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Delivery mode and perinatal 
antibiotics influence the predicted 
metabolic pathways of the gut 
microbiome
Petri Vänni 1*, Mysore V. Tejesvi 1,2, Sofia Ainonen 1, Marjo Renko 3, Katja Korpela 1, 
Jarmo Salo 1,4, Niko Paalanne 1,4 & Terhi Tapiainen 1,4,5

Delivery mode and perinatal antibiotics influence gut microbiome composition in children. Most 
microbiome studies have used the sequencing of the bacterial 16S marker gene but have not 
reported the metabolic function of the gut microbiome, which may mediate biological effects on the 
host. Here, we used the PICRUSt2 bioinformatics tool to predict the functional profiles of the gut 
microbiome based on 16S sequencing in two child cohorts. Both Caesarean section and perinatal 
antibiotics markedly influenced the functional profiles of the gut microbiome at the age of 1 year. In 
machine learning analysis, bacterial fatty acid, phospholipid, and biotin biosynthesis were the most 
important pathways that differed according to delivery mode. Proteinogenic amino acid biosynthesis, 
carbohydrate degradation, pyrimidine deoxyribonucleotide and biotin biosynthesis were the most 
important pathways differing according to antibiotic exposure. Our study shows that both Caesarean 
section and perinatal antibiotics markedly influence the predicted metabolic profiles of the gut 
microbiome at the age of 1 year.

The perinatal period plays a critical role in gut microbiome development. Several studies have shown that the 
gut microbiome composition of infants delivered by Caesarean section (C-section) shows a reduced  diversity1,2, 
lower relative abundance of Bacteroides1–5 and a higher relative abundance of Enterococcus2,3,5, Klebsiella3,5 and 
Clostridium3,4 as compared to that of vaginally delivered  infants1,3. Currently, perinatal antibiotics are frequently 
used during both vaginal deliveries and C-sections to prevent early-onset group B streptococcal (GBS) sepsis 
and after birth to treat suspected neonatal  infections6. Intrapartum antibiotic prophylaxis (IAP), administered 
to mothers during delivery to prevent GBS transmission to newborn infants, has been associated with reduced 
gut microbiome  richness7 and  diversity8–10, lower relative abundance of  Bacteroidetes7,8,11 and Bacteroides3,7,10,11 
and a higher relative abundance of  Proteobacteria8,9 and  Firmicutes9,11 in term vaginally delivered infants.

The human gut microbiome is highly functionally redundant and different taxonomic compositions can share 
similar metabolic  functions12,13. In most earlier paediatric cohort  studies2,4,5, 7–9,11, gut microbiome composition 
has been presented based on the sequencing of bacterial 16S gene, commonly used as a marker gene in micro-
biome studies. Yet, the metabolic function of the gut microbiome has seldom been investigated in paediatric 
cohorts. Whole genome sequencing (WGS) of all bacteria in gut microbiome would be of great benefit, as WGS 
identifies the taxa and gene composition with a higher resolution compared to 16S  method14. WGS, however, 
has rarely been used for large datasets because it is expensive and laborious. In recent years, multiple advanced 
bioinformatics tools have been developed to overcome these problems, such as  PICRUSt215,  Tax4Fun216 and 
 Piphillin17. These tools predict the functional pathways of the microbiome based on 16S rRNA sequences and 
produce results resembling bacterial whole genome sequencing metabolic pathway data.

Our hypothesis was that early perinatal events may markedly change the metabolic pathways of the gut 
microbiome and influence the later health of children. In the present study, we characterized and compared the 
effects of delivery mode and perinatal antimicrobial exposure on the predicted metabolic pathways of the gut 
microbiome in infants at 1 year of age.
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Methods
Study design and population
We used predicted functional profiles of gut microbiomes based on 16S data from two prospective cohorts from 
our laboratory.

The delivery mode cohort (DM cohort) consisted of 212 consecutive newborn infants born at the Central 
Finland Central Hospital in Jyväskylä, Finland, between February 2014 and March 2014, recruited in the deliv-
ery room. The patients of the cohort were term or near-term infants. For the analysis, they were grouped into 
two groups based on the mode of delivery: (1) vaginally delivered (N = 60) and (2) born by C-section (N = 23). 
Reported sample sizes above were the number of samples that did not get removed in various pre-processing 
phases. The detailed information on the study population and sample collection has been reported  previously18. 
The Ethics Committee of the Central Finland Hospital District found the study plan ethically acceptable (deci-
sion number 1E/2014).

The perinatal antibiotic cohort (PA Cohort) consisted of 149 vaginally delivered term infants born at the Oulu 
University Hospital in Oulu, Finland, between February 2014 and June 2015. The participants were recruited 
the first day after birth. The participants were recruited according to their perinatal antibiotic exposure and 
classified into two groups: (1) the control group and (2) those with any perinatal antibiotic exposure. In the 
control group (N = 27), the infants were not exposed to any perinatal antibiotics. In the antibiotic exposure 
group (N = 70), either the mother received antibiotics during delivery, the infant received antibiotics during 
the first days of life, or both received antibiotics. Sample sizes above were the number of samples that were not 
removed in pre-processing phases. The background characteristics and antibiotic exposures of the participants 
have been previously reported in  detail11,19. The research plan was reviewed and approved by the Regional Ethics 
Committee of the Northern Ostrobothnia Hospital District, Oulu University Hospital, Oulu, Finland (decision 
number EETTMK 76/2013).

