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A Continuum Deformation 
Approach for Growth Analysis 
of COVID‑19 in the United States
Sadra Hemmati1 & Hossein Rastgoftar2*

The COVID‑19 global pandemic has significantly impacted every aspect of life all over the world. The 
United States is reported to have suffered more than 20% of the global casualties from this pandemic. 
It is imperative to investigate the growth dynamics of the disease in the US based on varying 
geographical and governmental factors that best manifest itself in each State of the Country. This 
paper utilizes a hybrid machine learning and continuum deformation‑based approach for analyzing 
the stability and growth rate of the pandemic. To this end, principal stress values of the pandemic 
continuum body are obtained using Mohr’s Circle method and overlapping, moving windows of 
data are analysed successively. This helps in finding the correlations between the growth rate and 
Governments’ action/Public’s reaction. Government actions include “state of emergency”, “shelter 
at place”, and “phase declarations”. We also consider the vaccination rate milestones, which shows 
us the coordinated Governments’ action/Public’s reaction. Finally, a number of recommendations are 
made to the Governments and people for better management of future pandemics.

The first death caused by COVID-19 in the United States is believed to have occurred in Santa Clara County, 
California on the February, 6th, and the virus has rapidly grown across the country since then. Studies have 
shown that the virus is dominantly transmitted through close contact with infected people and contaminated 
surfaces as well as respiratory  droplets1,2. This spread includes a dispersion dynamics, and trajectory tracking 
techniques in the field of Control Theory can be effectively utilized.

Usually, the daily reports of pandemic statistics only include the deaths, total cases, active cases, and other 
similar explicit demographic parameters for varying geographical locations. Thus, models that can learn well 
from these types of data sets to infer the spread dynamics are very valuable and versatile for State-level decision 
making. Considering the different scales of analysis (global, between two countries, inside countries, between 
all States of a country, between Counties of a State, etc), obtaining detailed information regarding factors that 
affect transmission of the disease are challenging. This paper offers a new continuum-mechanics-based model 
to analyze the growth of the pandemic diseases and evaluate the effectiveness of the non-pharmaceutical and 
pharmaceutical actions. We treat evolution of a pandemic disease as a continuum deformation problem in three 
dimensional T–D–R space where T, D, and R denote the total number of infected cases, the total number of the 
deaths, and the total number of recoveries, respectively. We focus on the growth of COVID-19 in the US States 
and the District of Columbia. Hence, the pandemic continuum consists of 51 particles of 3-D deformable bodies 
evolving in the T–D–R space.

Related work. Different types of models with varying theoretical principles have been used for pandemic 
growth prediction and stability analysis. The methods range form statistical inference and correlation, to dif-
ferential equation-based models. SIR  method3–5, SEIR  dynamics6–10, Metapopulation  Dynamics11,12, Mean-Field 
 Theory13,14, Bayesian  regression2, maximum  likelihood15, mass-conservation  based16 are examples of existing 
models used to estimate the dynamics of infectious diseases.

In17, the authors, using the Moving Regression (MR) technique and a Hidden Markov Model (HMM), aimed 
at developing a simple framework for prediction of the growth rate (cases/day) and growth acceleration (cases/
day2 ) of COVID-19 cases in real-time and study the effects of public health measures on the prevalence of 
COVID-19. Another correlation study aimed at studying the seasonal temperature variations on pandemic 
growth. The authors report their developed model can explain 36% of the variation in maximum COVID-19 
growth rates based on weather and demography (17%) and country-specific effects (19%)18.  In19, the authors 
model the US epidemic at the State-level, using publicly available death data within a Bayesian hierarchical 
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semi-mechanistic framework in which the SARS-COV2 transmission was predicted using mobility trends. It is 
reported that Statewide stay-at-home orders had the strongest causal impact on reducing social interaction and 
mobility. For instance,  in20, the authors report that the Statewide stay-at-home orders result in a steady decline 
in confirmed cases, starting from ten days after implementation and reaching a 37% decrease after fifteen days, 
consistent with the testing practices and incubation period of the disease. They mention this executive order had 
the strongest causal impact on reducing social interactions. Therefore, we examine our results with the stay-at-
home executive orders of each State.

Contributions and outline. The main objective of this paper is to analyze the growth of the pandemic 
disease by analyzing deformation of the pandemic continua in the T–D–R space. To this end, we first apply the 
k-means algorithm, divide the US States/district into a finite number of clusters and determine the centroid of 
each cluster in the T–D–R space. We then offer a novel polyhedral learning approach to contain each cluster by a 
3-D polytope. Compared to the existing research and the authors’ previous work, this paper offers the following 
novel contributions: 

1. The existing learning methods solve a nonlinear optimization problem to determine the solution of a clas-
sification problem. Therefore, the solution of a classification problem may not necessarily converge to the 
global optimum. However, the proposed polyhedral learning does not deal with the convergence issue of the 
existing approaches since it determines the boundary of the containment polytopes by assigning maxima of 
finite sets of discrete variables.

2. The proposed polyhedral learning method ensures that the training data are all enclosed by the containment 
polytopes.

3. To the best of our knowledge, this is the first paper that models evolution of a pandemic disease as a con-
tinuum deformation coordination.

