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Positive relationship 
between seasonal Indo‑Pacific 
Ocean wave power and SST
Sukhwinder Kaur1, Prashant Kumar1*, Evan Weller2 & Ian R. Young3

The influence of increasing sea surface temperatures (SSTs), in response to greenhouse warming, on 
wave power (WP) remains uncertain. Here, seasonal relationships between SST anomalies and mean 
and extreme WP over the Indo‑Pacific Ocean are examined. Overall, seasonal WP has significantly 
increased over much of the Pacific, Indian, and Southern Ocean by 1.21–3.10 kW/m  dec−1 over 
1979–2019. Contributions from wave characteristics, namely significant wave height (SWH) and peak 
wave period (PWP), to changes in WP show that SWH contributes most in extra‑tropical regions, and 
PWP most in tropical regions. Further, seasonal relationships between SST anomalies and WP indicate 
that increases in WP are also seen during strong El Niño years in December–February, and in‑phase 
combinations of El Niño and positive Indian Ocean Dipole (IOD) events during June–August and 
September–November. Results highlight both long‑term increasing SSTs and climate variability roles 
for inducing large‑scale seasonal WP changes throughout the Indo‑Pacific.

Climate change, whether driven by internal natural variability or anthropogenic forcing, can prompt a shift in 
the occurrence or strength of extreme weather and climatic events. Most notably is the significant impact caused 
by the rise in greenhouse gases (GHGs) due to human activities. As a result, increases in oceanic temperatures 
have had a diverse effect on ocean–atmosphere circulation, which in turn have significant impacts on pressure 
gradients, winds, and wave height or  power1. Wave power (WP) helps to describe changes in wave climate, and 
is also a potential and powerful resource for clean renewable energy as society looks for alternatives to fossil 
 fuels1,2. Therefore, a comprehensive understanding of the relationship between the oceanic warming (commonly 
depicted by sea surface temperature (SST) increase) and WP is required at different spatial and temporal scales.

Numerous studies have previously reported observed trends in the seasonal and annual wind-wave climates 
at the  global3–5 and regional scale, particularly in the North Atlantic (NA)6,7, North Pacific (NP)8,9, Northern 
 Hemisphere10–12, and Southern  Hemisphere13,14. Overall, increasing trends are predominantly found in extreme 
significant wave height (SWH) over the northeast NA in winter (January–March) and central NP in winter and 
spring (April–June). Larger increases in SWH were observed year-round in the Southern Ocean, although largest 
during the Southern Hemisphere winter (July–August)13,15,16. Further, studies suggest that anthropogenic forcing 
is a key driver of such changes in wave  heights12,13,17. Subsequently, other wave climate indicators, such as wave 
period and/or direction, have been utilized to identify the underlying properties in the changes to mean and 
extreme  SWH18–21. Inherently, being a measure of the energy transported by ocean surface waves, transmitted 
over cumulative periods of time from the atmosphere to the surface motion of the  ocean22, WP consists of vital 
information about SWH and peak wave period (PWP) (see methods, Sect. 2.2). Hence, WP is a relevant climate 
indicator for examining long-term change in global and regional wave climate  conditions1.

Early studies provided an overview of the distribution of global coastal WP density based on limited data 
as measured by marine ships and wave rider  buoys23,24. Owing to the rapid development of marine remote-
sensing and numerical simulation technologies, increasing amounts of hindcast wave and satellite altimeter 
data have been used to analyze wave energy  resources25–27. For example,  Cornett26 proposed unique monthly 
and seasonal variability indices to quantify variations in WP. Global information on the distribution and vari-
ations in mean WP have been examined utilizing models such as Wave Watch-III (WW3)25,27–29system and 
ECMWF  WAM30 but only for periods less than 10 years. More recently, the long-term seasonal and interannual 
variations in global mean WP were reported by Reguero et al. 31 using WW3 model data over a 61-year period 
(1948–2008) and by Rusu &  Rusu32 based on ERA5 data for a 30-year period (1989–2018). Martinez &  Iglesias33 
provides global details of the Wave Exploitability Index along with the mean WP using ERA5 data for the period 
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1979–2019. Several regional studies including the  NA34–36,  NP37–39, Black  Sea40, Australian  coasts41,42, and shelf 
seas of  India43–46 have also been carried out.

