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Machine learning‑based approach 
for disease severity classification 
of carpal tunnel syndrome
Dougho Park1, Byung Hee Kim1, Sang‑Eok Lee1, Dong Young Kim2, Mansu Kim3, 
Heum Dai Kwon3, Mun‑Chul Kim3, Ae Ryoung Kim4, Hyoung Seop Kim5 & Jang Woo Lee5*

Identifying the severity of carpal tunnel syndrome (CTS) is essential to providing appropriate 
therapeutic interventions. We developed and validated machine‑learning (ML) models for classifying 
CTS severity. Here, 1037 CTS hands with 11 variables each were retrospectively analyzed. CTS was 
confirmed using electrodiagnosis, and its severity was classified into three grades: mild, moderate, 
and severe. The dataset was randomly split into a training (70%) and test (30%) set. A total of 507 
mild, 276 moderate, and 254 severe CTS hands were included. Extreme gradient boosting (XGB) 
showed the highest external validation accuracy in the multi‑class classification at 76.6% (95% 
confidence interval [CI] 71.2–81.5). XGB also had an optimal model training accuracy of 76.1%. 
Random forest (RF) and k‑nearest neighbors had the second‑highest external validation accuracy 
of 75.6% (95% CI 70.0–80.5). For the RF and XGB models, the numeric rating scale of pain was the 
most important variable, and body mass index was the second most important. The one‑versus‑
rest classification yielded improved external validation accuracies for each severity grade compared 
with the multi‑class classification (mild, 83.6%; moderate, 78.8%; severe, 90.9%). The CTS severity 
classification based on the ML model was validated and is readily applicable to aiding clinical 
evaluations.

The carpal tunnel comprises carpal bones and transverse carpal ligaments. Nine flexor tendons and the median 
nerve pass through the  tunnel1. Carpal tunnel syndrome (CTS), the most common entrapment neuropathy, 
occurs when the median nerve is compressed within the carpal tunnel. CTS presents various clinical manifesta-
tions ranging from mild pain to thenar muscle weakness or atrophy depending on the degree and duration of 
neural  compression2. Therefore, it is important to properly diagnose CTS severity and determine appropriate 
treatment options according to the severity  grade3.

Electrodiagnosis is the gold standard test for diagnosing peripheral nerve diseases and plays an essential role 
in diagnosing  CTS4,5. This technique is advantageous for confirming CTS and grading its  severity6–8. Additionally, 
differential diagnoses for cervical radiculopathies and other neuropathies can also be conformed with electro-
diagnosis. However, owing to electrical stimulation and needle electromyography (EMG) during examinations, 
electrodiagnosis is invasive and can cause discomfort to the  patient9,10.

Machine-learning (ML)-based modeling is an emerging analysis tool. It is mainly utilized for implementing 
predictive models in medical  research11,12. Furthermore, ML-based modeling can be applied in disease classifica-
tion, decision-making, and developing new therapeutic  interventions13,14. However, despite the explosive growth 
in ML-based medical research, research on CTS is relatively sparse. Although some studies have investigated 
prediction models for CTS  diagnosis15, an ML-based model for classifying CTS severity based on comprehensive 
clinical data has not yet been presented. Therefore, this study evaluated new classification models for determin-
ing electrodiagnostic CTS severity using ML algorithms. We also identified the importance of variables to the 
performance of the ML-based CTS severity classification model.
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Results
Baseline characteristics. Table 1 shows the summary of all variables and their baseline values. The results 
of the post-hoc analysis for all continuous variables is shown in Table S1. Among the 1037 hands, 507 (48.9%) 
were mild, 276 (26.6%) were moderate, and 254 (24.5%) were severe grade.

Considering the demographic data, the patients in the moderate grade were oldest (59.2 ± 10.8 years old), 
and the mild grade were the youngest (57.3 ± 10.6 years old). The difference in age between the groups was not 
statistically significant (P = 0.069). The proportion of males was relatively low in all severity grades (mild, 39.2%; 
moderate, 44.6%; severe, 32.7%; P = 0.183). The involvement side was bilaterally distributed; no difference was 
observed between grades (P = 0.960). The severity of the disease increased with body mass index (BMI), where 
mild, moderate, and severe grade patients had BMIs of 24.2 ± 3.4, 24.7 ± 3.0, and 25.8 ± 3.7 kg/m2, respectively. 
Further, there were statistically significant differences between all groups (P < 0.001) except among the mild and 
moderate groups. The occurrence of diabetes was higher in patients with a severe condition; 21.6% individuals 
in the severe grade had diabetes (P < 0.001).