Parents or caregivers of children in both study cohorts gave written informed consent before the study. The 
study was conducted in accordance with the relevant guidelines, regulations and legislation regarding clinical 
studies and data protection. In both cohorts, at the age of 1 year, families collected faecal samples from the infant’s 
potty or diaper and sent them to the laboratory. The faecal samples were processed similarly and were frozen 
at temperatures lower than − 22 ℃. All samples were analysed with a similar methodology by 16S rRNA gene 
sequencing at the University of Oulu, Finland. Details about DNA extraction, primers, and sequencing protocol 
has been previously published for  DM11 and  PA19 data. All the raw sequences were submitted to the GenBank 
Sequence Read Archive (SRA) with accession numbers SRP152384 and PRJNA605735.

We have previously published the results concerning impact of antibiotic exposure on the gut microbiome 
16S composition from birth to the age of 6  months11, and compared the impact or oral antibiotic courses and 
perinatal antibiotics on gut microbiome 16S composition at 12  months19 in the PA cohort. The impact of deliv-
ery mode on the gut microbiome 16S composition at 12 months has not earlier been reported in DM cohort. 
Predicted metabolic pathway data, presented in this manuscript, have not earlier been published or submitted 
for either cohort.

Because microbiome data are high-dimensional, complex, noisy and compositional in  nature20,21, increasing 
the false discovery rate of conventional hypothesis testing  methods22, we used a machine learning (ML) approach 
in this  analysis21,23,24. Sequence pre-processing and strict quality filtering settings in this study were designed to 
decrease data dimensionality and sparsity. These upstream choices increase machine learning model performance 
and interpretability, and as such, differ from previously published work for perinatal  antibiotics11,19. As a result, 
features that were rare and found in low prevalence were filtered out. We now present side-by-side results from 
ANCOM2, ALDEx2, and beta diversity for both cohorts to increase the interpretability of the machine learning 
models, and effectively showcase the differences in the PA and DM results.

Sequence pre‑processing
Raw sequences from both datasets were imported into  Qiime225 (version 2019.10), where they were processed 
independently from each other. Sequencing primers were trimmed before denoising with the q2-dada2 -plugin. 
Reads shorter than 270 bp were truncated in the PA cohort and reads shorter than 385 bp were truncated in 
the DM cohort with an additional 15 bp trimmed from the left side during  DADA226. Any quality filtering was 
avoided before using DADA2.

Taxonomic classifiers were trained using the 132  SILVA27 database trimmed to the study primers and trun-
cated using the DADA2 parameter values for truncation and filtering. DADA2 outputs an ASV-table (Ampli-
con Sequence Variant), which represents the abundances of biological features found from the raw sequences. 
Features from the ASV-tables were assigned taxonomies and those features were then classified into domains. 
Features classified as Bacteria and those found in more than one sample were kept. Chimeric features were 
removed with the q2-vsearch-plugin using the uchime-denovo tool. Samples with a combined feature frequency 
of less than 1000 were removed. The PA cohort had 1037 minimum depths, while the DM cohort had 1290. We 
chose 1000 as the depth because it was near to the minimum and fit our analysis methods. Unstratified  MetaCyc28 
pathway abundances were predicted using the q2-picrust2-plugin using the “mp” hidden-state prediction method 
with other parameters set to default values. Stratified results, which map each predicted pathway back to the input 
ASV’s, were produced using the original python implementation of  PICRUSt215 with the same parameters. ASV 
and metabolic pathway feature tables from both cohorts were independently analysed.

Alpha and beta diversity
ASV-tables and predicted pathway tables were used in both alpha and beta diversity analyses in both cohorts. 
Bray–Curtis dissimilarity was chosen for both types of feature tables for beta diversity, while Shannon index was 
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chosen for alpha diversity. Feature tables were rarefied to depths of 1000 and 10,000 in ASV-tables and predicted 
pathway tables, respectively. Principal coordinates analysis (PCoA) was done for Bray–Curtis dissimilarity dis-
tance matrices. Alpha and beta diversity analyses were done using the q2-diversity-plugin and visualized with 
 Matplotlib29.

The Kruskal–Wallis H test was performed to test within-sample group differences for alpha diversity. Adonis 
PERMANOVA analyses were done using the pairwise beta-diversity-significance command in q2-diversity to 
test group differences. Adonis PERMANOVA was used for multivariate analysis using both perinatal antibiotic 
exposure and delivery mode in DM cohort, while only perinatal antibiotics was used with the PA cohort. PCoA 
analysis was performed with the beta diversity distance matrix and visualized with ellipses drawn onto the two-
dimensional space using the Pearson correlation coefficient of the two principal coordinates with the highest 
explained variance.