Perturbations in SST can induce fundamental changes in the large-scale general circulation that subsequently 
have an impact on the wave climate through responses in the surface  winds47–50. On an interannual time scale, 
natural modes of climate variability drive changes in the wind and wave climates via perturbations in SSTs unique 
to each mode. However, over the tropical Indo-Pacific region, changes in SST in response to global warming 
have been shown to be important for tropical cyclone intensity and  precipitation51. Indeed, several studies have 
examined changes in SST as a climate change indicator in the historical wave  climate51–53. Recently, Reguero 
et al.1 investigated the WP relationship with various climate variability modes, such as El Niño–Southern Oscil-
lation (ENSO) and the Atlantic Multidecadal Oscillation (AMO), and demonstrated that recent increases in 
global WP were associated, both spatially and temporally (seasonal), with oceanic warming driven by natural 
climate variability modes. More recently, Odériz54 analyzed the global seasonal (particularly December–Febru-
ary (DJF) and June–August (JJA)) WP and its relationship with oceanic warming based on three different wave 
climate types. Overall, large-scale natural climate variability can enhance or dampen the consequences associated 
with global  warming55. Therefore, a better comprehension of the seasonal relationship between SST increases 
(driven by either natural climate variability or anthropogenic forcing) and WP, particularly extremes, in each 
ocean basin requires more attention. Here, seasonal interrelation between oceanic warming (SST increase) and 
WP is analyzed using reanalysis data for a 41-year period (1979–2019) with a focus on the Indo–Pacific Ocean. 
Long-term trends in time series of the seasonal mean WP and SST averaged over oceanic regions are examined. 
A stationary generalized extreme value (GEV) analysis is applied to focus on the extremes in WP, SWH, and 
PWP, and together with the climatology of WP, including the individual contribution of SWH and PWP, seasonal 
interrelations between the WP and ocean warming (SST increases) are explored in detail. In addition, various 
temporal correlations between the WP and SST anomalies are also breifly examined for further insight into the 
relationship between WP and SST anomalies.

Data and methods
Data. The fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanaly-
sis product, referred to as  ERA556, with a temporal resolution of six hours (constructed from the two-dimen-
sional wave spectra at an hourly temporal resolution), was used for analyzing mean and extreme WP over the 
41-year period from 1979–2019 in the Indo–Pacific region for the four seasons (i.e., December–February (DJF, 
winter), March–May (MAM, spring), June–August (JJA, summer), and September–November (SON, autumn). 
To calculate WP, seasonal mean and extreme SWH (combined wind sea and swell) and PWP are derived using 
ERA5. In addition, seasonal SST data was also obtained from the ERA5 archive. As the latest ECMWF rea-
nalysis product, ERA5 has higher spatial and temporal resolution compared to ERA-Interim57 and presents 
several improvements, such as improved representation of the troposphere, tropical cyclones, and precipita-
tion cycle. All ERA5 data used here were downloaded from the ECMWF site (https:// www. ecmwf. int/ en/ forec 
asts/ datas ets/ reana lysis- datas ets/ era5/), either with a horizontal resolution of 0.5° × 0.5° (i.e. SWH and PWP) or 
0.25° × 0.25° (i.e., SST).

Methods. In essence, WP measures the transmission of energy by/through air-sea exchanges and used for 
wave  motion22. For irregular waves, the WP is derived from wave spectral  parameters26,39 as:

where g is the acceleration due to gravity, ρ is the sea water mass density (~ 1028 kg/m3), Hs is the SWH, and  Te 
is the energy period. Wave energy period was obtained using the approximation Te = αTP , where  Tp denotes 
the PWP and the parameter α = 1 was used  accordingly58. To describe extremes in wave parameters, the sea-
sonal maxima at each defined grid point are fit to a stationary GEV distribution as in previous  studies59–64. The 
cumulative distribution function of GEV distribution is given as:

where −∞ < µ < ∞, σ > 0, and −∞ < ξ < ∞ represent the location, scale, and shape parameters, 
respectively.

Next, mean seasonal contributions of the SWH term  (Hs2) and PWP term (Tp) in Eq. 1 to the WP over the 
Indo-Pacific were obtained through a ratio and proportion method. For example, to calculate the contribution 
of SWH and PWP to the WP at any given location, firstly the ratio of  Hs2 and Tp individual contributions in WP 
is computed (i.e., a: b ratio whereby a and b represent  Hs2 and Tp, respectively). The contribution of SWH and 
PWP to WP are estimated as [(a/(a + b))*100%] and [(b/(a + b))*100%], respectively.