Duration of symptoms was 4.3 ± 5.0, 8.5 ± 8.2, 15.9 ± 12.8 months for mild, moderate, and severe grade, respec-
tively, and the differences were statistically significant (P < 0.001). Similarly, with higher severity, the numeric 
rating scale of pain (NRS) was significantly higher (P < 0.001). Additionally, 20.1% patients in the mild grade 
complained of night pain, followed by 51.4% in the moderate grade and 83.5% in the severe grade; here again, 
we observed a significant increase with grade severity (P < 0.001). Thenar muscle weakness and/or atrophy was 
rarely observed in the mild grade, and the rate was low (8.7%) for the moderate grade. However, the proportion 
of patients complaining of thenar muscle weakness and/or atrophy significantly increased to 66.5% in the severe 
grade (P < 0.001).

Sonographic findings showed that both cross-sectional area (CSA) of the median nerve and palmar bowing 
(PB) of the flexor retinaculum increased with disease severity. Statistically significant differences were observed 
between all the grades in CSA (P < 0.001) and PB (P < 0.001).

Multi‑class classification. We assessed optimal model training performance and validated each ML algo-
rithm utilized for multi-class classification (Table 2). Among the ML algorithms evaluated, the extreme gradient 
boosting (XGB) had the highest accuracy, with an accuracy of 76.1% during training and 76.6% for test predic-

Table 1.  Variables and baseline characteristics. SD, standard deviation; CSA, cross-sectional area; PB, palmar 
bowing. a One-way analysis of variance. b Chi-square trend test.

Electrodiagnostic severity

P valueMild Moderate Severe

Hands, n (%) 507 (48.9) 276 (26.6) 254 (24.5) –

Age in years, mean ± SD 57.3 ± 10.6 59.2 ± 10.8 57.8 ± 11.2 0.069a

Male sex, n (%) 199 (39.2) 123 (44.6) 83 (32.7) 0.183b

Body-mass index in kg/m2, mean ± SD 24.2 ± 3.4 24.7 ± 3.0 25.8 ± 3.7  < 0.001a

Right side involvement, n (%) 264 (52.1) 127 (46.0) 135 (53.1) 0.960b

Diabetes, n (%) 47 (9.3) 45 (16.3) 54 (21.6)  < 0.001b

Duration in months, mean ± SD 4.3 ± 5.0 8.5 ± 8.2 15.9 ± 12.8  < 0.001a

Numeric rating scale of pain, mean ± SD 3.3 ± 1.3 4.9 ± 1.5 6.1 ± 1.5  < 0.001a

Nocturnal pain, n (%) 102 (20.1) 142 (51.4) 212 (83.5)  < 0.001b

Thenar weakness and/or atrophy, n (%) 1 (0.2) 24 (8.7) 169 (66.5)  < 0.001b

CSA in  mm2, mean ± SD 13.2 ± 3.0 15.4 ± 3.2 18.9 ± 5.0  < 0.001a

PB of flexor retinaculum in mm, mean ± SD 2.1 ± 0.8 2.6 ± 2.4 3.1 ± 2.3  < 0.001a

Table 2.  Results of optimal training model performance and test prediction of each machine learning 
algorithm for multi-class classification. CI, confidence interval.