Differential abundance analysis
ALDEx230 and  ANCOM22 were used for differential abundance analysis to examine group differences in both 
genus level and predicted pathway data. Features that were found in 10% or more samples were kept. ALDEx2 
analyses were done using the q2-aldex2-plugin with a Q-score significance threshold of 0.05. ANCOM2 (further 
developed based on  ANCOM22) analyses were done using the R-package31 with default parameters. For DM 
cohort the ANCOM2 analyses were adjusted according to perinatal antibiotic treatments. ANCOM2 calculates 
a threshold value for the proportion of feature ratios that show significant differences. Prior to testing, we chose 
the value of 0.7 or higher as the significant value, meaning that when output was 0.7 or higher, ANCOM2 found 
the feature to be significantly different between study groups. Values below 0.7 were considered non-significant. 
A significance threshold of 0.7 was recommended by the author of  ANCOM231 as a common choice. ALDEx2 
uses p-values from Benjamini–Hochberg adjusted (to control false discovery rate) Welch t-tests (p-value of < 0.05 
was considered significant prior to testing). Additionally, ALDEx2 outputs the effect size, which indicates the 
direction and volume of change of the centred log-ratios. In our study, a positive sign indicated that the feature 
was more abundant in the C-section or perinatal antibiotics treatment group whereas a negative sign indicated 
greater abundance in their respective control groups (i.e., vaginal birth and no-perinatal antibiotics treatments).

Machine learning analysis
Machine learning models were trained to predict the target variables of delivery mode and perinatal antibiotic 
treatments in DM and PA cohorts, respectively. Models were created using a nested cross-validation (CV) 
setting where parameters were only tuned using the inner cross-validation loop. Random Forest (RF)32, 
Extremely Randomized Trees (EXTRA)33 and Adaptive Boosting (Adaboost)34 models were tuned and trained 
independently of each other. Model performance was tested against the validation fold that was unseen to the 
models. Performance was evaluated using the Receiver Operating Characteristic (ROC) of the Area-Under-
the-Curve (AUC). Model selection was only done in the inner CV folds using the ROC AUC metric. Machine 
learning analyses were implemented using the scikit-learn  package35. Rank aggregation analysis was used to 
highlight the key shared features for Random Forest, ExtraTrees and Adaboost models during model training. 
The importance of each taxon or pathway feature was recorded and compiled in a rank aggregation analysis.

Cross‑study predictions
We aimed to find out whether similar machine learning models were able to differentiate the impact of both 
perinatal antibiotics and C-section on the predicted metabolic pathway composition of the gut microbiome using 
a cross-study prediction between two available cohorts. Machine learning models were trained using prevalence 
filtered feature tables from both taxon and pathway data. Models were given the task to differentiate positive 
(C-section and perinatal antibiotics treatment) and negative (vaginal delivery and no antibiotic treatments) 
classes from each other. In this analysis, we chose a prevalence level such that each feature needed to be found 
in a percentage of all samples in both cohorts to be included. Prior to model building, we tried prevalence cut-
offs in the range of 10–50% in both taxa and pathway data. In previous studies, researchers have experimented 
with prevalence thresholds varying from 1 to 10% in one  study36, while selecting as high as 45% in  another37. 
We chose as high prevalence cut-offs as possible while leaving as many features as possible in both types of data. 
For metabolic pathway data, the percentage chosen for prevalence cut-off was 50% (240 features) and for taxa 
data, 30% (12 features). Prevalence thresholds and other data filtering choices were not readjusted after initial 
model building to prevent leaking information between training and testing folds. RF, EXTRA and Adaboost 
models were trained using only one cohort’s data using the same scheme described earlier. After each iteration 
of the nested cross-validation loop, the best RF, EXTRA and Adaboost models were combined into an ensemble 
classifier. This classifier was then used to predict a randomly sampled subset from the other cohort that was 
completely unseen by the models. Feature importances were estimated using the prefitted ensemble classifier 
with permutation_importance function from scikit-learn35. Next, we examined if models trained on the PA 
cohort were biased towards samples that had been exposed to perinatal antibiotics in the DM cohort. We pooled 
together all the test predictions from C-section and vaginal samples into two groups. Samples that had been 
exposed to perinatal antibiotic treatments and those that had not been exposed and produced the pooled AUC 
of both groups. There were no marked differences in the AUC when predicting DM cohort samples that had 
been exposed to perinatal antibiotics (0.71 AUC) to those that had not been (0.7 AUC).
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Results
Within and between‑sample diversity according to delivery mode and perinatal antibiotics
First we analysed beta diversity, i.e., between-sample diversity, to examine differences in the taxonomic and 
metabolic pathway composition of the gut microbiome according to delivery mode (Fig. 1A,B, delivery mode 
cohort) and perinatal antibiotic exposure (Fig. 1C,D, perinatal antibiotics cohort) at the age of 1 year using 
principal coordinate analysis (PCoA).

Delivery mode was not associated according to PERMANOVA analyses for taxa or predicted metabolic 
pathways (Supplementary Table 1). Perinatal antibiotics were associated for taxa (R2 = 0.0196, Pr(> F) = 0.008), 
but not for predicted metabolic pathways (Supplementary Table 1).

Alpha diversity metrics, i.e., within-sample diversity, showed no significant differences for taxonomic or 
metabolic pathway data according to delivery mode or perinatal antibiotic exposure (Supplementary Fig. 1).

