultaneously. As a control, we added an identical volume of HBSS to the 
dishes of cultured cells instead of SPiDER-βGal. The fluorescence intensities of 10 randomly selected cells were 
analysed using Image J version 1.52a (NIH).

Mouse model imaging. All animal experiments were performed in compliance with both the ARRIVE 
guidelines and the institutional guidelines of KPUM, and approved by the animal experimental committee of 
KPUM (approval number: M30-554). Five-week-old female BALB/c nu/nu mice (average weight, 17 g) were 

Activity = (fluorescence increase rate) / (fluorescence intensity of HMRG in lysate

− fluorescence intensity of gGlu - HMRG just after lysate addition) / (protein concentration).
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purchased from SHIMIZU Laboratory Supplies, Japan. The mice were housed in plastic cages with stainless-steel 
grid tops in an air-conditioned environment with a 12-h light–dark cycle and were fed regular food and water 
ad libitum. Individual suspensions of four types of HCC cells in D-PBS (2.0 ×  107 cells/mL) were mixed with an 
equal amount of Matrigel (CORNING, MA, USA) on ice. Under general anaesthesia, the mixed suspension (100 
μL) was then subcutaneously injected into the flanks of each mouse. After ≥ 4 weeks, tumour-bearing mice were 
euthanised using Isoflurane (Wako, Japan). Subcutaneous tumours and livers were dissected and divided into 
two using scissors. A solution of SPiDER-βGal (50 μM) in HBSS was then sprayed onto the cut surface of each 
tumour or the surface of normal liver. Sequence of fluorescent images were captured every 2 min for 30 min 
using IVIS Lumina Series III (Ex/ Em: 520/570 nm). Regions of interest (ROIs) were drawn for both the tumour 
and normal liver tissues, and the average radiant efficiency was determined as fluorescence intensity using Living 
Image version 4.4.

Histopathological analysis. Resected subcutaneous tumours from tumour-bearing mice were fixed with 
10% neutral buffered formalin then embedded in paraffin. The paraffin blocks were sliced to a thickness of 5 μm, 
after which the paraffin-embedded sections were deparaffinised and stained with Mayer’s haematoxylin solution 
(Wako) and eosin Y (Wako) for histopathological analysis.

Freshly resected human specimens. Freshly resected human specimens were obtained from patients 
preoperatively diagnosed with HCC—through radiological examination—who received curative liver resection 
at the University Hospital of KPUM. Written informed consent was preoperatively acquired from all patients. 
The Institutional Review Board of KPUM examined and approved the research procedures (approval number: 
ERB-C-1470) in accordance with the tenets of the Declaration of Helsinki. Cases of cholangiocellular carcinoma 
without HCC components, as determined pathologically, were excluded. In total, 27 freshly resected human 
HCC specimens were examined prospectively from May 2019 to March 2020. Patient clinicopathological char-
acteristics were described based on the General Rules for the Clinical and Pathological Study of Primary Liver 
Cancer, Edition 6, Revised  Version35.

Human specimen imaging. Fluorescence imaging of human specimens was performed within 1 h after 
liver resection. A solution of SPiDER-βGal (50 μM) prepared in HBSS was then sprayed onto the resected surface 
of the liver tissue samples. Sequences of fluorescent images were captured every 2 min for 30 min using IVIS 
Lumina Series III (Ex/Em: 520/570 nm). ROIs were drawn for both the tumour and normal liver, and the average 
radiant efficiency as a fluorescence intensity was determined using Living Image version 4.4.

Statistical analysis. A two-tailed paired t-test was used to compare β-Gal activity in cryopreserved human 
HCC samples at pH 5.0 and pH 7.4, and GGT activity in cryopreserved human HCC samples. A two-tailed 
Mann–Whitney U-test was used to compare the fluorescence intensity of live cells, fluorescence intensity of 
images from tumour-bearing mouse models, and clinicopathological characteristics of human HCC tissue sam-
ples that were either cryopreserved or freshly resected. A two-tailed Wilcoxon t-test was used to compare the 
fluorescence intensity of freshly resected HCC specimens. ROC curves were constructed using JMP13 (SAS 
Institute, NC, USA). ROC curves and Youden index were used to determine the optimal cut-off value for β-Gal 
activity in the cryopreserved human HCC samples and for assessing the increase in fluorescence intensity in 
freshly resected HCC specimens. The sensitivity, specificity, and area under the curve (AUC) were determined 
through ROC analysis. Results with p-values < 0.05 were considered significant. Statistical analysis was per-
formed using the yStat 2013 software.

Figure 3.  Fluorescence imaging of tumours in four tumour-bearing mouse models. (a) Fluorescence images 
of tumours and normal livers were captured 0, 10, and 30 min after spraying SPiDER-βGal (50 μM) using IVIS 
Lumina Series III (Excitation: 520 nm, Emission: 570 nm). White light images are also shown. Left: normal 
liver, Right: tumour. Scale bar = 10 mm. (b) Average fluorescence intensity of tumours and normal livers 
resected from tumour-bearing mice (Hep-G2, n = 3; HuH-7, n = 4; PLC/PRF/5, n = 4; Li-7, n = 4). After 30 min 
of spraying, HuH-7 tumours, PLC/PRF/5 tumours, and Li-7 tumours had a significantly higher fluorescence 
intensity than normal liver tissues (*p < 0.05). A two-tailed Mann–Whitney U-test was used. Error bars represent 
standard error (SE) values.

▸
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Data availability
The datasets of the current study are available from the corresponding author on reasonable request.
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