Classifier

Training model Test prediction Balanced accuracy by class

Accuracy, %
Overall accuracy, % 
(95% CI) Mild, % Moderate, % Severe, %

Neural Network 72.7 73.7 (68.1–78.8) 83.6 66.3 84.3

Support Vector Machines 73.0 74.5 (68.9–79.5) 82.9 68.5 81.4

k-Nearest Neighbors 71.6 75.6 (70.0–80.5) 82.5 64.2 84.4

Classification And Regression Tree 73.6 70.8 (65.0–76.1) 78.1 61.8 81.7

Random Forest 76.0 75.6 (70.0–80.5) 83.6 70.5 81.9

Stochastic Gradient Boosting 74.7 73.4 (67.7–78.5) 80.3 71.6 81.6

eXtreme Gradient Boosting 76.1 76.6 (71.2–81.5) 83.6 71.8 83.5
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tion (95% confidence interval [CI] 71.2–81.5). Considering balanced accuracy, XGB had an accuracy of 83.6% 
and 83.5% for mild and severe grades, and 71.8% for moderate grade. Further, random forest (RF) and k-nearest 
neighbors (KNN) had the second-highest test prediction accuracy at 75.6% (95% CI 70.0–80.5) with optimal 
model training accuracies of 76% (RF) and 71.6% (KNN), respectively. Moreover, all the ML models had an 
accuracy of 70% or higher, and the balanced accuracy of the moderate grade was relatively low compared with 
the mild and severe grades. The confusion matrix of external validation with XGB, RF, and KNN is presented in 
Table 3. The best test prediction result of XGB showed the highest sensitivity of 89.8% in the mild grade and the 
highest specificity of 97.5% in the severe grade. In the severe grade, the test prediction results using XGB also 
demonstrated the best positive and negative predictive values (90.9% and 90.0%, respectively).

Considering variable importance, the rank of the top five important variables in the RF model were as fol-
lows: NRS, BMI, symptom duration, no thenar weakness and atrophy, and PB. In the XGB model, the top five 
important variables were NRS, BMI, no thenar weakness and atrophy, symptom duration, and PB. The ranking 
showed that both models selected the same variables as important in almost the same order. Both models selected 
NRS as the most important variable. Sex, diabetes, involved side, and night pain were selected as variables of 
low importance (Fig. 1).

One‑versus‑rest classification. The best model performances of the one-versus-rest classification using 
a stacked algorithm for each severity grade are summarized in Table 4, and the relevant confusion matrix for 
each grade is shown in Table 5. By performing these analyses, we could improve the test prediction accuracy 
compared with the multi-class classification. The test prediction accuracy was 83.6% (95% CI 78.7–87.8) for 
mild grade, 78.8% (95% CI 73.5–83.5) for moderate grade, and 90.9% (95% CI 86.8–94.0) for severe grade. The 
optimal training model for the severe grade showed the highest receiver operating characteristics (ROC) value 
(0.95). The ROC values of the mild and moderate grades were 0.86 and 0.81, respectively. The mild grade showed 
high sensitivity (86.1%), but specificity remained relatively low (81.0%). In contrast, in the moderate and severe 
grades, sensitivity was low, but specificity was relatively high (84.7% and 97.0%, respectively). The severe grade 
showed the best positive and negative predictive values (89.8% and 91.2%, respectively). The entire results of the 
one-versus-rest classification are shown in Table S2.

Discussion
In this study as with electrodiagnostic techniques, we employed an ML-base modeling approach to investigate 
the feasibility of identifying CTS severity based on personal, clinical, and sonographic features. All ML models 
yielded higher than 70% accuracy, and the XGB model performed best. Furthermore, the one-versus-rest clas-
sification improved the accuracy compared to the multiclass classification.

CTS has a wide spectrum of symptoms and  signs16. Because therapeutic options may vary according to its 
severity, it is important to determine appropriate severity grading of  CTS17,18. Electrodiagnosis remains the main 
evaluation tool for CTS severity grading. It is believed that CTS severity grading based on nerve conduction stud-
ies provides well-correlated results with the clinical  findings6,19. However, we developed a modified CTS severity 
grading system based on Stevens et al.7 and utilized it as our basis because we judged that the sensitivity might be 
low, particularly for the severe grade if the severity was evaluated without EMG. When neural compression pro-
gresses, EMG reveals evidence of axonal  denervation20. Sustained neural compression can lead either to muscle 
atrophy or  weakness21. Therefore, needle EMG in the CTS hand acts as an important evaluation tool, allowing 
surgeons and physicians to decide whether early surgical decompression is required before clinical presentation 
of thenar muscle atrophy or weakness. However, needle EMG has the disadvantage of causing discomfort to 
the patient, and owing to its invasive nature, it presents risks of bleeding and  infection9,10. Our ML-based clas-
sification system predicted the electrodiagnosis-based severity grade by utilizing the patient’s basic information, 
clinical information, and non-invasive sonography results. Therefore, our classification model alongside selective 
electrodiagnostic evaluation, which can help the surgeon or physician to effectively determine CTS severity with 
minimal discomfort to the patient, is of clinical significance.

Table 3.  Confusion matrix of three-best performed algorithms in multi-class classification.