Effects on fatty acid biosynthesis, lipid biosynthesis and biotin metabolism pathways
We then investigated which taxa and metabolic pathways of the gut microbiome were differentially abundant in 
the gut microbiomes of children depending on the delivery mode (C-section vs vaginal) or perinatal antibiotic 

Figure 1.  Principal coordinate analysis with Bray-Curtis dissimilarity with taxa and metabolic pathways. 
Confidence ellipses were drawn based on the Pearson correlation coefficient of the data points. (A) Impact of 
delivery mode on taxonomic composition of gut microbiome (PERMANOVA, R2 = 0.015, Pr(> F) = 0.063). (B) 
Impact of delivery mode on metabolic pathway data composition (PERMANOVA, R2 = 0.017, Pr(> F) = 0.3). 
(C) Impact of perinatal antibiotic exposure on taxonomic composition of gut microbiome (PERMANOVA, 
R2 = 0.020, Pr(> F) = 0.008). (D) Impact of perinatal antibiotics on metabolic pathway data composition 
(PERMANOVA, R2 = 0.015, Pr(> F) = 0.309).



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17483  | https://doi.org/10.1038/s41598-021-97007-x

www.nature.com/scientificreports/

exposure (any vs none) (Table 1, Supplementary Table 2). The full output of ANCOM2 and ALDEx2 can be found 
as “Supplementary Tables S1” (Supplementary Tables 3–10).

Using ANCOM2 analysis for taxa, the abundance of Bacteroides and Erysipelatoclostridium were significantly 
different in the gut microbiomes of infants born via C-section as compared to that of vaginally born infants 
(Table 1). When comparing the metabolic pathway data of the gut microbiome, we found several metabolic 
pathways that were significantly different between functional profiles of gut microbiomes of infants at 1 year 
of age depending on whether they were born via C-section or vaginal route (Table 1). Five of these pathways 
were linked to fatty acid and lipid biosynthesis. In ALDEx2 analysis, none of the taxa differed in a statistically 
significant manner depending on delivery mode, while one pathway related to fatty acid biosynthesis (PWYG-
321) was differentially abundant (Supplementary Table 2).

Bacteroides was significantly different depending on exposure to perinatal antibiotics (Table 1). When 
comparing metabolic pathways according to perinatal antibiotic exposure, we identified seven pathways as 
significantly different (Table 1), two of which were linked to vitamin B6 metabolism and two to carbohydrate 
degradation. Three pathways (biotin metabolism, biotin synthesis and glycosaminoglycan degradation) were 
significantly different according to both the delivery mode and perinatal exposure (Table 1). When we used 
ALDEx2 for comparisons, we found one genus and 25 differentially abundant metabolic pathways depending 
on the perinatal antibiotic exposure (Supplementary Table 2).

Influence of perinatal events on predicted metabolic pathways in gut microbiome
We used machine learning models on predicted metabolic pathways in gut microbiome to differentiate whether 
the child was born via C-section or vaginal route (Fig. 2A,B), or whether the child was exposed or unexposed 
to perinatal antibiotics (Fig. 2C,D).

Three algorithms (RF, ExtraTrees, Adaboost) were used to differentiate both target variables using the 
16S sequencing derived genera and predicted metabolic pathway data. Models were able to differentiate their 
respective test samples more precisely when using metabolic pathway data instead of taxa data (Fig. 2).

Children born via C-section were well differentiated from those born vaginally by using machine learning 
models on gut microbiome data at the age of 12 months (Fig. 2A,B) Using RF for taxa by delivery mode, the 
highest AUC, representing the measure of separability under ROC, was 0.69 (SD = 0.05) (Fig. 2A), while 
ExtraTrees achieved the highest performance for metabolic pathways of the gut microbiome with an AUC = 0.71 
(SD = 0.04) (Fig. 2B), differentiating data by delivery mode.

Similarly, children exposed to perinatal antibiotics were well differentiated from those unexposed by using 
machine learning models on gut microbiome data at the age of 12 months. RF models trained using taxa to 
differentiate data by perinatal antibiotic exposure performed better (AUC of 0.69, SD = 0.04) than ExtraTrees 
or Adaboost (Fig. 2C). Additionally, RF was again the top performer with metabolic pathways in differentiating 
data by perinatal antibiotic exposure with an AUC of 0.74 (SD = 0.04) (Fig. 2D).

Table 1.  Differential abundance analysis of metabolic pathways in the gut microbiomes of two cohorts using 
ANCOM2 analysis. ANCOM2 outputs a proportion of pairwise statistical tests passed for each feature (tests 
passed/n tests). For this value, exceeding the threshold of 0.7 was considered significant (bold). *Proportion 
> 0.7 for both delivery mode (vaginal delivery vs C-section) and perinatal antibiotic exposure (any vs none) are 
statistically significant.