In this paper, we integrate model and data to analyze the pandemic growth; investigate the effectiveness of the 
nationwide/state action; and evaluate public reaction to the stability of the pandemic evolution in the US. This 
paper is organized as follows: A polyhedralization method is developed in “Motion space polyhedralization” and 
followed by the polyhedral learning in “Polyhedral learning of a pandemic disease”. Pandemic disease evolution 
is modeled as continuum deformation in “Pandemic disease evolution”. Results of stability analysis of pandemic 
evolution is discussed in “Growth analysis and pandemic stages”. The conclusion is presented in “Conclusion”.

Motion space polyhedralization
The pandemic grows in a 3-D space with coordinates T, D, and R (previously defined) while the points in the 
space are clustered into m groups. The evolving clusters are then contained by m deformable polytopes in the 
T–D–R space where identification numbers of the containment polytopes are defined by set C = {1, 2, . . . ,m} . 
Configuration of every polytope j ∈ C is determined by N characteristic nodes and formed by ρ tetrahedrons 
as described below.

Characteristic nodes of polytope j ∈ C. The geometry and location of polytope j ∈ C is assigned by N 
nodes in the T–D–R space that are identified by set

Set Lj can be expressed as

where singleton Ij =
{

jN
}

 defines the identification number of the interior characteristic node of polytope j ∈ C 
and Bj = Lj \ Ij defines identification numbers of the boundary nodes of polytope j ∈ C.

Local coordinates of characteristic nodes. Every index number i ∈ Bj can be converted to unique l ∈ {1, . . . , p} 
and h ∈ {1, . . . , q} coordinates for every j ∈ C . More specifically, l : Bj → {1, . . . , p} and h : Bj → {1, . . . , q} are 
defined as follows: 

On the other hand, i ∈ Bj can be defined based on positive integers l ∈
{

1, . . . , p
}

 and h ∈
{

1, . . . , q
}

 by
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Local and global positions of characteristic nodes. The global and local positions of node i ∈ Lj are denoted by 
r̄i,g and r̄i,j,c , respectively. The global position is expressed with respect to the global coordinate system with fixed 
unit base vectors ê1 , ê2 , and ê3 . Also, the local position of characteristic node i ∈ Lj is expressed with respect to 
local coordinate system of polytope j whose base vectors are denoted by ĉ1,j , ĉ2,j , and ĉ3,j . Note that the origin of 
the local coordinate system of polytope j ∈ C is located at r̄jN ,g , where jN ∈ Ij is the index number of the char-
acteristic interior node of polytope j ∈ C.

We assume that the local coordinate system of polytope j ∈ C translates with no rotation in the T–D–R 
space, thus ê1 = ĉ1,j =

[

1 0 0
]T , ê2 = ĉ2,j =

[

0 1 0
]T , ê3 = ĉ3,j =

[

0 0 1
]T for every polytope j ∈ C . As a result, 

r̄i,g = T̄i,g ê1 + D̄i,g ê2 + R̄i,g ê3 and r̄i,j,c = T̄i,j,c ĉ1,j + D̄i,j,c ĉ2,j + R̄i,j,c ĉ3,j are related by

where k is the number of days from the date of establishment of a pandemic disease (see Fig. 1b). Per Eq. (5), 
components of the global and local positions are related by

at day k. We express the local position of node i ∈ Bj by

where d̄i,j is distance of boundary node i ∈ Bj from the characteristic interior node jN ∈ Ij , and

with latitude and azimuth angles 

 for l ∈ {1, . . . , p} and h ∈ {1, . . . , q} . Thus, the direction unit vector n̂i,j,c is known for every boundary node 
i ∈ Bj and every cluster j ∈ C.

Remark 1 In the continuation of this paper, position of the characteristic interior node of polytope j ∈ C is 
denoted by

(5)r̄i,g (k) = r̄jN ,g (k)+ r̄i,j,c(k), ∀i ∈ Bj , ∀j ∈ C,

(6)







T̄i,g (k) = T̄jN ,g (k)+ T̄i,j,c(k)
D̄i,g (k) = D̄jN ,g (k)+ D̄i,j,c(k)
R̄i,g (k) = R̄jN ,g (k)+ R̄i,j,c(k)

∀i ∈ Bj , ∀j ∈ C,

(7)r̄i,j,c = d̄i,jn̂i,j,c ,

(8)n̂i,j,c =
[

cos θ̄h,j cos φ̄l,j sin θ̄h,j cos φ̄l,j sin φ̄l,j
]T

,

(9a)θ̄h,j =
2πh

q
,

(9b)φ̄l,j =
π(l − 1)

p− 1
,

Figure 1.  (a) T–D–R space polyhedralization for j ∈ C , using the Eqs. (9a) and (9b). The polytopes are 
contained in a sphere of radius 1 at the initial moment, and conserve their orientation and are deformed and 
elongated during the pandemic growth. (b) The containment polytope 1 ∈ C at day k = 100 . To determine the 
containment polytope we choose p = 15 and q = 27 , therefore, B1 = {1, 2, . . . ,N − 1} and I1 = {N} . The 
origin of the local coordinate of polytope 1 ∈ C is positioned at r̄N ,g = 1.1× 104ê1 + 1.3× 104ê2 + 1.2× 104ê3 , 
therefore µT ,1 = 1.1× 104 , µD,1 = 1.3× 104 , and µR,1 = 1.2× 104 (See Remark 1).
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and assigned using the K-means clustering algorithm in “K-means clustering algorithm”, i.e. µT ,j = TjN ,j , 
µD,j = DjN ,j , and µR,j = RjN ,j for every j ∈ C.