Algorithms Predicted class

Actual class

Mild Moderate Severe

eXtreme Gradient Boosting

Mild 123 23 8

Moderate 14 37 14

Severe 0 5 50

Random Forest

Mild 123 23 8

Moderate 14 36 16

Severe 0 6 48

k-Nearest Neighbors

Mild 131 36 6

Moderate 6 25 15

Severe 0 4 51
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Previous studies have applied ML models to CTS assessment. In a recent study by Faeghi et al.22, sonographic 
images at the wrist level were obtained from CTS and control groups. The images underwent segmentation 
processes, and the accuracy of CTS diagnosis was analyzed based on the ML modeling. They reported that the 
diagnostic accuracy of radiologists improved when computer-aided diagnosis was applied. Sayin et al.23 applied 
four ML algorithms (i.e., support vector machine, naive Bayes, classification tree, artificial neural network) to 
109 CTS patients and 42 control subjects for CTS detection. They demonstrated a CTS detection score of 91.0%. 
However, these previous studies were limited in their study design because they only suggested the presence or 
absence of CTS. As mentioned, CTS represents a variety of symptoms and signs according to severity. Therefore, 
confirmation of severity grade is essential to the determination of treatment options. Meanwhile, Wei et al.24 also 
reported the ML-base CTS assessment. They identified that hand kinematic features were important for CTS 
diagnosis and severity grading using RF in controls, mild-, and moderate-CTS hands. In their study, although 

Figure 1.  Variable importance. Features that allowed high model performance were determined for RF (a) and 
XGB models (b). NRS, BMI, symptom duration, no thenar weakness or atrophy, and PB were among the top 
five features in both cases. NRS, numeric rating scale of pain; BMI, body-mass index; PB, palmar bowing; CSA, 
cross-sectional area; RF, random forest; XGB, extreme gradient boosting.
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the kinematic features comprised a potential predictor in grading CTS severity, consideration of clinical aspects 
were lacking. In contrast, we comprehensively assessed the basic personal factors, subjective findings, and objec-
tive findings as variables. Consequently, our study design and results are more useful because they mirror the 
clinical practice of evaluating CTS. We also have the advantage of analyzing the largest number of CTS hands 
compared with the aforementioned studies.

XGB is superior to other ML models for building prediction models based on regression or  classification25,26. 
Here, multi-class classification suggested that the XGB model had the highest accuracy. This finding is consistent 
with previous studies. XGB, which utilizes the ensemble boosting technique, improves the slow learning speed 
of gradient boosting and prevents overfitting through regularized  training26,27. In addition, XGB is the model-
of-choice in ML-based research because it can control various hyperparameters, and it is highly  flexible28. RF is a 
tree-based ensemble classification model that corrects the overfitting problem by using the bagging  method29,30. 
In our analyses, the model accuracy was second only to XGB. These ensemble ML techniques enable classification 
and prediction of clinical data in a feasible and robust  manner31.

We identified the variable importance according to our high-performing ML algorithms (i.e., RF and XGB). 
Both models provided an almost identical order for the top-five variables of importance. Cazares-Manríquez 
et al.32 reported that age, femininity, and high BMI were risk factors for CTS. Our results confirmed that among 
these personal risk factors, BMI was primarily involved in ordinal severity classification. However, among the 
variables of high importance, there was no statistically significant difference in BMI between the mild and 
moderate grades. Moreover, in line with previous  studies33,34, NRS and symptom duration were also identified 
as important clinical factors. Furthermore, based on our models, NRS was determined as the most important 
variable. Therefore, we suggest that the degree of pain subjectively felt by the patient is correlated with electro-
diagnostic severity. Additionally, thenar muscle weakness and/or atrophy was obtained as another variable of 
high importance. We believe that symptoms act as a distinguishing feature between severe and other grades. 
Sonographic findings, such as CSA and PB, also had high importance. These findings are known to be correlated 
with CTS  severity35. Most studies related to sonography and CTS severity focused on  CSA36–38; however, our data 
suggested that PB was more important than CSA for classification.