Metabolic pathways MetaCyc superclass

Perinatal antibiotics (n = 70) vs 
control (n = 27)

C-section (n = 23) vs vaginal 
(n = 60)

Tests passed/n tests Tests passed/n tests

BIOTIN-BIOSYNTHESIS-PWY* Biotin metabolism 0.88* 0.99*

GLUCOSE1PMETAB-PWY Sugar degradation 0.75* 0.01

HISDEG-PWY Histidine degradation 0.8* 0.01

PWY-5989 Fatty acid biosynthesis 0 0.93*

PWY-6282 Fatty acid biosynthesis 0 0.93*

PWY-6519* Biotin biosynthesis 0.88* 0.99*

PWY-6572* Glycosaminoglycan degradation 0.91* 0.97*

PWY-7664 Fatty acid biosynthesis 0 0.91*

PWY0-845 Vitamin B6 metabolism 0.86* 0.65

PWY0-862 Fatty acid biosynthesis 0 0.77*

PWYG-321 Fatty acid biosynthesis 0 0.99*

PYRIDOXSYN-PWY Vitamin B6 metabolism 0.9* 0.65

Taxon
Perinatal antibiotics (n = 70) vs 
control (n = 27)

C-section (n = 23) vs vaginal 
(n = 60)

Bacteroides – 0.82* 0.90*

Erysipelatoclostridium – 0.1 0.73*
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Most important genera and predicted metabolic pathways for machine learning models
Machine learning models are often referred to black boxes, as the inner workings are often obscured or com-
plicated to understand. Random forests and other decision tree-based algorithms have the benefit of providing 
continuous value for feature importance’s, effectively ranking how well each feature (genera or predicted path-
way) affected the overall result. In rank aggregation analysis, the importance of each taxon or pathway feature 
in machine learning models was recorded and compiled (Fig. 3).

In children born via C-section or vaginally, using gut microbiome data at the age of 1 year, the most important 
features in gut microbiome 16S composition, differentiating children in machine learning analysis for delivery 
mode, were Erysipelatoclostridium followed by Bacteroides, Roseburia, Alistipes and Lactococcus (Fig. 3A). At 
the same time, the most important predicted metabolism related pathways, differentiating children in machine 
learning analysis according to delivery mode, were fatty acid biosynthesis, phospholipid biosynthesis, biotin 
biosynthesis and biotin metabolism related pathways. (Fig. 3B).

Figure 2.  Machine learning model performance when differentiating delivery mode and perinatal antibiotic 
treatments. Relative abundance data from taxa (A, C) and metabolic pathways (B, D) were used. Models can 
have an area-under-the-curve (AUC) value in the range of 0.5 (random chance) to 1.0 (perfect predictor). The 
black diagonal line represents random chance performance.
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In children exposed or unexposed to perinatal antibiotics, using gut microbiome at the age of 12 months, the 
most important features differentiating children in machine learning analysis for perinatal antibiotic exposure 

Figure 3.  Feature importance rank aggregation analyses. Feature importance values from Random Forest, 
ExtraTrees and Adaboost machine learning models were transformed into rank values and aggregated together. 
Data from delivery mode cohort by (A) taxa and (B) pathways as well as perinatal antibiotics by (C) taxa and 
(D) pathways. The analysis was done to determine which features were important among all decision tree-
based models. Model training was repeated 40 (red or yellow dots, 120 in total for each feature) times for each 
algorithm, and the ranks were gathered, and boxplots were drawn using the median. Median ranks were sorted 
in descending order from most important to the least important. Only the five most important features are 
shown for visualisation purposes.
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were Bacteroides, Faecalibacterium and Dorea (Fig. 3C). At the same time, the most important predicted 
metabolism related pathways, differentiating children in machine learning analysis according to perinatal 
antibiotic exposure, were proteinogenic amino acid biosynthesis, carbohydrate degradation, pyrimidine 
deoxyribonucleotide biosynthesis, vitamin biosynthesis and biotin biosynthesis (Fig. 3D).

In both cohorts, there were multiple features with similar median ranks, indicating a high amount of 
collinearity in pathway data, where many features were correlated with each other. Rank aggregation values for 
each variable are reported in the “Supplementary File S1” (Supplementary Tables 11–14).

Cross‑study analysis: training models on one cohort and testing them on the other cohort
As the direct comparison of taxon or pathway data from the two datasets using conventional statistics is not 
optimal, even for datasets from the same laboratory, we then performed a cross-study comparison using machine 
learning to assess effects associated with delivery mode or perinatal antibiotic exposure (presented in Table 1 
and Figs. 2, 3). We examined whether patterns found by machine learning models in one dataset for delivery 
mode could be generalized to the samples from the other cohort for perinatal antibiotic exposure and vice versa, 
possibly indicating analogous or similarly differentiating changes in gut microbiome after C-section or perinatal 
antibiotics as compared to those with undisturbed early gut colonization. We thus trained models on one cohort 
and tested them on the other cohort.

In the cross-study analysis, gut microbiome 16S composition changes due to C-section or perinatal antibiotic 
were not analogous or similarly differentiating. Model performance was low when using taxon data to train and 
test models in both cohorts. Models trained on the PA cohort and tested on the DM cohort achieved an AUC of 
0.64 (Fig. 4A). Training on the DM cohort and testing on the PA cohort showed an AUC of 0.54.

When using predicted metabolic pathway features, the cross-study models were able to predict cross-study 
sample classes as positive (C-section or any perinatal antibiotics treatment) or negative (vaginal delivery or no 
perinatal antibiotics treatments) (Fig. 4B). Models trained on differentiating perinatal antibiotic exposure (any 
vs none) were able to differentiate the delivery mode (C-section vs vaginal) with an AUC of 0.72, while mod-
els trained on delivery mode cohort achieved an AUC of 0.70 in differentiating perinatal antibiotic exposure 
(Fig. 5B).

The most important metabolic pathways in the cross‑study predictive models
We then analysed which features were most important for the performance of the models by using permutation 
importance analysis.