Characteristic tetrahedrons of polytope j ∈ C. The boundary of polytope j ∈ C consists of 
ρ = 2q

(

p− 1
)

 triangular cells, defined by set Sj =
{

1, . . . , 2q
(

p− 1
)}

 (see Fig. 2a ). For every j ∈ C , set Sj can 
be expressed by

where

define triangular cells with odd and even identification numbers, respectively, where i(l, h) is defined by Eq. (4) 
for given l ∈ {1, . . . , p− 1} and h ∈ {1, . . . , q} . Additionally, set Bj can be expressed by

where 

Note that Bj,s defines the identification numbers of the vertices of triangle s ∈ Sj on the boundary of polytope 
j ∈ C . If s ∈ Sj is an odd number, Eq. (13a) defines vertices of triangular cell s ∈ Sj . Otherwise, Eq. (13b) identi-
fies vertices of triangle s ∈ Sj.

For every node i ∈ Bj of polytope j ∈ C , set

defines the index numbers of the triangular cells on the boundary of polytope j ∈ C sharing common node i ∈ Bj.
Figure 2a illustrates the configurations of the triangular cells on the boundary of every containment polytope 

j ∈ C for p = 15 and q = 27 . Figure 2a also shows the nodes of triangular cell 25 ∈ Sj , defined by Bj,25 , and the tri-
angular cells sharing the common boundary node 40 ∈ Bj and defined by set N40,j for every j ∈ C , at day k = 100 . 
To determine the containment polytope, we choose p = 10 and q = 18 . Therefore, B1 = {1, 2, . . . ,N − 1} and 
I1 = {N} , where N is 420 for this study. The origin of the local coordinate system of polytope 1 ∈ C is posi-
tioned at r̄N ,g = 1.1× 104ê1 + 1.3× 104ê2 + 1.2× 104ê3 , therefore µT ,1 = 1.1× 104 , µD,1 = 1.3× 104 , and 
µR,1 = 1.2× 104 (See Remark 1).

(10)r̄jN = µT ,j ê1 + µD,j ê2 + µR,j ê3

(11)Sj = Sj,o

⋃

Sj,e ,

Sj,o =
{
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}
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, h ∈
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⋃

s∈Sj
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p−1
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q
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h=1
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Bj,2i(l,h)−1

⋃

Bj,2i(l,h)

)

, ∀j ∈ C,

(13a)Bj,2i−1 =

{ {

i, i + q, i + q+ 1
}

If h(i) < q
{

i, i + q, i + 1
}

If h(i) = q
,

(13b)Bj,2i =

{ {

i, i + q+ 1, i + q+ 1
}

If h(i) < q
{

i, i + 1, i − q+ 1
}

If h(i) = q
.

(14)Ni,j =
{

s ∈ Sj : i ∈ Bj,s

}

,

Figure 2.  (a) The indexing method used to provide reference for each boundary node i ∈ Bj and j ∈ C 
shown in Fig. 1a. (b) Discretization of the θ − φ plane based on the signs of components of vector �s

(

θt,j ,φt,j
)

 
introduced in Eq. (20).
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Polyhedral learning of a pandemic disease
Let set F  , identifying a finite number of training data points, be expressed by

where F1 through Fm are disjoint subsets of F  ; set Fj =
{

1, . . . , fj
}

 defines the training data points belonging to 
class j ∈ C . In this paper, set F  defines a total of 51 triplet data points informing about the total number infected 
cases, deaths, and recoveries in 50 US States and the District of Colombia.

The data points provided by set F  is used to determine the geometry of the containment polytopes deforming 
in the T–D–R space. To this end, we first apply the K-means algorithm to cluster the US States and Washington 
DC into m groups defined by F1 through Fm and to determine the centroids of clusters F1 through Fm denoted 
by r̄jN ∈ Ij ⊂ Fj for every j ∈ C = {1, . . . ,m} (See Remark 1). Then, the data points belonging set Fj \ Ij are 
used to determine the boundary of polytope j ∈ C via assigning local positions r̄(j−1)N+1 through r̄jN−1.

K‑means clustering algorithm. We utilize an unsupervised learning method to cluster the finite data 
points available by set F =

⋃

j∈C Fj , into m = |C| clusters, namely the K-means clustering, explained in Algo-
rithm 1. This algorithm works by calculating the distances of each data point to the center of cluster j. This 
method consists of two steps: 

1. Cluster assignment step In the first step of the Algorithm 1, for each cluster j ∈ C , and |C| = m , a random 
vector (with the size of number of clusters, m) is generated to initialize the learning. Using the distance 
metrics appropriate to the data dimensions, the boundaries cluster j sub-space is calculated.

2. Center update step In the second step of the Algorithm 1, the location of each centroid is updated using the 
newly generated boundaries from the step i such that the cluster centers are moved to the average of each 
cluster points.

Local position determination. We denote the global and local positions of training data t ∈ Fj by rt,g and 
rt,j,c for every j ∈ C , where rt,g = Tt,g ê1 + Dt,g ê2 + Rt,g ê3 and rt,j,c = Tt,j,c ĉ1,j + Dt,j,c ĉ2,j + Rt,j,c ĉ3,j are related 
by

The local position of training data point t ∈ Fj ( j ∈ C ) is expressed as follows:

where

For every polytope j ∈ C , we determine the smallest polytope containing all training data points defined by 
set Fj \ Ij by assigning the phase angle and radial distance of every training data as described below.