In multi-class classification, the moderate grade had lower balanced accuracy than other grades. This may be 
because, compared with other grades, moderate CTS has higher clinical diversity among them. The proportion 
of patients with thenar weakness and/or atrophy was only 8.7% in moderate grade, and this relatively low value 
may increase error rates. However, compared with the multi-class classification, the one-versus-rest classification 
provided higher accuracy for the moderate grade. Because NRS and sonographic findings showed high variable 
importance and represented serial and gradual differences by severity, we might derive better results than those 
of multi-class classification in one-versus-rest classification for the moderate grade. Moreover, compared with 
the multi-class classification, we obtained improved accuracy with high specificity for the severe grade as well. In 
particular, the high specificity of the severe grade is thought to be attributable to relatively important variables, 
such as thenar muscle weakness and/or atrophy and symptom duration, which were distinguishably different in 
the severe grade. Therefore, we believe our findings can play a supportive role in the clinic by allowing surgeons 
to determine CTS severity and decide surgical treatment accordingly.

Table 4.  Best test prediction results of stacked machine-learning algorithms for one-versus-rest classification. 
ROC, receiver operating characteristics; CI, confidence interval.

Mild Moderate Severe

ROC 0.86 0.81 0.95

Accuracy, % (95% CI) 83.6 (78.7–87.8) 78.8 (73.5–83.5) 90.9 (86.8–94.0)

Sensitivity, % 86.1 60.0 73.6

Specificity, % 81.0 84.7 97

Positive predictive value, % 81.9 54.9 89.8

Negative predictive value, % 85.4 87.2 91.2

Table 5.  Confusion matrix of the best test prediction results in each severity grade.

Severity grades Prediction

Actual class

Target Others

Mild
Target 118 26

Others 19 111

Moderate
Target 39 32

Others 26 177

Severe
Target 53 6

Others 19 196
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Another reason for better performance in one-versus-rest classification for the moderate and severe grades 
is that performing synthetic minority oversampling techniques (SMOTE) to reduce target class imbalance may 
further improve model performance. SMOTE is widely used as a balancing method to minimize the overfitting 
frequently encountered by the random up-sampling  method39. SMOTE also has the advantage of no informa-
tion loss when extracting a subset of data from the minor class and creating new similar instances by utilizing 
the KNN algorithm. However, while generating the synthetic data of the minor class, the adjacent instances of 
the major class are not considered; thus, it cannot be efficient for high-dimensional  data40. Our target class ratio 
was mildly imbalanced (approximately 2:1:1 for mild, moderate, and severe grades, respectively). When the 
up-sampling method was applied to multi-class classification, we found that overfitting occurred. Therefore, a 
suitable model was not generated. In contrast, in one-versus-rest classification, we created the best performance 
model with SMOTE for both moderate and severe grades.

We also applied the algorithm stacking method in our binary classifications. It has been found through pre-
vious studies that the stacked ML algorithm model can reduce the classification error rate and perform better 
predictions than the single ML algorithm  model41–43. We expected these findings to be generalized to the CTS 
severity classification model when designing our ML processes. In our results, the stacking ML-algorithm mod-
els provided better optimal training and prediction results, consistent with previous studies. When combining 
the performance of each ML-algorithms, we applied the generalized linear model (GLM), RF, and XGB. GLM 
is the preferred simple blend method for combination and has the advantage of low possibility of  overfitting44. 
Meanwhile, RF and XGB are ensembled algorithms that showed the best classification performance in our 
multi-class classification. Therefore, they were also used as the combination methods for our one-versus-rest 
classification. Because they are more complex than the simple linear method, they can provide a finely tuned 
model. However, the more sophisticated the combination method, the more susceptible it is to  overfitting44. In 
our stacked algorithms, the combination method for the optimal model was different for each grade. Therefore, 
it is important to find the best stacking method for the optimized model when combining the predictions of 
each while reducing overfitting.

Our study has some limitations. This was a retrospective study. Although the dataset was collected at a single 
center, an inter-clinician bias caused by the relatively long sampling period may have occurred. The dataset used 
in the study had a relatively small number of disease-related variables, and environmental factors related to 
overuse were not available. Additionally, we did not have access to long-term follow-up data. These limitations 
in our data may have affected classification performance.

In conclusion, the ML-based CTS severity classification is readily applicable based on our internal and exter-
nal validation results. ML-based models performed well when classifying mild and severe grades. In contrast, 
model accuracies were relatively low when classifying the moderate grade. Among the ML algorithms evaluated, 
XGB had the best performance, and the variables, particularly NRS, provided high classification accuracy. There-
fore, surgeons and physicians can utilize our novel ML-based classification model to make better therapeutic 
decisions for patients with CTS.