After “shuffling”, i.e., deliberately removing the true grouping data for the delivery mode or perinatal antibiotic 
exposure and replacing it with a random grouping variable, Bacteroides resulted in the largest reduction in the 
AUC of models in differentiating both delivery modes (mean reduction = 0.14, SD = 0.06) (Fig. 5A) and perinatal 
antibiotic exposure (mean reduction = 0.06, SD = 0.04, Fig. 5C) using taxon data from the samples.

After shuffling, using metabolic pathway data, we found several features decreasing only slightly the 
performance of the model, with the largest average change of 0.03 to AUC for proteinogenic amino acid 

Figure 4.  Cross-study performance when machine learning models were trained on one cohort and then tested 
on the other. (A) Taxon and (B) metabolic pathway relative abundances were used to train cross-study models. 
“C-section” and “any perinatal antibiotics” were set as the positive class in their respective cohorts. The yellow 
line represents performance when models trained on the perinatal antibiotics (PA) cohort was used to predict 
the samples of the delivery mode (DM) cohort, and the red line represents the reverse situation.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17483  | https://doi.org/10.1038/s41598-021-97007-x

www.nature.com/scientificreports/

biosynthesis according to delivery mode (Fig. 5B) and 0.005 for biotin biosynthesis according to perinatal 
antibiotic exposure (Fig. 5D). In the DM cohort (C-section vs vaginal delivery), pathways related to proteinogenic 
amino acid biosynthesis, biotin biosynthesis and fermentation were the most important (Fig. 5B). In the 
PA cohort (any antibiotics vs none in vaginally delivered infants), pathways related to biotin biosynthesis, 
polysaccharide degradation, proteinogenic amino acid biosynthesis and pyrimidine nucleotide biosynthesis 
were the most important (Fig. 5D). Values for each tested variable are reported in the “Supplementary File S1” 
(Supplementary Tables 15–19).

Figure 5.  Cross-study importance of taxon and metabolic pathway data for delivery mode (A and B) and 
perinatal antibiotic exposure (C and D). Machine learning models were trained on PA cohort (A and B) and 
tested on random DM cohort samples, while models trained using the DM cohort (C and D) were tested on 
random PA cohort samples. The sample labels of each taxon or pathway were permutated one at a time in the 
test samples, and the changes to AUC were recorded and averaged. Positive error bars are plotted for each 
feature in black.
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Relative abundances of important taxa and pathways
Lastly, we present the relative abundances between study groups of genera and pathways that were found 
significantly different by ANCOM2 (Table 1) or important by machine learning models (Figs. 2 and 4). 
Additionally, the stratified relative abundance was gathered from PICRUSt2, which allows for a direct link from 
each predicted pathway back to the ASV’s. Bacteroides was differentially abundant in both DM and PA and was 
the most important feature of cross-study machine learning models. We additionally stratified the predicted 
pathway data according to Bacteroides to gain further insight.

In the DM cohort, Bacteroides (Supplementary Table 19) and Erysipelatoclostridium were highlighted 
by ANCOM2 (Table 1) as differentially abundant, while also being important for machine learning models 
(Fig. 2A). Bacteroides (36% in C-section and 58% in vaginal) had lower relative abundance in C-section, while 
Erysipelatoclostridium (6% in C-section and 2.2% in vaginal) was enriched in children exposed to C-section. 
Several predicted metabolic pathways related to biotin metabolism, biotin biosynthesis, glycosaminoglycan 
degradation, and fatty acid biosynthesis had decreased relative abundance in C-section children (Supplementary 
Table 19). Based on Bacteroides stratified data, all the above pathways had 44–99% of their relative abundances 
come from Bacteroides sequences in C-section samples, while 73–99% of their relative abundances in vaginal 
group (Supplementary Table 20). One pathway related to fatty acid biosynthesis (PHOSLIPSYN-PWY) and 
fermentation (P161-PWY) were enriched in C-section samples.

Bacteroides was the only significantly different genera in PA cohort while also being important to 
machine learning models. Bacteroides had lower relative abundance (38% in perinatal antibiotics and 66% 
in no antibiotics) samples (Supplementary Table 19). Predicted pathways related to biotin metabolism, biotin 
biosynthesis, glycosaminoglycan degradation, vitamin B6 metabolism, and fatty acid biosynthesis pathways 
were decreased according to perinatal antibiotics usage. According to Bacteroides stratified data, a large portion 
of the above pathways relative abundances were derived from Bacteroides in both PA (37–97%) and non-PA 
groups (64–99%) (Supplementary Table 20). Pathways related to sugar degradation (GLUCOSE1PMETAB-PWY), 
pyrimidine deoxyribonucleotide biosynthesis (PWY-6545), and vitamin biosynthesis (PWY-6891) were enriched 
according to perinatal antibiotics usage.

Discussion
Delivery mode and perinatal antibiotics have been shown to influence gut microbiome composition in 
 children1–5,7–11. Most microbiome  studies2,4,5,7–9,11 have used the sequencing of the bacterial 16S marker gene but 
have not reported the metabolic function of gut microbiome, which may mediate biological effects on the host. 
Whole genome sequencing of the gut microbiome would be an ideal solution but is still not feasible for every 
study or  dataset14,38,39. Here, we used the  PICRUSt215 bioinformatics tool to predict the functional profiles of the 
gut microbiome based on 16S sequencing in two prospective cohorts from our laboratory. Our study shows that 
both Caesarean section and perinatal antibiotics markedly influence the predicted metabolic profiles of the gut 
microbiome at the age of 1 year.