Once the  Hs2 and Tp individual contributions in WP are obtained, time series of the seasonal mean WP is 
computed by averaging over the global (90° S–90° N, 0° E–360°), Southern (80° S–40° S, 0° E–360°), Indian 
(90° S–30° N, 20° E–120° E), Pacific (90° S–90° N, 120° E–70° W), and Indo-Pacific (90° S–90° N, 20° E–70° W) 
ocean basins.

Long-term trends were calculated using linear regression analysis. The statistical significance of the trends was 
calculated using the Mann Kendall (MK)  test65. The standard P-values obtained from the MK test are based on the 
assumption of independence between the observations. Given this, it’s important to check the autocorrelation in 
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a given series and, if necessary, adjust the MK test. To avoid autocorrelation in the time given series, we followed 
the Wang and  Swail11 approach. The WP and SST were correlated with each other at various temporal scales, 
to quantify their interconnection, the Pearson’s correlation coefficient is used. The significant correlation at the 
99% and 95% level of confidence is computed by using a two-tailed Student’s t test.

Results
Seasonal wave power. The climatological patterns of the ERA5 seasonal mean and extreme WP (WPavg 
and WPmax) for the 41-year period (1979–2019) over the Indo–Pacific Ocean are displayed in Fig. 1a. Similar 
maps of seasonal mean and extreme SWH (Havg and Hmax) and PWP (Pavg and Pmax) are provided in Supple-
mentary Fig. S1. Here, the mean climatology was acquired by taking the average over the 41-year period, and the 
extreme climatology is represented by the location parameter of the GEV distribution. High spatial correlations, 
ranging from 0.95–0.97, depict the close association between the seasonal mean and extreme WP, whereby spa-
tial patterns show similar features and variations. Further, the seasonal WPavg and WPmax climatological pat-
terns bear resemblance to the Havg and Hmax climatological patterns (c.f.Fig. 1a and Supplementary Fig. S1a). 
Highly significant correlations (0.96–0.97) between seasonal mean WP and SWH occur during all seasons, with 
spatial correlations between the seasonal extreme WP and SWH even higher (0.97–0.98). This indicates that 
both mean and extreme WP have a strong association with  SWH37–39.

Large seasonal variation in WPmax occurs over the extra-tropical and subtropical regions (Fig. 1a lower 
panel). In the Northern Hemisphere (NH), during DJF, the Icelandic Low and Aleutian Low produce higher 
pressure gradients along the well-defined wind belts, and stronger surface winds, consequently enhancing the 
extra-tropical  WPmax54,66. In JJA, the northern basins are dominated by the Icelandic and Pacific High anticy-
clones, resulting in stronger subtropical and weaker extra-tropical winds and wave  climate54. In the Southern 
Hemisphere, the high and low-pressure belt is rather constant and westerly winds and waves are present through-
out the year, with higher energetic conditions in  JJA31,54.

To understand the individual roles SWH and PWP play in enhancing or reducing WP throughout the year, 
mean seasonal contributions of the SWH term  (Hs2) and PWP term (Tp) to the WP over the Indo-Pacific were 
examined (Supplementary Table 1 and Supplementary Fig. S2). Overall, SWH predominantly contributes to WP 
in the extra-tropical regions of both hemispheres (about 65–80%), except for the NP during JJA, where SWH and 

Figure 1.  (a) Climatology patterns of the seasonal mean and extreme WP in the Indo-Pacific Ocean for the 
period 1979–2019. The unit of WP is kilowatts per meter (kW/m). (b) Seasonal mean WP time series for DJF, 
MAM, JJA, and SON, averaged over the global, Southern(80° S–40° S, 0° E–360°), Indian (90° S–30° N, 20° 
E–120° E), Pacific (90° S–90° N, 120° E–70° W), and Indo-Pacific (90° S–90° N, 20° E–70° W) oceans.
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PWP contribute to WP somewhat equally. Conversely, PWP largely contributes to WP in the tropical latitudes 
and regions such as the AS and BOB (about 54–82%). Therefore, SWH dominates WP in the most active wave 
generation zones where wind-seas are frequently observed, whereas PWP dominates WP where swells govern 
the wave climate or SWH is small (Supplementary Fig. S3).