(15)F =
⋃

j∈C

Fj ,

(16)∀j ∈ C, ∀t ∈ Fj , rt,j,c = rt,g − rjN ,g .

(17)rt,j,g = dt,j,c





cos θt,j sinφt,j
sin θt,j sin φt,j

cosφt,j



 ,

dt,j =
�

T2
t,j,c + D2

t,j,c + R2
t,j,c , θt,j = tan−1

�

Dt,j,c

Tt,j,c

�

, φt,j = cos−1





Rt,j,c
�

T2
t,j,c + D2

t,j,c + R2
t,j,c



.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17805  | https://doi.org/10.1038/s41598-021-97021-z

www.nature.com/scientificreports/

Step 1: Phase assignment. Let βj,s = {s1, s2, s3} define the vertices of triangular cell s ∈ Sj on the boundary 
of polytope j ∈ C . Given index numbers s1 ∈ Bj , s2 ∈ Bj , and s3 ∈ Bj , we can use Eqs. (3a) and (3b) to obtain 
lk = l(sk) ∈

{

1, . . . , p
}

 and hk = h(sk) ∈
{

1, . . . , q
}

 for k = 1, 2, 3 . By invoking Eq. (7), we can write

where

for k = 1, 2, 3 where sk ∈ Bj,s s ∈ Sj , and j ∈ C . We define vector function

to determine the phase angle of the training data points define by set F  according the following rules:

• If �s

(

θt,j ,φt,j
)

≥ 0 , then, 
(

θt,j ,φt,j
)

 is inside the triangle with vertices 
(

θ̄h1,j , φ̄l1,j
)

 , 
(

θ̄h2,j , φ̄l2,j
)

 , and 
(

θ̄h3,j , φ̄l3,j
)

 
(see Fig. 2b) .

• If ωs,1

(

θt,j ,φt,j
)

 , ωs,2

(

θt,j ,φt,j
)

 ωs,3

(

θt,j ,φt,j
)

 are not all non-negative, then, 
(

θt,j ,φt,j
)

 is outside the triangle with 
vertices 

(

θ̄h1,j , φ̄l1,j
)

 , 
(

θ̄h2,j , φ̄l2,j
)

 , and 
(

θ̄h3,j , φ̄l3,j
)

Remark 2 By using vector function �s

(

θt,j ,φt,j
)

 , we can express set

where F̂j,1 , · · · , F̂j,ρ are disjoint subsets of set Fj , and

Step 2: Assignment of radial distances of boundary nodes. Let the training data set Fj be expressed by

where F̃j,i defines all training data points that are enclosed by the tetrahedrons sharing the common node i ∈ Bj 
on the boundary of polytope j ∈ C . The polytope j ∈ C encloses all training points, defined by set Fj , if

where n̂i,j,c is defined by (8) and “ · ” is the dot product symbol.

Pandemic disease evolution
Evolution of polytope j ∈ C in the T–D–R space is defined by

for every tetrahedron s ∈ Sj at discrete time k = 1, 2, . . . , where k denotes the number of days from the establish-
ment of a pandemic disease. For every s ∈ Sj and j ∈ C,

are non-singular Jacobian matrix and the rigid-body displacement vector, respectively.
Note that xs,j,0 =

[

Ts,j,0/100 Ds,j,0 Rs,j,0/100
]T

∈ R
3×1 is the reference position of interior point of tetrahe-

dron s ∈ Sj of polytope j ∈ C that is mapped to xs,j(k) = xs,j(k) =
[

Ts,j(k)/100 Ds,j(k) Rs,j(k)/100
]T

∈ R
3×1 

at day k = 1, 2, . . . . The division of T and R by a scaling factor (100) is performed to regularize the order of 
magnitude of the elements of the xs,j,k.

Assumption 1 In the reference configuration, boundary nodes of the polytope j are all distributed on the surface 
of a unit sphere centered at the origin of the T–D–R space. Reference configuration of every polytope j ∈ C is 
shown in Fig. 1a.

(18)r̄sk ,j,c = d̄sk ,jn̄sk ,j,c ,

(19)n̄sk ,j,c =





cos θhk ,j cosφlk ,j
sin θhk ,j cosφlk ,j

sinφlk ,j





(20)�s

�

θt,j ,φt,j
�

=





ωs,1

�

θt,j ,φt,j
�

ωs,2

�

θt,j ,φt,j
�

ωs,3

�

θt,j ,φt,j
�



 =





θ̄h1,j θ̄h2,j θ̄h3,j
φ̄l1,j φ̄l2,j φ̄l3,j
1 1 1





−1 



θt,j
φt,j
1





(21)∀j ∈ C, Fj =
⋃

s∈Sj

F̂j,s

(22)F̂j,s =
{

t ∈ Fj : �s

(

θt,j ,φt,j
)

≥ 0
}

, ∀j ∈ C, ∀s ∈ Sj = {1, · · · , ρ}.