Earlier, in a study of 60 infants using metagenome sequencing of faecal samples, perinatal antibiotics 
predicted microbiome alterations, but delivery mode had no enduring  effects40. In accordance with our results, 
a metagenomic study by Chu et al.41 found several similar changes in metabolic pathways; intrapartum antibiotic 
exposure enriched pathways associated with glycolysis and pyrimidine metabolism whereas pathways associated 
with folate and biotin metabolism were decreased. Similarly, we found that predicted pathways related to sugar 
degradation and pyrimidine deoxyribonucleotide biosynthesis were enriched with perinatal antibiotics exposure, 
while biotin biosynthesis and metabolism pathways decreased.

Perinatal events affected pathways related to biotin metabolism, vitamin metabolism, and vitamin biosynthesis 
in the present study. Several microbial species in gut microbiome can synthesize vitamin K2 and water-soluble 
B-vitamins, such as  biotin42. Vitamin metabolism genes are found across different phyla suggesting that they 
have a core function in gut microbiome  metabolism42,43. In a previous metagenomic analysis of fecal samples 
in four countries, some of vitamin metabolism related pathways differed between study participants with type 
2 diabetes or inflammatory bowel  disease42. Overall, the clinical relevance of gut vitamin metabolism is still 
poorly understood but according to the present study, it appears that perinatal events, delivery mode or perinatal 
antibiotics, may change the microbiome-mediated vitamin metabolism in human gut of children.

In the present study, perinatal events also influenced predicted metabolic pathways of fatty acid metabolism. 
Short-chain fatty acids, especially butyrate, likely play an important role in the maintenance of gut  health44. 
Butyrate modulates inflammatory responses and intestinal barrier  function44. Decreased fatty acid synthesis has 
been reported in inflammatory bowel disease using shotgun metagenomics of faecal  samples45 and in  asthma46 
using mass spectrometry of faecal samples for metabolome analysis. Furthermore, changes in butyrate-producing 
bacteria may modulate the function of nervous  systems44,47. In an animal model, mice treated with butyrate after a 
high-fat diet had reduced glucose intolerance and insulin resistance and improved cardiovascular disease related 
metabolic  disorder48. Thus, the observed changes in fatty acid metabolism may associate with the long-term 
health of children if the observed changes in the predicted metabolic pathways of gut microbiome, observed 
here at the age of 1 year, persist in adolescence and adulthood.

We found that genera Bacteroides to be differentially abundant according to both delivery mode and 
antibiotic exposure. The mean relative abundance of Bacteroides was decreased in children born by C-section 
and those exposed to perinatal antibiotics. According to our results, Bacteroides is a major contributor to several 
predicted pathways related to biotin metabolism, biotin biosynthesis, glycosaminoglycan degradation, and fatty 
acid biosynthesis. These predicted pathways were found to be differentially abundant or important to machine 
learning models according to delivery mode and perinatal antibiotics. Bacteroides contributed 64–99% of the 
total copy number of these pathways found in children vaginally delivered or not exposed to perinatal antibiotics. 
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Subsequently, as relative abundance of Bacteroides decreased when exposed to C-section or perinatal antibiotics, 
so did the relative abundances of these pathways.

The gut microbiome is highly redundant; many different bacteria can perform the same metabolic  function12,13. 
Our results suggest that not all metabolic pathways can be replenished by redundant bacteria, as several predicted 
pathways linked to Bacteroides were decreased in children exposed C-section or perinatal antibiotics. Still, 
several predicted pathways, related to proteinogenic amino acid biosynthesis and nucleotide biosynthesis were 
found to be important for machine learning models according to exposure to perinatal antibiotics, but not clearly 
decreased or increased based on mean relative abundances. These results suggest that some metabolic pathways 
interact with C-section and exposure to perinatal antibiotics in a complex way. Thus, mere 16S sequencing and 
presenting taxonomic data is not the most optimal method for microbiome research. Whole genome sequencing 
would be an ideal method but is still prohibitively expensive for most research groups investigating clinical 
associations in large study cohorts. Furthermore, currently available WGS datasets from microbiome research 
groups are too small for modern “data hungry” statistical methods, such as deep learning. Several tools, such as 
 PICRUSt215,  Tax4Fun216 and  Piphillin17, have been developed to overcome this issue. These tools can estimate 
the metabolic pathway, gene or metabolite compositions of samples based on their 16S sequences. In the present 
study, we used PICRUSt2 to predict functional metabolic profiles of the gut microbiome in two child cohorts. 
Previously, PICRUSt2 was used to investigate the gut microbiome in animal models of multiple  sclerosis49 and 
the gut microbiome of Crohn’s  disease50 but rarely in prospective paediatric cohorts investigating the influence 
of perinatal events on subsequent microbiome composition, its function and later health.

