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Molecular characterization and cell 
type composition deconvolution 
of fibrosis in NAFLD
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Non‑alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease worldwide. In 
adults with NAFLD, fibrosis can develop and progress to liver cirrhosis and liver failure. However, 
the underlying molecular mechanisms of fibrosis progression are not fully understood. Using total 
RNA‑Seq, we investigated the molecular mechanisms of NAFLD and fibrosis. We sequenced liver 
tissue from 143 adults across the full spectrum of fibrosis stage including those with stage 4 fibrosis 
(cirrhosis). We identified gene expression clusters that strongly correlate with fibrosis stage including 
four genes that have been found consistently across previously published transcriptomic studies on 
NASH i.e. COL1A2, EFEMP2, FBLN5 and THBS2. Using cell type deconvolution, we estimated the loss 
of hepatocytes versus gain of hepatic stellate cells, macrophages and cholangiocytes with advancing 
fibrosis stage. Hepatocyte‑specific functional analysis indicated increase of pro‑apoptotic pathways 
and markers of bipotent hepatocyte/cholangiocyte precursors. Regression modelling was used to 
derive predictors of fibrosis stage. This study elucidated molecular and cell composition changes 
associated with increasing fibrosis stage in NAFLD and defined informative gene signatures for the 
disease.

Abbreviations
DE genes  Differentially expressed genes
ECM  Extracellular matrix
GEO  Gene Expression Omnibus
HSC  Hepatic stellate cells
LRT  Likelihood ratio test
NAFLD  Non-alcoholic fatty liver disease
NASH  Non-alcoholic steatohepatitis
PCA  Principal component analysis
scRNA-Seq  Single cell RNA-Sequencing

Non-alcoholic fatty liver disease (NAFLD), or its more severe form, non-alcoholic steatohepatitis (NASH), is a 
leading cause of chronic liver disease and liver-related complications  worldwide1. However, to date, no agency-
approved treatments exist, and therapeutic trials have been challenging, partly because histologic classifications 
from liver biopsies, the gold standard, cannot comprehensively predict disease progression and clinical outcomes 
in heterogeneous patient  populations2,3. Thus, there is an unmet need to understand the underlying molecular 
mechanisms of fibrosis in NAFLD and define reliable biomarkers to complement traditional histologic classifica-
tions and inform therapeutic discovery.
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Transcriptomics of bulk tissue samples is a powerful tool for investigating thousands of features of a single 
tissue sample concurrently. Consequently, transcriptomics of liver biopsies from cohorts of human NAFLD 
patients have revealed molecular profiles that associate with disease  progression4,5. Yet, these studies are based on 
microarray technology, which has been replaced by RNA-Seq as the state-of-the art method for transcriptional 
 profiling6. Furthermore, these studies and the few existing RNA-Seq  studies7–9 are limited by small sample sizes 
which skew toward less advanced fibrosis stages and therefore may not fully represent the hepatic transcriptome 
and the complex intercellular molecular dynamics across the full spectrum of NAFLD-related fibrogenesis. The 
most comprehensive RNA-Seq study in this regard has just been published very  recently10.

Recent advances in single-cell sequencing (scRNA-Seq) can provide cell type-specific molecular profiles 
that contribute to disease  progression11. However, their required cell dissociation protocols and analysis can 
be technically laborious and costly, making it difficult to scale this process to large patient cohorts. Few studies 
have jointly considered bulk and single cell transcriptome profiles from liver samples to examine the complex 
molecular cellular dynamics that define disease severity in human  NAFLD12,13. Computational methods can 
now integrate smaller single cell transcriptome studies as references to de-convolute cell type composition and 
cell type-specific biological profiles of bulk transcriptomic  data14,15. This approach can be reliably scaled to 
investigate the dynamics of cellular composition and cell type-specific gene expression across multiple disease 
stages and large patient  cohorts14.

To contribute and extend these developments, we hypothesized that the hepatic transcriptome harbors dis-
ease-defining gene signatures that can classify fibrosis severity, and that cell type-specific molecular profiles can 
be derived from the bulk transcriptome by computational deconvolution. We probed the hepatic transcriptomes 
from a cohort with liver histology across the full spectrum of fibrosis in NAFLD to identify disease-classifying 
gene profiles and defined candidate gene signatures. We integrated these profiles with publicly available single-cell 
transcriptomic data to characterize changes in cell composition associated with fibrosis severity and evaluated 
the contribution of major cell types within the candidate gene signatures. We identified gene signatures and 
validated them with an independent NAFLD dataset of comparable histologic spectrum. This study provides 
comprehensive insights into molecular, cellular, and functional profiles of fibrosis in NAFLD.