(23)Fj =
⋃

i∈Bj

F̃j,i =
⋃

i∈Bj

⋃

s∈Ni,j

F̂j,s , j ∈ C,

(24)j ∈ C, d̄i,j = argmax
t∈F̃j,i

1

rt,c,j · n̂i,j,c

(25)xs,j(k) = Qs,j(k)xs,j,0 + fs,j(k)

Qs,j(k) =





Q1,1,s,j(k) Q1,2,s,j(k) Q1,3,s,j(k)
Q2,1,s,j(k) Q2,2,s,j(k) Q2,3,s,j(k)
Q3,1,s,j(k) Q3,2,s,j(k) Q3,3,s,j(k)



 ∈ R
3×3 and fs,j(k) =

�

f1,s,j(k) f2,s,j(k) f3,s,j(k)
�

∈ R
3×1



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17805  | https://doi.org/10.1038/s41598-021-97021-z

www.nature.com/scientificreports/

Re mark 3  A lt houg h p oly top e  j ∈ C  enc los es  a l l  dat a  p oints  de f ine d  by  s e t  Fj  , 
xs,j,0 =

[

Ts,j,0/100 Ds,j,0 Rs,j,0/100
]T

∈ R
3×1 and xs,j,0 ∈ R

3×1 do not necessarily assign positions of a data paint 
belonging to set Fj . In other words, xs,j,0 ∈ R

3×1 and xs,j,0 ∈ R
3×1 can represent any arbitrary point inside the 

tetrahedron s ∈ Sj that is transformed under homogeneous transformation (25).

Jacobian matrix Qs,j and displacement vector fs,j. Let Bs,j = {s1, s2, s3} and Ij =
{

jN
}

 define index 
numbers of tetrahedron s ∈ Sj in polytope j ∈ C . For every s ∈ Sj and j ∈ C , positions of vertices of tetrahedron 
s ∈ Sj satisfy Eq. (25), thus we can write 

Per Assumption 1, r̄jN ,g ,0 = �3×1 and

where the unit vector n̂sh ,j,c is defined by Eq. (8). Elements of matrix Qs,j(k) and vector fs,j(k) are then obtained 
as  follows21:

where “ vec ” is the matrix vectorization symbol,

Eigen‑decomposition of pandemic evolution. We can use polar decomposition to express Jacobian 
matrix Qs,j(k) by

where Rs,j(k) is an orthogonal (rotation) matrix and Us,j(k) is positive semi-definite at every discrete time k. 
Because every polytope j ∈ C transforms without rotation, ê1 = ĉ1,j , ê2 = ĉ2,j , and ê3 = ĉ3,j for every cluster 
j ∈ C , R(k) = I3 at every day k, and positive semi-definite matrix Qs,j(k) = Us,j(k) assigns the linear deformation 
of tetrahedron s ∈ Sj in polytope j ∈ C.

The eigenvalues of matrix Qs,j are called the principal values of Qs,j , and are denoted by σ1,s,j , σ2,s,j , and σ3,s,j . 
In constructing the Mohr’s circle (shown in Fig. 4), σ1,s,j , σ2,s,j , and σ3,s,j are sorted such that:

Because matrix Qs,j is only time varying, the principal values σ3,s,j , σ2,s,j , and σ1,s,j are spatially-invariant at 
every point of tetrahedron s ∈ Sj . Given principal values of tetrahedron s ∈ Sj , we define the following shear 
stress terms to analyze deformation the pandemic continuum:

Principal and shear stress values can be graphically represented using the Mohr’s circle as shown in Fig. 4 .

Remark 4 Boundary nodes of tetrahedron s ∈ Sj are called active nodes and tetrahedron s ∈ Sj is called an active 
tetrahedron, if the volume of tetrahedron s ∈ Sj is nonzero. Therefore, σ3,s,j > 0 , if Bs,j defines three active nodes 
on the boundary of polytope j ∈ C.

Since there are only 52 data points, we chose the number of clusters to be m = 2 ( j = 1, 2 ), as adding more 
clusters bears the risk of having empty clusters for some days. For the clustering algorithm, we chose K-means 
clustering, as a suitable learning algorithm for the T–D–R space. In other words, the purpose of clustering is 
to obtain two continuum bodies with particles representing the US States and the United States, rather than a 
single body with heterogeneous particles (data points). By making sure the continuum body is heterogeneous, 
then we are able to apply continuum mechanics principles to study the growth of the pandemic polytopes. For 
all cases, the discretization of the T–D–R space is performed using N = 756 tetrahedral mesh, created by p = 15 
and q = 27 horizontal and vertical discretized points, in which the polytopes are allowed to elongate and deform 
without rotation. In Fig. 3a , the eigenvalues σ1,s,j , σ2,s,j , and σ3,s,j of matrix Qs,j , calculated for node 210 are shown. 
In Fig. 3b the distances of node 210 are calculated for cluster j =“2” (Eq. 24). In Fig. 3c , the position of the center 
of cluster “1” in the T–D–R space, using the Algorithm 1, is shown.

(26a)r̄sk ,g (t) =Qs,j(k)r̄sk ,g ,0 + fs,j(k), k = 1, 2, 3, sk ∈ Bs,j , j ∈ C

(26b)r̄jN ,g (t) =Qs,j(k)r̄jN ,g ,0 + fs,j(k).

(27)r̄sh ,g ,0 = n̂sh ,j,c , h = 1, 2, 3, sh ∈ Sj

(28)
[

vec
(

Qs,j(k)
)

fs,j(k)

]

=
[

I3 ⊗ L0 I3 ⊗ 14×1

]−1
p(k)

vec
(

Qs,j(k)
)

=
[

Q1,1,s,j · · · Q1,3,s,j · · · Q3,3,s,j

]T
∈ R

9×1

p(k) = vec

(

[

Nrs,1,g (k) Nrs,2,g (k) Nrs,3,g (k) NrjN ,g (k)
]T
)

∈ R
12×1

L0 =
[

Ons,1,j,c Ons,2,j,c Ons,3,j,c 03×1

]T
∈ R

4×3.

