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Reinforcement learning derived 
chemotherapeutic schedules 
for robust patient‑specific therapy
Brydon Eastman*, Michelle Przedborski & Mohammad Kohandel

The in‑silico development of a chemotherapeutic dosing schedule for treating cancer relies upon 
a parameterization of a particular tumour growth model to describe the dynamics of the cancer in 
response to the dose of the drug. In practice, it is often prohibitively difficult to ensure the validity of 
patient‑specific parameterizations of these models for any particular patient. As a result, sensitivities 
to these particular parameters can result in therapeutic dosing schedules that are optimal in principle 
not performing well on particular patients. In this study, we demonstrate that chemotherapeutic 
dosing strategies learned via reinforcement learning methods are more robust to perturbations in 
patient‑specific parameter values than those learned via classical optimal control methods. By training 
a reinforcement learning agent on mean‑value parameters and allowing the agent periodic access to 
a more easily measurable metric, relative bone marrow density, for the purpose of optimizing dose 
schedule while reducing drug toxicity, we are able to develop drug dosing schedules that outperform 
schedules learned via classical optimal control methods, even when such methods are allowed to 
leverage the same bone marrow measurements.

In mathematical models of cancer treatment, one is often concerned with finding a chemotherapeutic dosing 
schedule that is optimal in some  capacity1–3. Each different model allows distinct forms of this optimality metric. 
This shaping of optimality metric will often involve a trade-off of some variety: incredibly high doses of a potent 
chemotherapeutic can certainly annihilate the cancerous cells in tissue but in so doing will largely cause a great 
deal of harm to the patient. Modelers, then, are concerned with mathematically formulating this optimality 
metric in a way that preserves the health and longevity of their patient (virtual or otherwise). For instance, in 
Ref. 2 the authors were concerned with maximizing the reduction in the total number of cancerous cells with 
the minimal total chemotherapeutic dose. They achieved this control by sampling 200 virtual patients from a 
particular parameter distribution, training 50 different reinforcement learning agents on differential equations 
representing the tumour growth of these patients, and applying these agents to these patients. In contrast, in Ref. 
1 the authors concerned themselves with maximizing the chemotherapeutic dose while minimizing the damage 
to healthy, proxy cells in the bone marrow. Practically, these are two (similar and related) methods for achiev-
ing the same ends, but the particulars of their formalization can lead to drastically different qualitative results.

In any situation, the models used to represent the delivery of the chemotherapeutic and the associated reduc-
tion in cancer cells can inform the choice of optimality metric. So too can the choice of model inform the method 
by which a modeller can find such an optimal dosing schedule of a chemotherapeutic. One such method, as 
employed in Ref.1, is that of optimal control theory. When the model that governs the behaviour we are trying to 
assert some control over is codified by differential equations, optimal control theory can provide a methodology 
for finding the dose delivery function that maximizes whatever optimality metric the modeller chooses (if such 
a metric has a maximum)4. In some situations, this optimal control can be accomplished analytically as in Ref.1, 
in others (such as the objective functional presented in Eq. (3)) numerical techniques such as those employed 
by the GEKKO package may be  required5.

A reinforcement learning approach can also be employed to maximize a given optimality metric (see, for 
instance, Ref. 2). In a reinforcement learning context, when the state of the model at a given time t is known, one 
can construct a controller function via the learned optimal policy. In contrast to optimal control, reinforcement 
learning more easily lends itself to situations where the model behaviour is governed by systems more compli-
cated than just those that can be represented with differential equations (for instance, reinforcement learning 
has had great success in solving Atari games, arcade games, Backgammon, etc.6–8). In particular, as illustrated in 
Fig. 1, a reinforcement learner need only be provided with the action space of the environment; all other details 
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about the environment are effectively a black-box. The agent takes an action, the environment then changes as a 
result according to some rule-set the learner need not have access to, and a reward is issued. The reinforcement 
learner then evolves to maximize total cumulative reward, not just the immediate reward benefit. Importantly, 
the environment may be governed by a deterministic set of differential equations, by a stochastic agent-based 
model, or by rules entirely determined by data. In this capacity, the black-box nature of the reinforcement 
learner environment is enticing to applied mathematicians as it allows the capacity to perform numerical learn-
ing experiments in a regime that was previously untractable. Indeed, recent advancements in computing power 
have allowed for the tractability of model-free reinforcement  learning9. With the advent of big data sets and 
quantitative medicine, reinforcement learning can be used to leverage real world data as well as deterministic, 
validated models in order to learn a control in complicated contexts. Presently, we consider the environment to 
be governed by a system of simple differential equations to establish a framework methodology that can, in the 
future, be extended to other, more realistic domains.

In this study, we consider a simple differential equation model from Refs. 1,10–12. This phenomenological 
model describes the growth of breast and ovarian solid tumours at a cellular level within a particular patient. 
The parameters of the model describe rates of cell-to-cell interaction and are incredibly difficult to measure in 
practice. In particular, the methods used in Refs. 1,11 to parameterize this model only allow the discovery of nomi-
nal, mean values of such parameters from multiple mouse models. While these parameters can help to capture 
the qualitative behaviour of the response of a tumour to a particular chemotherapeutic, the model can certainly 
not be considered to be a validated model in human cancers. However, even for a validated phenomenological 
model the issue of patient-specific parameter identification still remains. Whenever the parameter values used for 
these models are determined by population-level data the modeller may not know a-priori the particular patient-
specific parameters. In contexts where there is a demonstrable sensitivity to small perturbations in the parameter 
values, there is a concern that the nominal parameters (and any chemotherapeutic control thereby derived) may 
not robustly describe the most optimal response for a particular parameterization. To that end, in this paper we 
explore how chemotherapeutic controls derived from mean value parameters can be used on models of patients 
with perturbed, unknown parameter values. In particular, we leverage the power of deep double Q  learning6 
to derive the chemotherapeutic control in a manner that provides learned dosing schedules that are robust to 
perturbations in parameter values in this sensitive system. Importantly, the reinforcement learning agent is una-
ware during training of the patient-specific parameter values on which it is evaluated. This is in contrast to Ref. 2 
where multiple agents were trained on systems encoded by these parameter values exactly. In Ref. 13 a continuous 
control problem is considered for both single and combination therapy of chemotherapeutics where the dynamics 
are described by an Ito stochastic differential equation (SDE). Importantly, the author employs a reinforcement 
learning method (the deep deterministic policy gradient  method14) and notes that the corresponding control 
appears robust to the stochasticity inherent in the SDE. In Ref. 1 the authors analytically derive the continuous 
optimal control of the tumour growth model used in this work under a particular objective functional. Here we 
consider a similar optimal control problem but wherein both the drug dose and time are discretized.