Results
Clinical and histopathologic characteristics. Table  1 summarizes the clinical characteristics of the 
study cohort (n = 143). Mean patient age (years ± SD) ranged from 43.7 ± 11.4 in those with normal histology 
(n = 31) to 60.8 ± 5.9 in those with stage 4 fibrosis. (F4 = 12). Women composed the majority of the cohort, rang-
ing from 90.3% of those with normal liver histology to 50% of those with NAFLD fibrosis stage 3. The mean body 
mass index (BMI) in the cohort ranged from 36.7 to 47.1 kg/m2.

As expected, histological scores, including steatosis grade, hepatocyte ballooning grade, lobular inflamma-
tion grade, NAFLD activity score and fibrosis stage correlated with one another. Histologic covariates are also 
moderately correlated with aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and 
other clinical metrics (such as BMI, diabetes or triglyceride level etc., see Fig. S4a).

Morphometric features complement disease staging and cell type composition in tissue. To 
complement the histopathology based grading of fibrosis, we generated continuous sample-level fibrosis scores 
from digital image features (ImageScore). An overview of the analysis workflow is shown in Fig. S1. The con-

Table 1.  Characteristics of the patient cohort.

Liver histology Normal histology NAFLD fibrosis stage 0 NAFLD fibrosis stage 1 NAFLD fibrosis stage 2 NAFLD fibrosis stage 3 NAFLD fibrosis stage 4

N (%) 31 (21.7) 35 (24.5) 30 (21.0) 27 (18.9) 8 (5.6) 12 (8.4)

Age, years (SD) 43.7 (11.4) 45.1 (12.7) 44.4 (14.5) 44.0 (13.0) 50.4 (9.7) 60.8 (5.9)

Sex, female—yes (%) 28 (90.3) 25 (71.4) 20 (66.7) 19 (70.4) 4 (50.0) 7 (58.3)

Site code—MGH (%) 15 (48.4) 26 (74.3) 21 (70.0) 19 (70.4) 8 (100.0) 11 (91.7)

Biopsy type

Explant 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 8 (66.7)

Extra pass (percutaneous 
biopsy) 0 (0.0) 0 (0.0) 1 (3.3) 0 (0.0) 0 (0.0) 1 (8.3)

Weight loss surgery 
(wedge biopsy) 31 (100.0) 35 (100.0) 29 (96.7) 27 (100.0) 8 (100.0) 3 (25.0)

Diabetes mellitus—yes 
(%) 8 (25.8) 11 (31.4) 12 (40.0) 14 (51.9) 7 (87.5) 9 (75.0)

BMI, kg/m2 (SD) 44.9 (5.9) 46.4 (7.4) 44.0 (7.8) 47.1 (7.3) 42.9 (7.6) 36.7 (4.7)

ALT, U/L (SD) 23.0 (8.8) 36.4 (30.8) 40.2 (19.6) 59.1 (38.9) 53.0 (34.9) 36.8 (20.2)

AST, U/L (SD) 18.5 (8.5) 26.9 (19.6) 29.2 (13.0) 43.7 (23.7) 44.8 (27.6) 50.4 (35.5)

HDL, mg/dL (SD) 47.7 (11.9) 46.4 (12.4) 41.9 (11.3) 38.8 (10.3) 32.6 (7.2) 42.2 (18.8)

Triglycerides, mg/dL 
(SD) 106.5 (50.6) 137.2 (70.3) 137.2 (69.3) 180.1 (inf) 166.9 (56.7) 122.6 (35.0)

NASH, N (%) 0 (0.0) 9 (25.7) 21 (70.0) 26 (96.3) 7 (87.5) 6 (50.0)
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tinuous fibrosis scores correlated well with the standard ordinal fibrosis scores assigned by histopathologists on 
biopsy (Figs. S2, S3). Fig. S2A and S2B depict the PCA score plots of the independent latent variables (tiles) used 
to generate the predictive model. The tiles clustered into four groups and the ratio of tiles in two of these groups 
associated strongly with fibrosis stage (Fig. S2C). This correlation was driven by the abundance of collagen and 
voids (Fig. S2D).