(29)Qs,j(k) = Rs,j(k)Us,j(k), j ∈ C, s ∈ Sj ,

(30)0 ≤ σ3,s,j ≤ σ2,s,j ≤ σ1,s,j

τ1,s,j(k) = (σ1,s,j − σ3,s,j)/2, τ2,s,j(k) = (σ1,s,j − σ2,s,j)/2, and τ3,s,j(k) = (σ2,s,j − σ3,s,j)/2.
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Growth analysis and pandemic stages
In this section, we establish a growth criteria for the spread of COVID-19 in the United States over 469 days 
(from March 12, 2020 to June 28, 2021), where the number of infected cases (T), deaths (D), and recoveries 
(R) are obtained  from22, which helps us obtain the T–D–R time series data associated with every US State and 
District of Colombia and at each day of the pandemic. Based on the mathematical foundation discussed in 
“Eigen-decomposition of pandemic evolution”, eigen-decomposition of the pandemic evolution is performed 
and principal values of the active tetrahedrons are obtained and plotted in Fig. 6.

Mohr’s circle method, shown in Fig. 4, is used to obtain the maximal stress values of each cluster, for each 
day. Mohr’s circle is a graphical representation of the Cauchy stress tensor, and helps obtain the principal stress 
values in the principal planes of a continuum body. As can be seen from Fig. 5a, the daily time-series related to 
cluster j ( j ∈ C ) of maximum values of principal stresses of σ1,s,j , σ2,s,j , and σ3,s,j for every active node is a very 
noisy signal. Thus, using signal processing methods is needed.

Signal processing. An overlapping window with a length of two weeks (with 1 week overlap) is used to 
calculate the average value of the captured data of each window. The reason we chose an overlapping window of 
length 2 weeks was that it is understood that the incubation of the infection is more of less 2 weeks. Choosing 
the window to be overlapping keeps the windows of data sustain any temporal phenomenon in the time-series 
data, that would have been lost using a non-overlapping window. As can be seen from Fig. 5b, the filtered signal, 
which is the average of data points in the windows from Fig. 5a, is less noisy and hence, better for establishing the 
growth rate. We define the growth rate to be the point-to-point difference in the values of the signal in Fig. 5b, 
such that for any day that its signal in Fig. 5c is positive, the pandemic is growing, and for any day that its signal 
in Fig. 5c is negative, the pandemic is shrinking. A red line is depicted in Fig. 5c for the ease of illustration as well.

The magnitude of the signal values in Fig. 5c determines the rate of growth or shrinkage. In other words, for 
two “positive” days, the pandemic had a greater growth rate for the day with larger value in Fig. 5c.

Stages of the pandemic. In addition to defining the growth criteria, a manual process of selecting “impor-
tant” dates of the pandemic was carried out. Visually, one can observe distinct days of the time-series (11 days), 

Figure 3.  A two-cluster setting, j ∈ C and m = |C| = 2 (a) Eigenvalues σ1,s,j , σ2,s,j , and σ3,s,j of matrix Qs,j 
calculated for node 210. For clustering, the Algorithm 1 is used. (b) Distances of node 210 calculated for cluster 
j =“2” (Eq. 24). (c) Position of the center of cluster “1” in the T–D–R space, calculated using the Algorithm 1. 
Note that j=1 and µx , µy , and µz stand for µx,1,µy,1 , and µz,1 , respectively.

Figure 4.  Sample Mohr’s circle for node Sj = 80 and for day k = 220 and cluster j=1 for j ∈ C and m = 2.
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in which the maximum principal values drastically changed. These days are marked with vertical, red lines in 
Fig. 6. The working hypothesis in this paper is that each of the 11 lines is caused by (or is correlated with) an 
State-wide executive order and/or a milestone in population vaccination, in the US. In later sections, we study 
which executive orders are best “matching” with the 11 event marks depicted in Fig. 6.

In general, there are five different growth stages of any pandemic: lagging (beginning of the outbreak), expo-
nential (rapid growth), deceleration (growth decay), stationary (near zero growth), and linear growth (constant 
growth above zero)17. Looking at Fig. 6a, we can identify the region between y axis and line “ 1” to include the 
“lagging” (from day 0 to around 20), the region between line “ 1” and line “ 2” to include “exponential growth” 
(day 20 to 60), the region between line “ 2” and line “ 3” to include “growth decay”, while the region between line 
“ 6” and line “ 7” to include can be associated with “linear growth”. Regions between line “ 4” and line “ 5” and 
between line “ 5” and line “ 6” exhibit “stationary growth”. The only region that exhibits a negative slope trend 
is region between line “ 8” and line “ 9”.

Discussion
In this section, we discuss: (1) State-wide orders and vaccination milestones, (2) Define “Net Actions” and inves-
tigate the correlation between “Net Actions” and maximum principal stress values, and (3) make suggestions to 
the Governments and people.