The manuscript is organized as follows. In the “Methods" section we first introduce the differential equation 
model and provide the mean parameter values that comprise the nominal virtual patient. We then define the 
optimal control problem considered and the objective functional by which the optimal scores are deduced. We 
then describe the method by which virtual patients were created for testing and training purposes. Next, we lay 
out the training process used for solving the reinforcement learning problem and the discrete optimal control 
problem. Finally, we discuss the hyperparameter tuning process of the deep double Q learning algorithm.

In the “Results" section, we first derive an analytic characterization of the initial conditions used in the model 
simulations as a function of these parameter values. Then, we perform local sensitivity analysis demonstrating 
that the model we consider is quite sensitive to local perturbations of the parameter values. We next present the 
results of the control agents by first allowing the agents to learn offline on an environment parameterized by the 

Figure 1.  A reinforcement learning agent interacts with an environment as if the environment were a black-
box. This process potentially changes the state of the environment and results in some reward for the learner. 
All that the learner needs to be provided with is the action space and a suitable reward function to determine an 
optimality metric.
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nominal patient. We then apply these agents to environments parameterized by the perturbed testing patients. 
We measure the optimality of these schedules by logging the value of the objective functional achieved divided 
by the theoretical maximal value of this objective functional for each testing patient. We consider the optimality 
of schedules proposed for these perturbed testing patients for both the reinforcement learning agent and the 
traditional nominal optimal controller. In the former case, the relative bone marrow of these unknown patients 
was leveraged for the purpose of customizing the dosing schedule and reducing drug toxicity whereas, in the 
latter case, the same, nominal schedule is applied to all testing patients. We then extend the optimal schedules to 
leverage relative bone marrow measurements as well by employing a version of nearest neighbour interpolation 
on the optimal control of various training patients (whose particular patient specific parameter values are treated 
as known) to personalize dose schedules for testing patients. This nearest testing neighbour optimal control is 
then compared with the previous reinforcement learning agent. Finally, we present commentary and a summary 
of the work in the “Discussion" section.

Methods
Tumour growth inhibition model. We consider the two-compartment mathematical model of cell-cycle 
specific chemotherapy first introduced in Ref. 11, which is an extension of earlier  work10. The model consists of a 
population of proliferating cells and a population of quiescent cells, where the time evolution of cell populations 
is depicted in Fig. 2 and is governed by the following set of coupled ordinary differential equations:

In the model, P(t) represents proliferative cells and Q(t) represents quiescent cells. The model captures the 
growth of proliferative cells at a constant rate γ , the transformation of proliferative cells into quiescent cells 
at a constant rate α , and the apoptosis of proliferative cells at a constant rate δ . Similarly, quiescent cells leave 
quiescence and become proliferative at a constant rate β and undergo apoptosis at a constant rate � . The time-
dependent function f(t) represents the dosing schedule of a chemotherapeutic where s represents the relative 
strength of the administration of such a chemotherapeutic. In particular, it is assumed that f (t) ∈ [0, 1] . While 
parameters γ , δ , α , β , and � are patient-specific parameters depending on the nature of the disease being mod-
elled, parameter s is a phenomenological hyper-parameter of the model describing the relative strength of the 
chemotherapeutic.

The proliferating cell compartment contains cells at each of the four phases of cell cycle (gap period G1, 
synthetic period S, second gap period G2, and mitosis M) to reduce the complexity of the cellular states. While 
resting cells are affected to a small extent by cell-cycle specific chemotherapy, the model(1) assumes that the 
chemotherapy f(t) affects only the proliferating cells. The model does not include details from other aspects of 
the patient’s context, notably it ignores the effects of age, sex, spatial information of the tumour, and any appli-
cable comorbidities.

In Ref.10 the authors parameterize Eq. (1) with values that are suitable for describing breast cancer and ovarian 
cancer, as determined by mouse models. In Ref. 1 the authors provide an additional parameter set for determining 
the effect of chemotherapy on healthy bone marrow cells. This allows one to, for a given chemotherapy dosing 
schedule f(t), model the effect of chemotherapy on both the healthy bone marrow cells and the malignant cancer-
ous cells. Hence, by evolving two de-coupled copies of Eq. (1), one parameterized with values corresponding to 
a particular cancer and the other with bone marrow parameter values, we can monitor the cancer-killing effects 
of a chemotherapeutic schedule and the associated chemotherapeutic toxicity in the patient. The parameter 
values are summarized in Table 1.

(1)
P′(t) =

(

γ − δ − α − s f (t)
)

P(t)+ β Q(t)

Q′(t) = α P(t)− (β + �)Q(t)

Figure 2.  The two-compartment tumour growth inhibition model described by Eq. (1). Proliferative (P) 
cells and quiescent (Q) cells can both die naturally at the constant rates δ and � , respectively. However, only 
proliferative cells can self-renew (at the constant rate γ ) and be killed by the dose of a chemotherapeutic f(t). 
Moreover, proliferative cells are allowed to become quiescent (at constant rate α ) and quiescent cells are allowed 
to become proliferative (at constant rate β).
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Chemotherapeutic control. To determine the optimal chemotherapeutic control, we follow Ref.  1 and 
introduce an objective functional with the form

Maximizing this objective functional enables the derivation of an optimal chemotherapy dosing schedule 
of duration T days for a particular patient. In the notation of Eq. (2), Pbm and Qbm refer to the proliferative and 
quiescent compartments of Eq. (1) parameterized to describe the behaviour of bone marrow. In effect, this leads 
to a chemotherapeutic schedule that biases the optimizer toward applying a larger dose of chemotherapeutic, 
as governed by f(t), while also maximizing the total number of bone marrow cells in the patient (to reduce drug 
toxicity). The non-negative hyperparameter b is then a scaling factor representing the relative importance of 
these two mechanisms. If b ≫ 1 , then delivering the largest chemotherapeutic dose possible is the most desirable 
action for the optimizer, even at the cost of decimating the bone marrow cell count. Contrarily, if 0 ≤ b ≪ 1 
then the optimizer is biased toward preserving bone marrow even at the cost of lower cancer kill. Plots of such 
a chemotherapeutic dosing function f, obtained via the analytical method for deriving the continuous optimal 
control as in Ref. 1, for various b values are presented in Fig. 3.

In this work, the particular functional form of Eq. (2) is not of primary concern. Certainly other forms could 
be suggested to achieve similar qualitative goals. For instance, consider the functional

In the notation of Eq. (3), Pbc and Qbc refer to the proliferative and quiescent compartments of Eq. (1) param-
eterized to describe the behaviour of solid breast cancer tumours. Hence, the functional in Eq. (3) describes 
the minimization of breast cancer cells while preserving the healthy, bone marrow cells. In this functional, the 
dependence on the chemotherapeutic dosing schedule f is implicitly included in the trajectories of Pbm , Qbm , 
Pbc , and Qbc . In any case, the exact formulation of this objective functional is an incredibly important choice for 
any modeller in a clinical context as it determines the metric by which the control is considered maximal and 
is outside the scope of this report.