Time series of the seasonal mean WP averaged over different ocean basins (i.e., the global, Southern, Indian, 
Pacific, and Indo-Pacific) for 1979–2019 are also presented in Fig. 1b. Overall, strong seasonality in WP is evident 
across the different oceans, yet WP is largest in the SO year-round. Similar seasonality has been reported in SO 
wave height, period, and  direction15,19,20,67. The WP over the Indian Ocean (IO), which is dominated by swells 
from the SO year-round68,69and also experiences monsoons over the tropics in  JJA61,70,71, is larger than the WP 
averaged globally and in the Pacific Ocean (PO) during MAM, JJA and SON (Fig. 1b). In DJF, the WP over the 
PO is larger than the global and IO averages (Fig. 1b).

Seasonal trends in wave power and SST. The increases in WP and SST per decade  (dec−1) are calcu-
lated for the same regions and provided in Table 1. Overall, WP and SST has increased globally and in all regions 
of the Indo-Pacific over the period 1979–2019 yet increases are shown to be significant only for certain seasons 
and regions (Table 1). Globally averaged seasonal WP has significantly increased in JJA by 1.08 kW/m  dec−1, as 
do SSTs across the same region and season (0.13 °C  dec−1). The largest increase in WP is found over the SO in 
JJA, with a significant increase of 3.10 kW/m  dec−1, which is in agreement with other  authors13,31,32,54. Further, 
WP over the PO has also significantly increased in JJA, by 1.21 kW/m  dec−1. As in JJA, the low and high-pressure 
belts induce the subtropical and sub-polar winds, which intensify the wave power over the  PO54. In addition, 
PO in JJA has experienced the highest warming in SST of 0.14 °C  dec−1. Similarly, WP and SST exhibit a sig-
nificant upward trend across the IO in DJF (1.29 kW/m  dec−1 and 0.13 °C  dec−1) and MAM (1.58 kW/m  dec−1 
and 0.11 °C  dec−1). Lastly, WP has also significantly increased in the SO in MAM and SON, by 2.55 kW/m  dec−1 
and 1.50 kW/m  dec−1, respectively, supporting an intensification of the wave climate in SO, as reported by other 
 authors31,32,54. The SO has experienced warming in SST of 0.04 °C  dec−1 in SON. Interestingly, WP has not sig-
nificantly increased in Indo-Pacific Ocean year-round, and this region experiences the warming of 0.09–0.14 °C 
 dec−1 throughout the year. Here it is also found that the PO and GO in DJF, MAM, and SON, as well as the IO 
in JJA and SON, shows a non-significant increase in WP, consistent with previous  studies72–74, and these regions 
experienced significant increases in SST between 0.09–0.14 °C  dec−1.

Seasonal relationships between wave power and SST over indo‑pacific ocean. Figure 2 pro-
vides time series of WP and SST averaged over the Indo-Pacific Ocean (90° S–90° N, 20° E–70° W) at various 
temporal scales: monthly (Fig.  2a), annually (Fig.  2b), and seasonally (Fig.  2c–f) for the period 1979–2019. 
Significant correlations between WP and SST anomalies are seen at both the monthly (0.383, p-value < 0.01) and 
annual (0.433, p-value < 0.01) time scales, suggesting an association of SST anomalies with WP in the region. In 
addition, the relationship between SST anomalies and WP is found to be strongest during JJA and SON, with 
significant correlations (at the 99% level of confidence) of 0.462 and 0.423, respectively.

In the Indo-Pacific region, major modes of interannual and decadal natural climate variability (i.e., ENSO, 
IOD, and PDO) are dominant factors for inducing periods of strong oceanic warming that may cause an increase 
in WP. Figure 2 also highlights the strong El Niño events, as well as in-phase combinations of positive Indian 
Ocean Dipole (pIOD) and El Niño events (annotations overlaid on Fig. 2). Indeed, significant increases in WP 
are found during the strongest El Niño years (light blue circles in Fig. 2b–f) and years with in-phase combinations 
of pIOD and El Niño during JJA and SON (dark blue circles in Fig. 2e,f). A relatively weak relationship between 
SST anomalies and WP is found during MAM, coinciding with when ENSO and IOD are weak or not active. This 
suggests that there is a significant connection between WP and dominant interannual climate variability modes 
such as ENSO and the IOD in the Indo–Pacific. At longer time scales, WP and SST anomalies exhibit slow cycles 
somewhat consistent with PDO phase transitions. For example, the PDO underwent a positive–negative-positive 

Table 1.  Linear trends in the seasonal WP and SST over the period 1979–2019. Statistically significant 
increases at the 95% and 99% level of confidence are marked with * and **, respectively.