Hepatic gene expression and functional profiles associate with fibrosis. The global data struc-
ture of the 143 samples was examined by PCA. According to Fig. 1A, the first two components of the PCA 
explained 17% and 10% of the observed variation in gene expression, respectively. There was a moderate cluster-
ing of samples with regard to fibrosis stage for advanced stage F3 (lower PC1) and F4 (low PC1 and low PC2). 
We also checked the correlation of all variables with gene expression by PCA analysis (Fig. S4B) and included the 
confounding variables in the DESeq2 model for differential expression (DE) analysis as described in the Meth-
ods. As noted previously, female samples were enriched in the cohort, and although sex was controlled for in the 
analysis, identification of DE genes in this study might be biased towards females because of the sex imbalance. 
Additionally, as age has a low-degree correlation with fibrosis (Kendall rank correlation coefficient 0.16, P value 
0.0065), inclusion of age as one of the control variables may result in some de-regulated genes associated with 
fibrosis remaining undiscovered in this study.

We identified a total of 2215 differentially expressed (DE) genes by combining the results of (1) pairwise com-
parisons between various individual stages using fibrosis stage F0 as the reference group, and (2) LRT analysis 
across fibrosis stages (Fig. 1). While there were no DE genes between F1 and F0, 83 DE genes were identified 
between F0 and normal liver histology, 66 DE genes between F2 and F0, 65 DE genes between F3 and F0, and 882 
DE genes between F4 and F0 (see also volcano plots shown in Fig. S5). LRT analysis reported 2008 DE genes, of 
which 1198 genes were not found in pairwise comparisons. Clustering analysis identified major gene expression 
patterns associated with fibrosis stage as shown in Fig. 1B.

Functional analyses of the upregulated genes (clusters 2 and 3) identified pathways involved in extracellular 
structure organization, neutrophil degranulation, integrin signaling, interleukin signaling (IL-4, IL-13, IL-10), 
platelet activation and aggregation, and proteoglycan metabolism, among others (Fig. 2). In contrast, the down-
regulated gene profiles (clusters 4 and 15) were enriched in homeostatic hepatic functions, including catabolic 
and biosynthetic processes involving small molecules, organic hydroxy compounds, fatty acids and lipids, amino 
acids, and bile acids and salts (Fig. 2).

We further investigated and validated clusters 2 and 3 comprised of genes positively correlated with fibrosis 
stage (Fig. 1B) by comparing them with fibrosis associated gene lists from five previously published transcrip-
tomic studies on NASH versus Non-NASH5,7,8,10,16. An overview of the identified gene sets is given in Table S1. 
Three of these studies have small sample sizes in advanced fibrosis stage and/or are limited to microarray tech-
nology. Accordingly, the size of the gene set that has been reported to be up-regulated with fibrosis is rather 
small in these three studies i.e. 86–112 genes. In contrast, the present study and the two published RNA-Seq 
studies with reasonable sample sizes in advanced fibrosis stage, report quite large sets of > 700 genes that are up-
regulated with fibrosis in  F410 or positively correlated with fibrosis stage F0–F47. As shown in Fig. S6, more than 
50% of the genes from the larger gene sets are exclusively reported by a single study only. However, there is also 

Figure 1.  RNASeq analysis. (A) PCA plot of all samples. Colors represent different fibrosis stages, where N 
corresponds to the Normal group. (B) Gene expression patterns of DE genes. The Z-score represents the scaled 
transformation of the log2 normalized counts. Only clusters with more than 50 genes are represented.
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a reasonable overlap of 117 genes that are reported by all three studies and almost 300 genes that are reported 
by at least two studies.

We also checked the overlap of all six studies listed in Table S1 and found four genes that are reported by all six 
studies namely COL1A2, EFEMP2, FBLN5 and THBS2. All these four genes encode extracellular matrix proteins 
with essential functions in connective tissues as indicated by severe human phenotypes i.e. Osteogenesis imper-
fecta 1 (OI1) [MIM:166200] caused by mutations in COL1A2, Cutis laxa, autosomal recessive, 1B (ARCL1B) 
[MIM:614437] caused by mutations in EFEMP2, Cutis laxa, autosomal dominant, 2 (ADCL2) [MIM:614434] 
caused by mutations in FBLN5, and Intervertebral disc disease (IDD) [MIM:603932] which is associated with 
variations in THBS2.