While there are many methods in the field of optimal control theory that provide a methodology for obtaining 
such schedules, one could also employ techniques from reinforcement learning to discover chemotherapeutic 
dosing schedules. For instance, for a time t given the state vector st , to be defined later, and chemotherapeutic 
dose at ∈ [0, 1] , we define the immediate reward function as

(2)Jb(f ) =

∫ T

0

[

Pbm(t)+ Qbm(t)−
b

2
(1− f (t))2

]

dt.

(3)Jb(f ) =

∫ T

0
[Pbm(t)+ Qbm(t)− b (Pbc(t)+ Qbc(t))] dt.

Table 1.  Parameter values for breast cancer cells, ovarian cancer cells, and bone marrow cells as obtained from 
Refs. 1,10, and values of ρ∗

p as determined by Eq. (10).

Parameter Nominal value Units

Bone marrow

γ 1.470 days−1

δ 0.000 days−1

α 5.643 days−1

β 0.480 days−1

� 0.164 days−1

ρ∗
p 0.103 –

Breast cancer

γ 0.500 days−1

δ 0.477 days−1

α 0.218 days−1

β 0.050 days−1

� 0.000 days−1

ρ∗
p 0.200 –

Ovarian cancer

γ 0.6685 days−1

δ 0.4597 days−1

α 0.2225 days−1

β 0.0500 days−1

� 0.0000 days−1

ρ∗
p 0.3600 –
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in order to elicit an analogous response in the reinforcement learner as achieved by the objective functional in 
Eq. (2). Explicitly, Jb(f ) =

∑T−1
t=0 R(st , at) , where Jb is given in Eq. (2) for appropriate piecewise constant func-

tions f. To proceed, we use the reward function in Eq. (4) in the following form of the Bellman equations (see, 
for instance, Ref. 15)

to derive an optimal policy as defined by

This policy can then be used to derive an optimal chemotherapy dosing schedule according to

We provide a brief explanation of Eqs. 5–7 but direct readers to a more thorough source such as Ref. 15 for full 
details. As mentioned earlier, R(st , at) represents the immediate reward an agent receives for performing action 
at while in state st . In contrast, Q∗(st , at) represents a valuation of performing action at while in state st . Notably, 
Q∗(st , at) encodes the immediate reward R(st , at) , but also encodes the discounted future rewards. Similarly, for 
a given Q∗ function the policy π(st) describes the optimal action to perform in a given state st . As a result, π(st) 
chooses an action at to maximize Q∗(st , at) in a global manner as compared to the local process of choosing at 
to maximize immediate reward R(st , at) . As such, the maximal action in a given state, as valued by Q∗ , may be 
one for which the payoff is not immediately obvious for multiple timesteps. The factor γ in Eq. 5 is the discount 
factor of future rewards. The parameter γ is taken such that γ ∈ [0, 1] where γ = 0 corresponds to an agent that 
is focused on maximizing the immediate reward of their action and γ = 1 corresponds to an agent more con-
cerned with increasing future reward than immediate. In general, a model describing a reinforcement learning 
environment may not be deterministic. In that regard, p(s′|st , at) corresponds to the probability of ending up in 
state s′ after taking action at in state st . For the model in Eq. 1, no such stochasticity exists. As such, it is assumed 
that p(s′|st , at) = 1 for exactly one s′ ∈ S (namely s′ = st+1 ). One can derive the drug dosing schedule f ∗(t) as 
in Eq. 7 by observing the state in some manner and then evaluating the policy at this state. For the case of the 
nominal patient, where the patient specific parameters are known, observing the state is as simple as integrating 
Eq. 1. For an already trained model, one would construct the state vector (Eq. 8) for a patient (virtual or other-
wise) and then evaluate the policy at this state.

For a continuous time reinforcement learning agent, the optimal dosing schedule learned by this process 
for a given parameterization of Eq. (1) is identical to that derived via optimal control theory for that same 
parameterization, as in Ref.1. Of particular importance, however, is that as Eq. (7) demonstrates, once a policy 
has been learned, one can derive an optimal chemotherapy schedule by merely evaluating the policy at the state. 
Importantly, the state one evaluates the policy at need not be a state seen during the learning process. Indeed, 
in our study we concern ourselves with training the reinforcement learning agent on only the nominal virtual 
patient and developing chemotherapy schedules for 200 different testing virtual patients. By leveraging state 
vector information from these 200 different testing virtual patients (patients which encode an environment over 
which the agent has not trained) the reinforcement learning agent is able to personalize the dose delivery func-
tion. As a result, it is important that we define our state vector as something that is both practically measurable 

(4)R(st , at) =

∫ t+1

t

[

Pbm(s)+ Qbm(s)−
b

2
(1− at)

2

]

ds

(5)Q∗(st , at) = R(st , at)+ γ
∑

s′∈S

p(s′ | st , at)Q
∗(s′, argmax

a′∈A

(Q∗(s′, a′)))

(6)π(st) = argmax
a∈A

Q∗(st , a).

(7)f ∗(t) = π(st).

(a) b= 0.5 (b) b= 1 (c) b= 2

Figure 3.  A plot of the proliferative cell proportion (black), the quiescent cell proportion (blue), and the 
optimal chemotherapeutic control f ∗(t) (dashed red) for different values of b. The objective functional used to 
achieve this optimal control is given via Eq. (2). Small values of b correspond to weighting preservation of the 
bone marrow as more important and larger values of b correspond to weighting total drug delivery as more 
important.
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and phenomenologically linked to the objective functional we wish to optimize. As indicated by Eq. (8), when 
deriving the optimal chemotherapy dosing schedule according to Eq. (7), we are passing the optimal policy a wl 
length window of measurements corresponding to bone marrow count relative to a time before treatment began 
as well as the current day of treatment (in order to satisfy the Markov property).

The particular value of wl is another hyperparameter to the process to consider. In contrast with the other 
hyperparameters listed in Table 2, this hyperparameter was chosen empirically to be wl = 10 as in Ref. 2 wherein 
the authors used a length 10 window of mean tumour diameters as the state vector of their learning agent.

Perturbed virtual patients. We generate sets of virtual patients according to the following strategy. We 
consider parameter values from Table 1 and construct virtual patients by perturbing these parameter values. To 
begin we note that δ = 0 for the bone marrow parameters. As a result, we do not consider perturbing this value 
and treat δ as zero for all virtual patients. These perturbations are performed by scaling the mean parameter 
values in Table 1 by factors sampled from the space [1− k, 1+ k] uniformly with Latin hypercube  sampling16. 
Latin hypercube sampling, a space filling technique for drawing random samples, is especially important when 
the number of samples drawn is small in comparison to the size of the sample space and when the parameters 
of interest are uncorrelated. Given the phenomenological nature of the remaining parameters we can assert that 
these parameters are uncorrelated. In particular, modifying any one of these parameters will create a distinct 
system under Eq. (1) that cannot be recovered by modifications to any number of the remaining parameters.