DJF MAM JJA SON

WP increase (kW/m dec−1)

Global ocean 0.89 0.94 1.08* 0.61

Southern ocean 1.40 2.55* 3.10* 1.50*

Indian ocean 1.29** 1.58** 1.50 1.14*

Pacific ocean 0.75 0.56 1.21** 0.54

Indo-Pacific ocean 0.83 0.88 1.16 0.51

SST increase (°C dec−1)

Global ocean 0.11** 0.10** 0.13** 0.14**

Southern ocean 0.03 − 0.01 0.04 0.04*

Indian ocean 0.13** 0.11** 0.11** 0.13**

Pacific ocean 0.10** 0.09** 0.14** 0.14**

Indo-Pacific ocean 0.10** 0.10** 0.13** 0.14**
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phase transition during the period 1979–2019. The WP during the negative phase over the 2000s (often referred 
to as the global warming hiatus, Watanabe et al.75) is decreased compared to the 1990s, and appears to increase 
again after about 2014–2015, when the PDO shifted more positive. Therefore, it is important to further quantify 
the influence of natural climate variability on the mean and extreme WP over the wider Indo–Pacific Ocean 
region, yet out of scope of the present study.

Scatter plots between the seasonal mean WP and SST anomalies with no time lag and lagged by one season, 
averaged over the Pacific, Indian, and Indo-Pacific Oceans for the 41-year period from 1979–2019 are displayed 
in Fig. 3. In DJF, the El Niño events enhance the extra-tropical wave climate in the Northern Pacific as the ENSO 
positive phase is connected with a stronger/strengthened Aleutian  Low76, which further intensified when ENSO 
and PDO both are in a positive phase combination, resulting in a strong correlation between SST warming 
and WP (0.30, p-value < 0.05) over PO (Fig. 3a). These findings are consistent with the previous studies that 
have examined the impact on wave  parameters62,77. Further, this correlation over PO enhances in SON (0.39, 
p-value < 0.01) and JJA (0.37, p-value < 0.05), as in JJA, tropical cyclone activities over the PO (particularly in 
western North Pacific (WNP)) are amplified by El Niño  events39,54. Whereas in SON (the El Niño development 
year), the deepening of East Asian trough, as well as the intensification and more frequent northward shift of 
the storm tracks across WNP, increases the wave climate over  PO77,78. Likewise, in IO, La Niña (a pattern that 
is reversed during El Niño) increases the wave climate during  DJF62,68,77, due to an increase in pressure gradient 
between the IO and eastern  Pacific62,77, and consequently SST strongly correlates with WP (Fig. 3b,e). While, El 
Niño reinforces the wave climate over the IO during  MAM68,77, resulting strong association between SST warm-
ing and WP (0.33, p-value < 0.05) (Fig. 3b). In JJA and SON, the La Niña events enhances the wave climate in 
the  IO54,61,68, which amplified further when La Niña coincides with negative IOD  events61, as well as negative 
PDO  events54,79, and hence WP and SST correlates with each other in JJA (0.31, p-value < 0.05) and SON (0.31, 
p-value < 0.05) (Fig. 3b,e). Further, the wave climate in the SO which have been previously analyzed as signifi-
cantly affected by Southern Annular Mode (SAM) with positive SAM impact at high latitudes and negative at 
mild-latitude year-round, which varies meridionally across  seasons13,61,77, and also influences (weaker influence) 
the tropical and extra-tropical wave  climate54,61. Overall, the warming in the Indo-Pacific Ocean (i.e. ENSO, IOD, 
SAM, and PDO) correlates with increases in the WP, resulting significant positive correlation between WP and 
SST throughout the year (Fig. 3c,f), ranging between 0.295–0.462. This indicates that seasonal variations in WP 
over both the IO and PO are intricately linked with SST warming, either in the same season or with a slight lag 
in the response.