Methods
Study design and variables. The dataset was retrospectively collected from a single center between Janu-
ary 2015 and February 2021. Patients diagnosed with CTS by electrodiagnostic evaluation were considered, and 
we used the following personal variables: age, sex, involved side, BMI, and diabetes incidence. In addition, we 
evaluated symptoms at the patient’s first visit (e.g., duration of symptoms, NRS, nocturnal pain, and thenar mus-
cle weakness and/or atrophy), which were used as clinical variables. The CSA of the median nerve and the PB 
of the flexor retinaculum were used as ultrasonographic variables. The CSA of the median nerve was measured 
using transverse images acquired at the level of the pisiform and scaphoid  bones45. PB was measured at the tra-
pezium and hook of the hamate  level46. The exclusion criteria were as follows: (1) other concomitant peripheral 
nerve lesions; (2) concomitant lower cervical radiculopathy; (3) peripheral vascular disease; (4) arthritis (hand 
or wrist); (5) previous surgical history (wrist or hand); and (6) missing or inconsistent data.

This study was reviewed and approved by the Institutional Review Board of Pohang Stroke and Spine Hospital 
(Approval No. PSSH0475-202103-HR-012-01) and performed in compliance with the Declaration of Helsinki 
and the International Conference on Harmonization–Good Clinical Practice Guideline. Due to the retrospec-
tive study design, the Institutional Review Board of Pohang Stroke and Spine Hospital allowed the exemption 
of informed consent.

Electrodiagnostic evaluation and severity grading. Antidromic median sensory conduction and 
orthodromic median motor conduction studies were performed. Transcarpal latency (TCL) was measured for 
CTS diagnosis and values ≥ 1.7 ms were defined as abnormal. If the TCL was normal, CTS-related symptoms 
were clear, and if TCL was borderline (1.5 ms ≤ TCL < 1.7 ms), we conducted an additional lumbrical-interossei 
motor or antidromic ring-finger sensory comparison test based on the advice of a physiatrist. Additionally, EMG 
had been conducted on the abductor pollicis brevis (APB) muscle. Detailed electrodiagnostic techniques and 
reference values for diagnosing CTS are presented in Table 647. All electrodiagnostic tests were performed using 
Sierra® wave (Cadwell, Kennewick, WA, USA). Patients were examined in the supine position. The temperature 
of the electrodiagnosis room was maintained at 25 °C, and the skin temperature was maintained at 32 °C.

Based on the electrodiagnostic results, we categorized CTS severity into three grades: mild, moderate, and 
severe. Our grading system is a modified version of the grading scheme introduced by  Stevens7. Cases with 
abnormalities in the sensitivity tests, but normal for median compound motor nerve action potential (CMAP) 
and needle EMG were considered as mild. Cases with abnormal findings in the median CMAP but normal 
for needle EMG were considered as moderate. Finally, the severe grade included patients who experienced 
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denervation potentials or polyphasic, long duration, and large amplitude motor unit action potentials in the 
APB muscle during needle EMG (Table 7).

Data analysis. Continuous variables were expressed as mean ± standard deviation, while categorical vari-
ables were indicated as frequencies (proportions). To identify the differences in baseline characteristics between 
each electrodiagnostic severity grade, we conducted a one-way analysis of variance with the Bonferroni post 
hoc test. We also conducted a chi-square trend test for the categorical variables. All statistical analyses for the 
baseline characteristics were performed using SPSS 22.0 (IBM Inc., Armonk, NY, USA).

Model training and validation. All ML processes were performed using R software (version 4.1.0) pro-
vided by the R Core Team (R Foundation for Statistical Computing, Vienna, Austria. http:// www.R- proje ct. org). 
The entire dataset and ML processing codes for this study can be found in the online supplementary content. The 
entire workflow of the ML process in this study is illustrated in Fig. 2.

After exclusion, analysis was conducted using a dataset consisting of 1037 CTS hands. For data pre-processing, 
we identified variables corresponding to near-zero variance and variables having collinearity. Continuous vari-
ables were normalized to zero mean and unit variance values using centering and scaling methods. Categorical 
variables were encoded using one-hot encoding. The dataset was randomly split into a training and test set at a 
ratio of 7:3. A total of three levels (i.e., mild, moderate, and severe) were analyzed as target classes. To address an 
imbalance of target classes in the training set, we utilized the random up-sampling and SMOTE for the multi-
class and one-versus-rest classification, respectively.