We now introduce some notation for describing the virtual patients. To begin, we let ξ0 represent the nominal 
virtual patient. That is, ξ0 = (γbm, δbm,αbm,βbm, �bm) from Table 1 where the “bm" subscript refers to the bone-
marrow parameter values. In this work, we generated virtual patients at perturbation levels of k = 0.15 , 0.20, 
and 0.25, where k corresponds to the percent-change strength of perturbation. We generated six total sets of 
virtual patients. For the purpose of interpolating the nearest training neighbour optimal controller, we generated 
1000 virtual patients at the 15%, 20%, and 25% perturbation strength level for testing purposes which we denote 
by ζ ki  where 1 ≤ i ≤ 1000 denotes the index of the virtual patient and k ∈ {0.15, 0.20, 0.25} denotes the maximal 
strength of the perturbation. Similarly, we generated 200 virtual patients at the 15%, 20%, and 25% perturba-
tion strength level for the purpose of testing the controllers, these patients we denote by θki  where 1 ≤ i ≤ 200 
again represents the index of the virtual patient and k ∈ {0.15, 0.20, 0.25} represents the maximal strength of the 
perturbation. The reinforcement learning agent was only trained on the nominal virtual patient and not virtual 
patients from the training or testing sets. The training virtual patients were only utilized for the crafting of the 
NTNOC optimal control strategy discussed in the “Results" section. In this regard, the testing virtual patients 
serve as a metaphor for the unknown patient-specific parameters of any particular patient in clinic. Both the 
testing and training virtual patients, for the non-zero parameters γ , α , β , and � , are visualized in Fig. S1.

Training process. We numerically solve the Bellman equation, Eq. (5), by employing neural networks as 
in the deep double Q-learning  algorithm6. Deep double Q-learning is not the only algorithm by which one can 
solve this form of the Bellman equation. We chose this algorithm for a number of reasons: primarily, we expect 
that both the presence of the experience-replay buffer and the Q(s, a) valuation is crucial for the algorithm to be 
able to successfully approximate the optimal action in the presence of environmental noise. Indeed, the success 
of this method relies on the ability of the algorithm to approximate the value of state/action pairs that differ from 
those seen in the optimal treatment of the nominal patient. By maintaining a buffer and valuation of the state/
action pairs explored while deriving the nominal treatment, the algorithm is able to better approximate a larger 
swathe of the domain of Q. There are many algorithms that satisfy these requirements such as deep determin-
istic policy gradient or (single) deep Q-learning14,17. However, deep policy gradient is a more computationally 
expensive method that can produce continuous controls, whereas we are primarily concerned with discrete dose 
values in this study. Similarly, deep Q-learning has been observed to be more likely to select overestimated val-
ues, resulting in overtly optimistic value estimates, in a capacity that is avoided in deep double Q-learning6. In 
particular, we represent the Q function from the Bellman equation, Eq. (5), as a neural network. As a result, after 
training the network, the specific form of Q is the same for each testing virtual patient. However, as in Eq. (7), 
by supplying the bone marrow measurements for the testing virtual patient, the network can produce a person-

(8)st = �t, Pbm(t)+ Qbm(t),Pbm(t − 1)+ Qbm(t − 1), . . . ,Pbm(t − wl+ 1)+ Qbm(t − wl+ 1)�

Table 2.  Hyperparameter values for the learning process. The parameters hd1 , hd2 , γ , α , and bs were 
determined by the Bayesian optimizer whereas wl was chosen empirically.

Parameter Value Description

Hyperparameter Values

hd1 64 Dimension of first hidden layer in the neural network

hd2 96 Dimension of second hidden layer in the neural network

γ 0.9553 Discount factor from the Bellman equation (5)

α 0.003809 Learning rate for the Adam optimizer

bs 96 Batch size for the Adam optimizer

wl 10 Window length for relative bone marrow measurements
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alized dose schedule that is different for each virtual patient. In terms of the architecture of the Q network, we 
take the network to have 10 inputs neurons (as determined by the length of the state vector), hd1 neurons in the 
first hidden layer, hd2 neurons in the second hidden layer, and 11 neurons in the output layers (corresponding 
to dose strength range from 0 to 1 inclusive in 0.1 increments). Each neural layer is activated with a rectified 
linear unit. We use batch-learning with a batch size of bs to minimize the mean squared error between the right 
and left hand sides of Eq. 5 via an Adam optimizer with learning rate α . In the Hyperparameter Tuning section 
we discuss how we decide upon the values of these hyperparameters and list the particular values in Table 2. To 
train the network we first parameterize the system in Eq. 1 by the nominal parameter set ξ0 . Next, we run 5,000 
exploratory time steps of the simulation performing random actions in order to fill the experience replay buffer. 
After every 21 time steps, the environment is reset by returning the differential equation model, Eq. (1), back 
to its initial conditions (as dictated by Eq. (10)). In particular, the initial state for the reinforcement learning 
algorithm is a length eleven vector where the first entry is a 0 and the remainder are unit entries (as the Eq. (10) 
initial conditions sum to 1). This window length of 10 for the bone marrow measurements was chosen empiri-
cally, as in Ref. 2. For each time step of the simulation we choose a chemotherapy dose according to our network 
via an ǫ-greedy algorithm. We anneal ǫ linearly from ǫ = 1 to ǫ = 0.01 over 25,000 time steps. The ǫ-greedy 
algorithm was only implemented during training, i.e. during evaluation the policy selection is deterministic as 
in Eq. (6). After selecting a dose a ∈ A = {0, 0.1, . . . , 1} , we apply the chemotherapy dose to the patient by hold-
ing f (t) = a constant over the timestep and evolving Eq. (1) (as such, we discretize not only in dose but in time 
as well). Next, we record a tuple of the state, action, reward, new state values. We then select a random batch of 
previously observed tuples and use them to approximate the right hand side of the Bellman equation, Eq. (5), in 
order to obtain a target for training the network.

This process is eventually stopped if the differential equation environment has been reset 50,000 times or if 
the best reward has not improved over the last 500 epochs. This constitutes one training run of the system. We 
perform 5 such training runs recording the run that achieved the largest objective functional score under Eq. 2.

Hyperparameter tuning. While our system has many model specific parameters, there are also a number 
of hyperparameters introduced during the training process. These are the learning rate for the Adam optimizer 
( α ), the dimension of the two hidden layers ( hd1 and hd2 , respectively), the discount rate γ in the Bellman 
equation (Eq. (5)), and the batch size of the Adam optimizer used for learning ( bs ). In order to ensure optimal 
convergence and stability of the resultant networks, we must carefully select these values. For a single set of these 
five hyper-parameters we must execute the entire training process over again. Such a process is computationally 
extensive rendering a brute-force grid-search approach to hyperparameter optimization unfeasible. To that end, 
we instead use Bayesian optimization to explore this five-dimensional hyperparameter space more efficiently. 
We allow our Bayesian optimizer to sample 100 such hyperparameter samples from this hyperparameter space 
and perform the training process for each hyperparameter set. The Bayesian optimizer chose hd1 and hd2 from 
the set {64, 96, . . . , 256} , bs from the set {32, 64, . . . , 128} , α from the interval (10−4, 10−1) , and γ from the 
interval (0, 1).