In the present study, we analysed the gut microbiome from samples obtained at the age of 1 year in two 
prospective child cohorts from our  laboratory11,18,51,52. Our predictive machine learning models confirmed the 
results from previous studies that both delivery mode (C-section vs vaginal delivery) and antimicrobial exposure 
at birth influence the abundance of Bacteroides in the gut microbiome in  children1–4,7,10,11. In this study, we 
also report the novel finding that several predicted metabolic pathways linked to amino acid biosynthesis and 
biotin biosynthesis were identified as important when predicting unseen validation samples across the two study 
cohorts. However, both cohorts still showed unique differences not found in the other cohorts when analysed 
independently with machine learning and a traditional approach.

Recently, the machine learning approach has become popular in translational research due to its several 
advantages as compared to conventional statistical analysis. For instance, machine learning has been used 
to predict skin cancer from  images53, type 2 diabetes from health  records54, circumstances of death with the 
 microbiome55 and exercise response to metabolic homeostasis with the  microbiome56. Random forest, a type of 
machine learning algorithm, has been used to differentiate microbiome samples with taxonomic data between 
C-section and vaginally delivered  infants57. Le Goellec et al. used a variety of algorithms, including random 
forest and other decision-tree based algorithms, to predict antibiotic usage and delivery mode from infant gut 
microbiome  samples58. Stewart et al. used random forest models to examine important operational taxonomic 
units in predicting the age of infants in the first 40 months of  life59. In the present study, we report the same 
taxonomic differences found previously. In addition, we report the predicted functional profiles of the gut 
microbiome according to delivery mode and perinatal antibiotic exposure using a machine learning approach. 
Interestingly, transforming the 16S taxonomic data to predicted metabolic pathways using the bioinformatics tool 
PICRUSt2 increased model performance in both cross-cohort and inner-cohort predictions. Previously published 
studies showed poor generalization performance when used to predict samples in a cross-study  way24,36. Similarly, 
our models were unable to predict the C-section or exposure to perinatal antibiotics using only taxa as input. 
Using a tool to predict the metabolic pathway composition of a sample is a form of feature engineering, the 
process of extracting or augmenting the feature space to form new features, which is a commonly used technique 
in machine  learning60,61. Contrary to most feature engineering methods, PICRUSt2 pulls new information from 
an outside source, such as  MetaCyc28 dabase, to transform each feature to many new informative ones. This 
might be one of the reasons why our models had increased performance when using PICRUSt2 enhanced data. 
As such, our results suggest that predicted metabolic pathway composition may be more informative for host 
trait classification problems than taxonomic features alone.

In the present study, we found that mode of delivery and perinatal antibiotic exposure influenced several 
metabolic pathways of the gut microbiome, such as pathways for vitamin B metabolism and fatty acid synthesis. 
Short-chain fatty acids, especially butyrate, likely play an important role in the maintenance of gut  health44. 
Butyrate modulates inflammatory responses and intestinal barrier  function44. Decreased fatty acid synthesis has 
been reported in inflammatory bowel disease using shotgun metagenomics of faecal  samples45 and in  asthma46 
using mass spectrometry of faecal samples for metabolome analysis. Furthermore, changes in butyrate-producing 
bacteria may modulate the function of nervous  systems44,47. Earlier, in a study of 60 infants using metagenome 
sequencing of faecal samples, perinatal antibiotics predicted microbiome alterations, but delivery mode had no 
enduring  effects40. In accordance with our results, a metagenomic study by Chu et al.41 found several similar 
changes in metabolic pathways; intrapartum antibiotic exposure enriched pathways associated with glycolysis 
and pyrimidine metabolism whereas pathways associated with folate and biotin metabolism were decreased.

The strength of the present study is that it demonstrates the successful use of predicted functional metabolic 
profiles based on 16S data in paediatric cohorts. There are many large clinical and translational paediatric 
cohorts with 16S data available, but metagenome sequencing has rarely been done due to constraints of cost and 
availability of whole genome sequencing of the gut microbiome. Metabolic pathways of gut microbiome data 
are more stable and more widely shared between individuals than taxonomic level  data62,63. Thus, the approach 
presented in this study is likely to be more reasonable than mere taxonomic level comparisons. Furthermore, we 
had two prospective cohorts from the same laboratory for the present study. We analysed data with a machine 
learning approach, including cross-cohort comparisons. Our study approach shows possibilities how to utilize 
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gut microbiome 16S datasets in a novel and meaningful way, including cross-study comparisons of functional 
profiles using machine learning.

The main strength of the study is also the main limitation of the study. We do not present actual metagenome 
sequencing data, derived from whole genome sequencing of gut microbiome, or metabolome data, derived 
from mass spectrometry of faecal samples, but rather use predicted functional profiles of the gut microbiome. 
The metabolic pathway genes of the gut microbiome predicted based on 16S data may not express the predicted 
proteins or the metabolites responsible for biological effects. We did not validate our results against metagenome 
sequencing or mass spectrometry, however, high-quality reports of  PICRUSt64,  PICRUSt215,  Piphillin17, and 
 Tax4Fun216 benchmark the methodology against WGS data in varying microbiomes. These studies show, that 
the predicted functional profiles strongly correlate to functional profiles from a WGS approach.

In conclusion, using two prospective paediatric cohorts, perinatal events, both Caesarean section and 
perinatal antibiotics, markedly influenced the functional profiles of the gut microbiome at the age of 1 year. The 
observed changes in metabolic pathways of gut microbiome may potentially influence the later health of children.
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