For the multi-class classification, utilizing the caret  package48, a total of seven ML algorithms were adopted as 
follows: neural network, support vector machine, KNN, classification and regression tree, RF, stochastic gradient 
boosting, and  XGB49–53. For the training set, we conducted a tenfold cross validation with five repeats to create 

Table 6.  Electrodiagnostic techniques and reference values for diagnosing carpal tunnel syndrome. APB, 
abductor pollicis brevis muscle.

Stimulation site Recording site Reference values

Sensory nerve action potential

Median nerve 4 cm proximal to the recording site 2nd digit Onset latency: ≤ 3.5 ms and peak to peak ampli-
tude: ≥ 20 µV

Transcarpal latency 7 and 14 cm proximal to the recording site, respectively 2nd digit Difference of onset latency between two stimula-
tions: < 1.7 ms

Ring finger Median and ulnar nerves at wrist, respectively, 14 cm 
proximal to the recording site 4th digit Difference of onset latency between median and ulnar 

nerves: < 0.6 ms

Compound motor nerve action potential

Median nerve 8 cm proximal to APB muscle APB muscle Onset latency: ≤ 4.0 ms and peak to peak ampli-
tude: ≥ 5 mV

Lumbrical/Interossei Median and ulnar nerves at wrist, respectively Midpoint of 3rd metacarpal bone Difference of onset latency between two stimula-
tions: ≤ 0.4 ms

Table 7.  Severity grading system according to the electrodiagnostic findings. SNAP, sensory nerve action 
potential; CMAP, compound motor nerve action potential; EMG, electromyography; APB, abductor pollicis 
brevis muscle. a Transcarpal latency, lumbrical/interossei motor comparison study, or antidromic ring finger 
sensory comparison study. b Prolonged onset latency or low amplitude. c Denervation potentials or polyphasic, 
long duration, and large amplitude motor unit action potentials.

Defined grade Electrodiagnostic findings

Mild

Abnormality in any sensitivity  testsa

And/or abnormal median  SNAPb

And normal median CMAP

And normal EMG finding in APB

Moderate

Abnormality in any sensitivity  testsa

And/or abnormal median  SNAPb

And abnormal median  CMAPb

And normal EMG finding in APB

Severe

Abnormality in any sensitivity  testsa

And/or abnormal median  SNAPb

And/or abnormal median  CMAPb

And positive EMG findings in  APBc

http://www.R-project.org
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an optimal training model and utilized either a random or grid search for hyperparameter tuning (Table S3). 
Additionally, considering the RF model as a representative of the bagging ensemble algorithm and the XGB 
model as a representative of the boosting ensemble algorithm, we identified the variables of importance. For 
external validation, we conducted predictions on the test dataset based on the optimal training model created. 
To evaluate the performance of multi-class classification ML models, we used the overall and balanced accura-
cies of each class.

We also conducted one-versus-rest classification for each severity grade. We developed a model by stacking 
five ML algorithms and executed a combined classification utilizing the caretEnsemble  package44. Five algorithms 
with different operation mechanisms were selected among those used for multi-class classification. Classifica-
tion and regression tree and stochastic gradient boosting algorithms were excluded because they share similar 
operation mechanisms with RF and XGB, respectively. Consequently, the ML classifiers used in the stacked 
ensemble included the neural network, support vector machine, KNN, RF, and XGB. We conducted a tenfold 
cross-validation with five repeats to train the stacked ML model. Subsequently, we combined the predictions of 
each classifier using the GLM, RF, and XGB. Then, we selected the best model among the results from the three 
combination methods. For external validation, we conducted predictions on the test dataset based on the optimal 
combined model. We measured the ROC, overall accuracy, sensitivity, specificity, positive predictive value, and 
negative predictive value to validate the one-versus-rest classification.

Data availability
All data and R codes for this study are included in this published article (and its Supplementary Information files).

Received: 15 April 2021; Accepted: 12 August 2021

Figure 2.  Flowchart of the machine-learning modeling process. CTS, carpal tunnel syndrome; SMOTE, 
synthetic minority oversampling technique; NNet, neural network; SVM, support vector machines; KNN, 
k-nearest neighbors; CART, classification and regression tree; RF, random forest; GBM, stochastic gradient 
boosting; XGB, extreme gradient boosting; GLM, generalized linear model; ROC, receiver operating 
characteristic; PPV, positive predictive value; NPV, negative predictive value.
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