In Fig. 4 we see the distribution of the objective functional score under Eq. 2 for the 100 reinforcement 
learning agents under this hyperparameter tuning process. In particular, we note the cluster of 36 agents that 
converged to the network architecture with the theoretical maximal objective functional value, as determined 
by running a discretised version of the optimal control problem from Ref. 1 with the APOPT algorithm (as 
implemented by  GEKKO5,18). For a point of comparison, we calculated the expected score achievable by a 
random agent by calculating the mean value of the score obtained in 1,000,000 simulations where a dose from 

Figure 4.  A histogram demonstrating all the scores obtained via the reinforcement learning process. The red 
dotted line indicates the expected score of a random agent.
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{0, 0.1, . . . , 1.0} was uniformly selected at each time step. This resulted in a mean objective functional value of 
0.6806 with a standard deviation of the mean of 0.04811.

To ascertain the identifiability and stability of these parameters, we consider the distribution of parameters 
that result in such objective functional value. To that end, in Fig. 5 we consider the distribution of each individual 
hyperparameter and contrast this with the distribution of such hyperparameters from the agents that converged 
to network architecture that achieve an objective functional value value within 5% of the maximal possible 
reward. Importantly, we recognize that of the five hyperparameters, there is not a tight distribution after condi-
tioning on objective functional value score. In fact, only the discount factor γ produces a conditioned distribution 
that is statistically different than the un-conditioned distribution (two-sample Kolmogorov–Smirnov p-value 
of approximately 0.00119). This suggests that the particular values of the size of the hidden dimensions, learning 
rate, and batch size are not terribly sensitive parameters for the training of this reinforcement learning agent.

The Bayesian optimizer determined an optimal hyperparameter choice of hd1 = 64 , hd2 = 96 , γ = 0.9553 , 
α = 0.003809 , and bs = 96 . Though, as the above discussion demonstrates, it is only the choice of γ that appeared 
to have any particularly strong impact on the convergence of the training process. A γ value close to 1 can be 
interpreted as representing an agent with a far  horizon15. In particular, such an agent is less concerned with the 
immediate reward of a particular action and more concerned with the long-term, cumulative reward obtained 
by maximizing Eq. 2 over all time.

(a) Distributions of the size of the hidden dimensions of the
neural network architecture.

(b) Distributions of the discount factor γ
equation, Eqn.(5).

(c) Distributions of the learning rate used in theAdam
optimizer for the neural network.

(d) Distributions of the batch size used in Adam optimizer for
the training of the neural network.

used in the Bellman

Figure 5.  In all figures, the distributions on the left represent the total distribution of the hyperparameter 
explored by the Bayesian hyperparameter optimizer. In contrast, the distributions on the right in each figure 
indicate the distribution of the hyperparameter conditioned on the objective functional value being within 5% 
of the maximal theoretical score.
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Results
Derivation of the proliferative fraction. We begin modelling the proliferative and quiescent compo-
nents of Eq. 1 under the assumption that the tumour has evolved in the absence of any chemotherapeutic agent 
until a steady state, in terms of the proportion of these cells, has been reached. To that end, we define the prolif-
erative ratio of the tumour at time t and the steady-state proliferative ratio as

respectively. To analytically calculate the closed form solution of the steady-state proliferative ratio in the absence 
of a chemotherapeutic, we set s = 0 and consider

Thus, ρ∗
p is a root of the quadratic in Eq. (9). For the parameter values presented in Table 1 the quadratic in 

Eq. (9) has only one positive (real) root, namely

The values of ρ∗
p corresponding to the parameters for ovarian cancer, bone marrow, and breast cancer 

are included in Table 1. Thus the initial data for Eq. (1) considered in this study are given by P(0) = ρ∗
p and 

Q(0) = 1− ρ∗
p.

Local sensitivity analysis. Here we investigate the sensitivity of the outputs for the tumour growth inhibi-
tion model, Eq. (1), to perturbations in the nominal parameter values of the model-specific parameters presented 
in Table 1. To compute the sensitivities, we change the values of the parameters γ , δ,α,β , and � one-at-a-time 
by a small amount, �p . We take �p to be +1 % of the nominal parameter value p0 . Then the relative sensitivity of 
each model population x = �P(T),Q(T)� for the parameter is calculated as follows:

where subscripts denote nominal values. The initial conditions of the simulations were recalculated according 
to Eq. (10) for each perturbed parameter value and the simulations were run until T = 21 days. We plot the 
results in Fig. 6.

Importantly, the results of Fig. 6 indicate that the model exhibits substantial sensitivity due to relatively small 
perturbations in the patient-specific parameter values. This type of sensitivity is common in models that experi-
ence regimes of exponential growth, which are common in cellular models of  cancer12. For the parameter sets 
corresponding to breast cancer, Fig. 6a indicates a mean (absolute) change of roughly 2.3% in P cells, 0.97% in 
Q cells, or 1.14% in all cell types given a 1% perturbation to a singular parameter. For ovarian cancer the model 
is even more sensitive, demonstrating a mean (absolute) change of roughly 5.3% in P cells, 3.4% in Q cells, or 
4.1% in all cell types given a 1% perturbation to a singular parameter. For bone marrow, similar extreme sen-
sitivities are observed with a mean (absolute) change of roughly 4.1% in P cells, 3.5% in Q cells, or 3.6% across 
all cell types. Importantly, Fig. 6 demonstrates that even for the least sensitive parameter set (the breast cancer 
parameter set), small perturbations to individual parameters can still elicit large differences in the evolution of 
a tumour if one is unlucky enough that such a perturbation occurred in either γ or δ (the self-renewal and death 
rate of proliferative cells, respectively).

Contrasting a nominal reinforcement learning agent with a nominal optimal controller. We 
first begin by training a reinforcement learner on the nominal parameter set from Table 1 using the hyperparam-
eters for the training method from Table 2. During training, the reinforcement learning agent only interacted 
with the environment from Eq. (1) parameterized by the nominal set. Similarly, as a point of comparison, we 
used the APOPT algorithm from the GEKKO Python library to solve the discretized optimal control problem on 
the nominal parameter  set5,18. These two agents, one a reinforcement learning agent and the other a traditional 
optimal controller, were kept blind to the testing and training virtual patients. That is, the reinforcement learning 
agent was trained offline on an environment parameterized by ξ0 before the policy derived was tested on envi-
ronments parameterized by θki  for all i and k. Similarly, the traditional optimal control was derived for patient ξ0 
before being applied to the testing patients θki  for all i and k. We then applied chemotherapeutic dosing schedules 
derived from both methods on the 600 testing virtual patients (200 virtual patients each at the 15%, 20%, and 
25% perturbation strength level). We define σRL(θki ; ξ0) to refer to the value under the objective functional in 
Eq. 2 achieved by this reinforcement learning agent when applied to patient θki  after training the agent on an 
environment parameterized by the nominal patient ξ0 . We similarly define σOC(θki ; ξ0) to be the score achieved 
by applying the optimal control for patient ξ0 to patient θki  . In order to scale the scores of these trials, we sepa-
rately solved the discretized optimal control problem on these testing virtual patients using the APOPT algo-

ρp(t) =
P(t)

P(t)+ Q(t)
and ρ∗

p = lim
t→∞

ρp(t),

(9)

0 = ρ′
p(t)

=
P′(t)

P(t)+ Q(t)
(1− ρ∗

p )−
Q′(t)

P(t)+ Q(t)
ρ∗
p

= (δ − γ − �) ρ∗
p
2
+ (γ + �− β − α − δ) ρ∗

p + β .