State‑wide orders and vaccination milestones. In the US, a State Governor is authorized to declare 
a State of Emergency (SOM), in addition to other State-wide orders, within his or her jurisdiction, based on the 
State’s constitution. These State orders are of high variety, and include travel, education, medical system, enter-
tainments, and business, to name a  few20. During the COVID19 pandemic in 2020 and 2021 in the US, there 
was a variability on the dates in which each State Governor declared State-wide orders emergency. We examined 

Figure 5.  Establishing the growth rate criteria: (a) Daily time-series related to cluster j ∈ C and m = |C| = 2 
of maximum values of principal stresses of σ1,s,j , σ2,s,j , and σ3,s,j for every active node. (b) Filtered signal with an 
overlapping window with a length of 2 weeks ( 1 week overlap). (c) The point-to-point difference in the values of 
the signal in (bb) is defined as the metric for pandemic growth.

Figure 6.  (a) Daily time-series related to cluster j ∈ C and m = |C| = 2 of maximum values of principal 
stresses of σ1,s,j , σ2,s,j , and σ3,s,j for every active node. The vertical lines (from 1 to 11) represent the time of 
dynamics change in the pandemic evolution. (b) Percentage of US population Vaccinated based on time (days). 
Both the “Fully Vaccinated” and “At Least One Dose” are plotted. The start day of the vaccination is December 
21 2020 (corresponding to day 285 of the TDR data). Data is  from23,24.
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a number of different orders among all the States to find the most effective orders in countering the pandemic 
growth, as discussed below.

As can be seem in Fig. 7a, all of the US States declared SOM in a 2-week period, so we can consider the action 
of US States to be uniform in this regard. The timing of such announcements follow a normal distribution, as 
can be seen in Fig. 7b, hinting that the Governments’ behaviour in this respect were more or less synchronized. 
Thus, the pandemic growth is not well-correlated with this order, except for the initial stages of the outbreak.

The “Shelter At Place” executive order is a ordered to significantly reduce social interaction and therefore, the 
spread of the disease. Previous studies report that the most effective Statewide order to minimize virus spread is 
shelter at  place20. As can be seen in Fig. 7c, the timings of announcement of shelter in place amongst States are 
almost overlapping, even though there are some variability here. The average duration of shelter in place order 
among States is 44.73 days, with a standard deviation of 22.30 days. The States that has the highest duration of 
shelter at place were Georgia with 107 days, New Jersey with 80 days, Virginia with 73 days, and New York with 
68 days.

Different phases were declared (“Phase Declarations”) during the pandemic, corresponding to the growth 
of COVID-19 in different  times25. “Phase 1” corresponds to the rapid spread of the virus in which the public 
health response relies on dramatic mitigation measures, like stay at home orders and social distancing, to slow 
the spread of the virus. “Phase 2” corresponds to flattening of the spread and the rise in the rate of infection is 
beginning to slow and stabilize. Hospitalizations and ICU bed usage continue to increase but are flattening “Phase 
2”. In “Phase 3” or recovery phase, the rate of infection is stable or declining. In “Phase 4” or revitalization, there 
is a continued decline in the rate of infection in new COVID-19 cases, and “Phase 5” corresponds to some kind 
of new normal situation and one could say the US is “restored” as far as COVID-19 pandemic is concerned.

Vaccination in the US started from December 21, 2020 (corresponding to day 285 of the TDR data). Two 
 sources23,24 were used to discover percentage of US population’s vaccination percentage, both for “at least one 
dose’ and “fully vaccinated” cases (remembering that the majority of available vaccines in the US are administered 
in two doses). The data can be seen in Fig. 6b.

Correlation between “net actions” and maximum principal stresses. As mentioned previously, 
each State has its own timing of declaration of SOM, shelter at place, pandemic phases, and vaccination rate. 
In order to find a “net action” for the US, we utilize a weighted mean, based on the States’ population, to find a 
single representative measurement. We found that averaging based on State population density, instead of the 
population, can be misleading, as for instance, the District of Colombia, has an outlier population density, two 
orders of magnitude higher than the most of other  States26. There are other States for which the population den-
sity will give artificial weight to States less severely affected by the pandemic.

Let xi and x̄ be State i action and the “US net action”, respectively. By “action”, we mean any of the Statewide 
orders and vaccination percentage milestone. Also, let wi be the ratio of State i population to the US population. 
We have:

Looking at Fig. 9, we have marked 15 vertical lines, with various color coding. The “shelter in place” ON and OFF 
“net actions” are marked red, the “phase 1” ON and OFF “net actions” are marked blue, the “phase 2” ON and 
OFF “net actions” are marked green, the “phase 3” ON “net action” is marked brown, the “At Least One Vaccine 
Dose” milestones are marked blue, and the “Fully Vaccinated” milestones are marked red.

(31)x̄ =

n
∑

i=1
wixi

n
∑

i=1
wi

=
w1x1 + w2x2 + · · · + wnxn

w1 + w2 + · · · + wn
.

Figure 7.  (a) The timing of announcement of SOM by each State. The IDs associated with each US State is 
presented in Table 1. (b) The histogram of the timing of announcement of SOM by each State. The histogram 
almost follows a bell-shape trend, suggesting a normal distribution of SOM announcement timing in the US. 
(c) The timing of announcement of “shelter at place” by each State.The IDs associated with each US State is 
presented in Table 1.
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Figure 8.  The effect of Governments’ actions on the pandemic growth rate: growth rate is the values of the 
signal in this figure, such that for any day that signal is positive, the pandemic is growing, and for any day that 
signal is negative, the pandemic is shrinking.