Figure 2.  (a) Monthly, (b) annual, (c) DJF, (d) MAM, (e) JJA, and (f) SON mean time series of the WP 
(black, left vertical axis) and SST anomalies (red, right vertical axis) over the Indo-Pacific Ocean for the 
period1979–2019. Statistically significant correlations at the 99% and 95% level of confidence are indicated by ** 
and *, respectively, in each panel. Years with strong El Niño and/or positive IOD(pIOD) events are highlighted 
with blue circles, where light and dark blue, respectively, indicate El Niño only in DJF, and El Niño with pIOD in 
JJA and SON.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17419  | https://doi.org/10.1038/s41598-021-97047-3

www.nature.com/scientificreports/

Similarly, temporial correlations patterns between the WP and SST anomalies for the 41-year period reveal 
positive correlations ranging from 0.2–0.5 at monthly scale over the majority of the Indo-Pacific, yet nega-
tivecorrelations in the South China and Phillipine (SCP) Seas, BOB, and NP (Fig. 4a). Correlations increase 
(up to ~ 0.8) at the annual scale, except in theeastern Pacific and near Antarctica (Fig. 4b). In DJF,significantly 
high correlations (~ 0.5–0.8) exist over the equatorial PO and SIO (extending south of Australia), are more 
widespread in JJA and SON, yet weak in MAM, consistent with weak correlations overall in the average WP and 
SST anomalies (Fig. 4).

Summary and conclusions
This study investigated the interrelation between ocean warming (SST increases) and WP in the Indo-Pacific 
Ocean using ERA5 reanalysis data over the period 1979–2019 at different temporal and spatial scales. Firstly, 
seasonal variations in the climatological patterns of the seasonal mean and extreme WP, SWH, and PWP reveal 
that large WPmax is evident in SO year-round, and strongest (lowest) in JJA (DJF), related primarily to an 
increase in SWH presumably from increased wind  energy21,25. Similarly, increases in WPmax also occur over the 
NIO during JJA, and NP in DJF. Overall, SWH contributes most to the WP (up to ~ 80%) in the extra-tropical 
regions of both hemispheres and PWP contributes most to WP in the tropical latitudes (up to 82%). Although 
the SWH seasonal variations are similar to the WP seasonal variations, they are intricately different. For exam-
ple, WP provides information about the energy carried from the ocean waves with differing amplitudes, whilst 
SWH provides information about the amplitude of the waves. An extreme wave contains high ocean wave energy 
or WP and a low amplitude wave contains low energy or WP. Therefore, WP provides a measure of the energy 
generated through ocean waves. Such wave energy can be transferred into renewable energy by using various 
energy convertors along the coastline, and consequently, WP is an important climate indicator providing such 
information about the available renewable energy resources and its variability.

Next, time series of the seasonal mean WP averaged over the different regions of the Indo-Pacific Ocean were 
examined and shown to exhibit significant increases in WP of varying degree across seasons. Overall, large sig-
nificant increases in WP have occurred over the PO (1.21 kW/mdec−1) in JJA, the IO (1.29 and 1.58 kW/mdec−1) 
in DJF and MAM, and the SO (ranging 1.50–3.10 kW/mdec−1) in all seasons except DJF. Seasonal increases in 
WP somewhat coincide with the largest long-term seasonal increases in SST, except in the SO where no signifi-
cant change is evident in SSTs. The seasonal interrelation between WP and ocean warming (SST increases) was 
further investigated through the relationship between seasonal WP and SST anomalies during the same season, 
and the WP one seasonal after the SST anomalies. From year-to-year, the seasonal mean WP and SST anomalies 
over the Indo-Pacific Ocean exhibit significant relationships whereby increases in WP are found to occur with 
or shortly after SST increases. In addition, this is evident during the strongest El Niño years in DJF, and in-phase 
combinations of pIOD and El Niño events in JJA and SON. Such seasons subsequently dominated the annual 
scale signals of WP which suggests major interannual to decadal natural climate variability (i.e., ENSO, IOD, 
and PDO) acting in the Indo-Pacific are also dominant factors for inducing WP over the Indo-Pacific Ocean.

Figure 3.  Seasonal interrelation between the mean WP and SST anomalies over the (a) Pacific Ocean, (b) 
Indian Ocean, and (c) Indo-Pacific Ocean over the period 1979–2019. Statistically significant correlations at 
the 99% and 95% level of confidence are indicated by ** and *, respectively. (d–f) The same as in (a–c) except 
between SST during a given season and WP one season after (i.e. time lag = 1).
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