(10)ρ∗
p =

1

2

−�− γ + α + δ + β −

√

(�+ γ − α − δ − β)2 − 4 (δ − �− γ )β

δ − �− γ
.

(11)Rx,p =
(x − x0)/x0

(�p)/p0
,
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rithm from GEKKO. Importantly, these 600 solutions were only used to ascertain the maximal possible objective 
functional value in order to scale the result of the blind agents. We define σ(θki ) denote the maximal value of the 
objective functional in Eq. 3 when parameterized by patient θki  . We let σ̂RL(θki ; ξ0) = σRL(θ

k
i ; ξ0)/σ (θ

k
i ) denote 

this scaled objective functional score. As a result, a score of 1 is the maximal score theoretically obtainable 
under the objective functional for the discrete problem by either solution method. In general, σ̂RL(θki ; ξ0) ≤ 1 . 
Similarly σ̂OC(θki ; ξ0) = σOC(θ

k
i ; ξ0)/σ (θ

k
i ) ≤ 1 represents the scaled score of the optimal control agent. Finally, 

we compared the blind agents results by applying their derived chemotherapy strategies to the testing virtual 
patients, scaling the output according to the previously ascertained maximal possible reward. The results of this 
are presented in Fig. 7 for the 3 different perturbation strength levels.

Notably, the chemotherapy dosing schedule determined via optimal control for the nominal parameter set is 
a particular function f ∗ that is the same for each virtual patient. In effect, each virtual patient is treated with the 
therapy schedule that is optimal for the mean-valued patient. In contrast, in the reinforcement learning derived 
schedule, the policy from Eq. (6) is the same for each virtual patient, but that policy is being fed a 10 day window 
of relative bone marrow cell counts from each virtual patient as a state vector. In particular, the nominal optimal 
controller is an open-loop controller whereas the reinforcement learning agent is a feedback controller. As a 
result, we are allowing the reinforcement learner to refine its dosing schedule given this information. By doing 
so we are able to acquire a dosing schedule that is more robust to perturbations in these unknown, assumed to 
be unmeasurable, patient-specific model parameters by allowing refinements to be made based on a more easily 
measurable aggregate metric. Hence, the fact that the reinforcement learning agent is a feedback controller is 
exactly why it is able to utilize information from the state vector in the design of these dose delivery schedules. 
Importantly, the state vector for the reinforcement learner is the sum of the Pbm and Qbm compartments of Eq. (1) 

(a) Relative sensitivity of the breast cancer parameter values. (b) Relative sensitivity of the ovarian cancer parameter values.

(c) Relative sensitivity of the bone marrow parameter values

Figure 6.  Relative sensitivity of Eq. (1) under the parameter sets from Table 1. Parameters with zero value ( δ for 
bone marrow and � for breast and ovarian cancer) were ignored and not displayed in this figure.
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at discrete time points (in this case, daily) and not the individual measurements of Pbm and Qbm separately. Given 
the scaling of Eq. (1) under the initial conditions from Eq. (10), these measurements are taken relative to the bone 
marrow mass prior to treatment, and so absolute measurements are not required. See Fig. S4  for a visualization 
of these schedules on different virtual patients.

To quantify the performance differences of the two dose schedule processes over the testing virtual patients, 
we compared the distributions of scores with the non-parametric one-sided Wilcoxon signed-rank  test20. For 
the cases represented in Fig. 7a–c we considered the alternative hypothesis to be that the median scaled score 
obtained by the reinforcement learner is larger than the median scaled score obtained by the optimal controller 
(i.e. the alternative hypothesis is median

(

σ̂RL(θ ; ξ0)
)

> median
(

σ̂OC(θ ; ξ0)
)

 ). We found at the 15% perturbation 
strength level a Wilcoxon statistic of 14681 corresponding to a p-value on the order of 10−9 , at the 20% pertur-
bation strength level we found a Wilcoxon statistic of 16,528 corresponding to a p-value on the order of 10−15 , 
and at the 25% perturbation strength level we found a Wilcoxon statistic of 17,551 corresponding to a p-value 
below machine precision. In all cases, we reject the null hypothesis and conclude that the reinforcement learning 
agent produces chemotherapeutic schedules with a higher median score on perturbed patients than the optimal 
controller. We notice that as the perturbation strength increases, the difference in the median and mean scaled 
scores increases as well from a difference in medians of 0.011 in the 15% case (difference of means of 0.045) to 

(a) Difference in scaled objective functional score for virtual
patients at 15% perturbation strength.

(b) Difference in scaled objective functional score for virtual
patients at 20% perturbation strength.

(c) Difference in scaled objective functional score for virtual
patients at 25% perturbation strength.

Figure 7.  Bar plots of the difference between the scores obtained by the reinforcement learner derived 
policy and the scores obtained by the optimal control derived policy on all test virtual patients (i.e. bar plots 
of σ̂RL(θki ; ξ0)− σ̂OC(θ

k
i ; ξ0) ). Testing patients where the reinforcement learner outperformed the optimal 

controller are marked in blue and patients where the optimal controller outperformed the reinforcement learner 
are marked in red. The dotted grey lines in each plot indicate the difference of the median scaled scores of the 
reinforcement learner and the optimal controller.
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a difference in medians of 0.044 (difference of means of 0.108) in the 25% case. Hence, as the strength of the 
perturbation increases over this range, the reinforcement learner outperforms the optimal controller even further.