Figure 9.  Daily time-series related to cluster j ∈ C and m = |C| = 2 of maximum values of principal stresses 
of σ1,s,j , σ2,s,j , and σ3,s,j for every active node. The vertical lines represent the events such as start/stop of an 
executive order, phase declarations, or a milestone in administration of vaccines. We have marked 15 vertical 
lines, with various color coding. The “shelter in place” ON and OFF “net actions” are marked red, the “phase 
1” ON and OFF “net actions” are marked blue, the “phase 2” ON and OFF “net actions” are marked green, the 
“phase 3” ON “net action” is marked brown, the “At Least One Vaccine Dose” milestones are marked blue, and 
the “Fully Vaccinated” milestones are marked red.
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Looking at Fig. 6a, we have marked 11 vertical, red lines, without any knowledge/attention of the States “net 
actions”. When we correlate the events in Fig. 6a with the events in Fig. 9, we can make the following inferences: 
line “ 1” is well-correlated with the “shelter in place” ON action, line “ 2” is well-correlated with the “phase 
1” ON action, line “ 3” is almost correlated with the “phase 3” ON action, line “ 4” is well-correlated with the 
“phase 1” OFF action, line “ 6” happens 25 days after the “phase 2” OFF action, line “ 8” is almost correlated 
with the milestone of “10% of US population at least vaccinated by one dose”, line “ 9” is almost correlated with 
the milestone of “25% of US population at least vaccinated by one dose”, line “ 10” is almost correlated with the 
milestone of “30% of US population fully vaccinated”, and line “ 11” is almost correlated with the milestone of 
“50% of US population at least vaccinated by one dose”. There are two dynamic shifts (lines “ 5” and “ 7”) which 
are not correlated with the “net actions” we have studied. These happen on the dates that the centers of clusters 
experienced a “jump”, as can be seen from Fig. 6a.

Suggestions to the governments and people. At the time of writing this paper, 619,438 people have 
lost their lives in the  US22, but only around 45% of US population have been fully  vaccinated23. It is imperative 
to note that the vaccination rates reflects the coordinated Governments’ action/Public’s reaction. In other words, 
Governments should provide sufficient vaccines while people accept to get vaccinated (vaccine hesitancy is a 
Public reaction, which is fatal). As can be seen from Fig. 8, vaccination has been very effective for decreasing 
the growth rate. When 10% of the US population were vaccinated with a single dose at least, around day 325, 
the pandemic growth starts to decline and then experience shrinking. The largest rate of shrinkage occurred 
around day 410, when 30% of the US population were fully vaccinated. It is imperative that the Governments 
push for more aggressive rates of vaccination for this, and future pandemics. Another point is the delay in initial 
response to the outbreak. For a fact, the initial exponential growth rate of an epidemic significantly determines 
its  severeness15. Based on our growth criteria, this exponential growth happened until day 55 of our data. We 
believe that the Governments should have acted earlier, to avoid letting the exponential growth to continue for 
almost two months. The times series of shelter at place Statewide orders happened before day 55, and ended 
before day 100. We believe that shelter at place should have continued for more duration, since when looking 
at day 250 of our data, one can see another rapid growth of the pandemic. Our suggestion/recommendation to 
the Governments is that for future pandemics, they act earlier and focus on ways to help people stay at home by 
providing more financial incentives.

Conclusion
In this work, we have adopted a new hybrid learning and continuum deformation framework to analyse the 
COVID-19 pandemic growth in the T–D–R space. The T–D–R space is discretized to create a finite set of nodes 
and tetrahedrons in which the characteristic polytopes of the training data can evolve in. if the volume of tetra-
hedron s ∈ Sj is nonzero, it means that it contains a data point. The maximal principal values of Jacobian matrix 
Qs,j for every s ∈ Sj and j ∈ C is found using the eigen-decomposition technique. Our study has some limitation, 
for instance it is well-known that number of testing has direct impact on the T–D–R numbers. In the US, only 
after 11 May 2020 (day 90 of our data set) was that the number of tests reached a reasonably high enough number 
(more than 375,000 tests are done each day). Future research can look into the dynamics of pandemic growth of 
each region (between the marked vertical lines) of the pandemic as determined by this work.

State IDs
The IDs associated with each US State used for clustering is presented in Table 1. The States are ordered 
alphabetically.

Table 1.  The IDs associated with each US State used in this paper.

State ID State State ID State State ID State State ID State

1 Alabama 14 Illinois 27 Nebraska 40 South Carolina

2 Alaska 15 Indiana 28 Nevada 41 South Dakota

3 Arizona 16 Iowa 29 New Hampshire 42 Tennessee

4 Arkansas 17 Kansas 30 New Jersey 43 Texas

5 California 18 Kentucky 31 New Mexico 44 Utah

6 Colorado 19 Louisiana 32 New York 45 Vermont

7 Connecticut 20 Maine 33 North Carolina 46 Virginia

8 Delaware 21 Maryland 34 North Dakota 47 Wisconsin

9 DC 22 Michigan 35 Ohio 48 Washington

10 Florida 23 Minnesota 36 Oklahoma 49 West Virginia

11 Georgia 24 Mississippi 37 Oregon 50 Wisconsin

12 Hawaii 25 Missouri 38 Pennsylvania 51 Wyoming

13 Idaho 26 Montana 39 Rhode Island
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