In Fig. 8 we present the histograms of the scaled scores for each blind agent on the 600 different virtual 
patients. The histograms are semi-transparent in order to aid comparison where the blue colour represents the 
reinforcement learning agent and the orange colour the APOPT derived optimal controller agent. We note that 
the reinforcement learning agent has a large cluster of treatments in the 97.5–100% optimal bin (164 out of 200 
in the 15% case, 165 out of 200 in the 20% case, and 161 out of 200 in the 25% case) and all treatments fall within 
7.5% of the theoretical maximum. These scores are achieved without training on these virtual patients directly. 
In contrast, the optimal controller derived treatment is much more diffuse. As the strength of perturbation 
increases, the average score of the reinforcement agent derived schedule remains within 1.2% of optimum, while 
the average optimal control derived score decreases dramatically from 0.941 in the 15% case, to 0.902 in the 
20% case, and finally to 0.879 in the 25% case. In particular, this suggests that the increase in performance of the 
reinforcement learner as a result of perturbation strength is due to the reinforcement learning agents’™ capacity 
to remain non-sensitive to these perturbations, in contrast to the sensitivity seen in the schedules derived by 
the optimal controlling agent.

(a) At 15% perturbation strength the reinforcement agent produces
a schedule that produces median scaled scores of 0.991 while the
optimal controller derived schedule produces median scaled scores
of 0.976.

(b) At 20% perturbation strength the reinforcement agent produces
a schedule that produces median scaled scores of 0.992 while the
optimal controller derived schedule produces median scaled scores
of 0.962.

(c) At 25% perturbation strength the reinforcement agent produces
a schedule that produces median scaled scores of 0.991 while the
optimal controller derived schedule produces median scaled scores
of 0.940.

Figure 8.  Histograms of the scores achieved by the various agents on the 200 testing virtual patients. Bin 
sizes were chosen to correspond to 0.025. In particular, the reinforcement learning agent is much more robust 
toward perturbation in parameter values, consistently producing dosing schedules scoring within 7.5% of the 
theoretical maximal score.



13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17882  | https://doi.org/10.1038/s41598-021-97028-6

www.nature.com/scientificreports/

Contrasting a nominal reinforcement learning agent with a nearest neighbour interpolated 
optimal controller. The results of the previous subsection indicate that the reinforcement learning agent 
produces schedules that are more robust to perturbations in the unknown parameters. We noted that the rein-
forcement learning agent is capable of customizing these schedules for each individual patient, not by measuring 
the patient specific parameters directly, but by customizing the response via a more easily measurable metric. In 
this section, we consider a different training process that allows the optimal controller agent a comparable level 
of customization.

For this comparison, we kept the reinforcement learning agent exactly the same as in the previous section: the 
agent was trained offline on an environment parameterized by ξ0 before being applied as a test to environments 
parameterized by θki  for all k and i. For the optimal controller comparison, we begin by solving the discrete opti-
mal control problem on all 1000 training virtual patients for each perturbation strength (i.e. the optimal control 
was determined for patient ζ ki  for all k and all i). We then log the state vector from Eq. (8) for each timestep of 
treatment. For a fixed perturbation strength k we first calculated the state vector sti for each of the 200 testing 
patients. We then applied a chemotherapeutic dose by consulting the table of states from the training patients 
at time ti . The dose was selected from the training patient whose state vector was closest to the current testing 
patient state vector (where distance was measured by the Euclidean metric). Note that the state vector is as in 
Eq. 8 and as such contains a length wl = 10 moving window of relative bone marrow measurements. The result 
of this nearest training neighbour optimal controller (NTNOC) was an agent that could also customize chemo-
therapeutic dosing strategies for each of the 200 testing virtual patients ( θki  ) based off of knowledge gained by 
traversing the training virtual patient space ( ζ ki  ). Hence, while the optimal controller presented in the previous 
section was an open-loop controller, the NTNOC is able to incorporate feedback from the environment. We 
define σNTNOC(θki ; ζ k) to represent the score obtained in an environment parameterized by patient θki  under 
the objective functional in Eq. 2 achieved by an NTNOC agent trained on the set ζ k = {ζ ki | 1 ≤ i ≤ 1000} . 
Similarly, we define σ̂NTNOC(θki ; ζ k) = σNTNOC(θ

k
i ; ζ

k)/σ (θki ) ≤ 1 to be the scaled objective functional score. 
The reinforcement learning agent that the NTNOC agent is being compared to only ever interacted with a dif-
ferential equation environment parameterized by the nominal parameter set ξ0 . Ostensibly, more distribution 
level information is directly afforded to the NTNOC than was afforded to the reinforcement learning agent. The 
reinforcement learning agent is only able to customize treatment strategies based off the states learned by pro-
viding non-optimal doses to the nominal virtual patient ( ξ0 ) during training. The results of this comparison are 
presented in Fig. 9. In particular, we note that the same general trend from Fig. 7 is repeated: namely, as the per-
turbation strength increases the relative performance of the reinforcement learning agent also increases. However, 
in contrast to Fig. 7, we note that at the 15% level the nearest training neighbour optimal controller outperforms 
the reinforcement learning agent (with a one-sided Wilcoxon signed-rank test p-value on the order of 10−5 ). 
Indeed, the mean value of the differences plotted in Fig. 9a occurs at approximately − 0.007, indicating that, in 
a mean value sense, the nearest training neighbour optimal controller produces strategies that are 0.007 points 
closer to the optimal score of 1 than the scores of the schedules produced by the reinforcement learning agent.

Again we compare the distributions of scores with the one-sided Wilcoxon signed-rank test, though for the 
case represented in Fig. 9a, we consider the alternative hypothesis to be that the nearest training neighbour 
optimal controller produces schedules with higher median scaled score than that of the reinforcement learn-
ing agent (i.e. the alternative hypothesis is median

(

σ̂NTNOC(θ ; ζ
k)
)

> median
(

σ̂RL(θ ; ξ0)
)

 ). We found at the 
15% perturbation strength level a Wilcoxon statistic of 6315 corresponding to a p-value on the order of 10−5 . 
Hence we reject the null hypothesis and conclude that, at the 15% perturbation level, that the NTNOC produces 
chemotherapeutic schedules with higher median scaled score than those produced by the reinforcement learn-
ing agent. For the cases represented in Fig. 9b, c we consider a different alternative hypothesis: namely that the 
reinforcement learning agent produces chemotherapeutic schedules with higher median scaled score than those 
produced by the NTNOC (i.e. the alternative hypothesis is median

(

σ̂RL(θ ; ξ0)
)

> median
(

σ̂NTNOC(θ ; ζ
k)
)

 ). 
Then, at the 20% perturbation strength level we found a Wilcoxon statistic of 13023.5 corresponding to a p-value 
on the order of 10−8 , and at the 25% perturbation strength level we found a Wilcoxon statistic of 14593.5 cor-
responding to a p-value on the order of 10−9 . In these two cases we reject the null hypothesis and conclude the 
reinforcement learning agent produces chemotherapeutic schedules with higher median scaled score on per-
turbed patients than the NTNOC. In this situation, the nearest training neighbour optimal controller is able to 
produce schedules more competitive with the reinforcement learning agent than those produced by the nominal 
optimal controller. In the 15% case, the NTNOC outperforms the reinforcement learning agent by a small margin 
(difference in median scores of 0.003 in favour of the NTNOC) whereas the reinforcement learner outperforms 
the NTNOC in the 20% case (difference in median scores of 0.077 in favour of the reinforcement learner) and 
the 25% case (difference in median scores of 0.060 in favour of the reinforcement learner). While the NTNOC 
produces more robust schedules for small perturbations, such schedules seem to only slightly outperform the 
schedules produced by the reinforcement learning agent. In contrast, for medium perturbations around 20% 
and 25%, the reinforcement learning agent outperforms the NTNOC.

In Fig. 10 we concern ourselves with, once again, examining the histograms of the scores of these two agents. 
As before, we note that the reinforcement learner derived schedules are robust to these perturbations in patient 
specific parameter values, which is the source of the success in Fig. 9b, c. However, in contrast to Fig. 8, we note 
that the nearest training neighbour optimal controller produces schedules whose scores produce a histogram that 
is less diffuse than that produced by the nominal optimal controller (standard deviations of (0.007, 0.06, 0.06) 
for the nearest training neighbour optimal controller at the 15%, 20%, and 25% perturbation strength compared 
to standard deviations of (0.09, 0.14, 0.16) for the nominal optimal controller and (0.01, 0.01, 0.01) for the rein-
forcement learning agent). The end result is, by allowing the optimal controller access to more distribution-level 
data, it is capable of customizing schedules in a way that is more robust to perturbations in the patient specific 
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parameters. However, for sufficiently high perturbations in the strength of the parameters, these personalized 
schedules are still less optimal than the personalized schedules produced by the reinforcement learning agent. 
Again, we note that the success of the reinforcement learning agent is due to the increased diffusivity of the 
distribution of scores obtained by the NTNOC as perturbation strength increases as contrasted with the more 
stable distribution of reinforcement learning agent derived scores under the same perturbation strengths.

Discussion
In summary, we examined a model of breast cancer, ovarian cancer, and bone marrow density under treatment 
by a chemotherapeutic for which the continuous time optimal control has been analytically derived. We dis-
cretized the optimal control problem of chemotherapeutic dosing schedule under the objective functional in 
Eq. (2) to apply different doses every day with dose strength discretized to be in 0 to 1 inclusive by steps of size 
0.1. By solving this discretized problem on 200 testing virtual patients, we were able to establish ground truth 
levels for theoretical maximal objective functional scores. We then contrasted a reinforcement learning agent 
trained on the nominal parameter set with a traditional optimal controller on the nominal parameter set. We 
noted that since the reinforcement learning agent trains a fixed policy, it can customize the corresponding dose 
schedule to testing virtual patients, even when the patient-specific parameterization of the differential equation 
environment from Eq. (1) is unknown, by leveraging additional data that is easier in practice to collect. In this 

(a) Difference in scaled objective functional score for virtual
patients at 15% perturbation strength.

(b) Difference in scaled objective functional score for virtual
patients at 20% perturbation strength..

(c) Difference in scaled objective functional score for virtual
patients at 25% perturbation strength.

Figure 9.  Bar plots of the difference between the scores obtained by the reinforcement learner derived policy 
and the scores obtained by the nearest training neighbour optimal controller on all test virtual patients (i.e. 
bar plots of σ̂RL(θki ; ξ0)− σ̂NTNOC(θ

k
i ; ζ

k) ). Testing patients where the reinforcement learner outperformed 
the optimal controller are marked in blue and patients where the optimal controller outperformed the 
reinforcement learner are marked in red. The dotted grey lines in each plot indicate difference in the median 
values of the scores obtained by the reinforcement learning agent and those obtained by the nearest training 
neighbour optimal controller.
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case, this meant providing the reinforcement learning agent with a window of relative bone marrow density 
mass (relative to before the treatment process began). We noted that the reinforcement learning agent produces 
schedules that are closer to the theoretical optimum in a mean sense when measured against unknown patients 
who differ from the nominal parameter set by 15%, 20%, and 25%. In particular, we note that as the strength 
of perturbation increases, the net benefit of using the reinforcement learning derived schedules also increases. 
Moreover, as the perturbation strength increases, the collection of scaled optimality scores stay clustered between 
0.925 and 1. In contrast, as the perturbation strength increases, the collection of scaled optimality scores for the 
optimal controller become more diffuse.

We also allowed the optimal controller derived schedules to leverage the longitudinal relative bone marrow 
density information by training 1000 such optimal controllers on perturbed parameter values that were treated 
as known. When we compared this nearest training neighbour agent to the reinforcement learning agent, we 
discovered that the reinforcement learning agent still outperformed the other agent at the 20% and 25% pertur-
bation strength level, but at the 15% perturbation strength level the nearest training neighbour agent was more 
optimal. However, this nearest training neighbour optimal controller was still prone to reduced performance 
level and a more diffuse histogram of dose-schedule scores at the higher perturbation levels, something that we 
did not observe in the reinforcement learning agent.

(a) At 15% perturbation strength the reinforcement agent produces
a schedule that produces median scaled scores of 0.991 while the
optimal controller derived schedule produces median scaled scores
of 0.995

(b) At 20% perturbation strength the reinforcement agent produces
a schedule that produces median scaled scores of 0.992 while the
optimal controller derived schedule produces median scaled scores
of 0.916.

(c) At 25% perturbation strength the reinforcement agent produces
a schedule that produces median scaled scores of 0.991 while the
optimal controller derived schedule produces median scaled scores
of 0.986.

Figure 10.  Histograms of the scores achieved by the various agents on the 200 testing virtual patients. Bin 
sizes were chosen to correspond to 0.025. In particular, while the reinforcement learning agent is more robust 
towards perturbation in parameter values at the 20% and 25% perturbation strength, the nearest neighbour 
optimal controller produces schedules within 5% of the theoretical maximum at the 15% perturbation level.
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We conclude by noting that reinforcement learning provides an agent that can be used to personalize dosage 
schedules in the absence of patient specific parameter data in a manner that is not prone to wild fluctuations 
(as evidenced by the tight histograms of Figs. 8 and 10) and did so by only requiring the mean values of the 
patient specific parameter distributions. In contrast, an optimal control derived agent could be improved to allow 
personalization of dosing schedule as well, but at the cost of requiring more samples from these patient specific 
distributions and the end result was still prone to fluctuations in schedule optimality.

While this particular study was focused on a situation where little patient data was used (outside of the data 
used to determine the nominal parameters from Table 1) one could also extend this work by allowing a reinforce-
ment learner to learn directly from patient data, since the environment a reinforcement learning agent interacts 
with is effectively a black box. This method described is general and can be used for optimizing schedules for 
other treatments as well (i.e. radiotherapy fractions or immunotherapy treatment schedules). Moreover, this 
study was focused on a particular model in a mathematical oncology context, however we believe this result 
can be applied to other mathematical models used in cancer research and can also be extended easily to other 
mathematical biology contexts, or into any context wherein one needs to create a control for a system where high 
level distribution information about the parameters is known, but particular parameter values are unknown or 
prohibitively difficult to ascertain.
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