Inferring cell type composition from bulk RNASeq data. We selected  MuSiC15 for cell type decon-
volution based on recommendations from comprehensive benchmarking  studies17,18. Accordingly, MuSiC does 
not require a priori defined gene lists as input and is one of the preferred methods for cell type deconvolution 
if suitable reference scRNA-Seq datasets are available. For NASH there are two scRNA-Seq reference datasets 
available that cover whole liver cell populations reasonably well in healthy and disease states: One study on 
samples from human patients with cirrhotic livers and patients with healthy  livers12, and one study from mice 
with AMLN diet-induced NASH and chow-diet  controls19. Figure S7 illustrates the excellent performance of 
MuSiC in predicting cell type proportions of major liver cell types from pseudo-bulk samples which have been 
resampled from the two single cell reference sets (see method for details). After re-annotation and alignment 
of the two reference data sets, we observed good agreement of cell type clustering in both datasets (Fig. 3A). To 
validate the integrated reference dataset, we assessed the expression pattern of four well-known marker genes for 
major liver cell types. As shown in Fig. 3B, we observed consistent and cell type specific expression patterns for 
transmembrane 4 L six family member 4 (TM4SF4), transthyretin (TTR ), actin alpha 2 smooth muscle (ACTA2), 
and complement component 1 q subcomponent A chain (C1QA) in cell types annotated as cholangiocytes, in 
hepatocytes, HSCs, and macrophages, respectively. Expression profiles of additional cell type specific markers 

Figure 2.  Gene set enrichment analysis. Enrichment of Reactome pathways by up-regulated (clusters 2 and 3) 
and down-regulated (clusters 4 and 15) DE genes. Colors represents the adjusted P value and the size of each dot 
represents the number of DE genes.
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Figure 3.  Cell composition deconvolution of the liver bulk RNA-Seq data. (A) Combined and integrated 
single cell reference data set (split UMAP view). The previously published human (11) and mouse (25) data 
sets have been re-analyzed, re-annotated, filtered for conserved cell types in both data sets, and finally aligned. 
(B) Validation of cell type annotation in the combined single cell reference by cell type-specific marker genes 
for Cholangiocytes, Hepatocytes, Hepatic Stellate Cells, and Macrophages. (C) Correlation between predicted 
cell type fraction and the continuous fibrosis score (ImageScore). (D) Predicted change of cell type proportions 
across observed NASH fibrosis stage.
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are shown in Fig. S8A. For these four cell types, estimated changes in cell type proportions across fibrosis stage 
are shown in Fig. 3C, D. The largest relative variations were seen in the predicted proportions of cholangiocytes 
and macrophages across the fibrosis stages, with the largest proportions of these cells seen in advanced fibrosis 
(stage 3–4). Overall, the proportions of hepatocytes decreased, whereas proportions of cholangiocytes, HSCs, 
and macrophages increased with increasing fibrosis severity, as determined by both the continuous ImageScore 
(Fig. 3C) and the discrete fibrosis stage (Fig. 3D). Liver endothelial cells and other cell types with less than 5% 
predicted proportion in any fibrosis stage show a very large variability (see Fig. S8B) due to the uncertainty of the 
model prediction. Therefore, these cell types have not been further investigated in the present study.

Differential expression of cell type‑specific profiles in the bulk RNA‑seq data. We determined 
cell type-specific differential expression patterns between advanced fibrosis (F3/F4, N = 20) and non-fibrotic 
NAFLD (F0, N = 66) as shown in Fig. 4. There was a dominant cluster of HSC specific up-regulated genes, with 
only a few down-regulated genes in F3/F4 compared to F0 (Fig. 4A). As shown in Fig. 4B, 34 of the HSC marker 
genes were enriched in cluster 3 from the bulk analysis (Fig. 1B) showing a positive correlation with fibrosis 
stage. On the other hand, the hepatocyte specific fraction was enriched in the bulk gene clusters 1 and 4 that 
are negatively correlated with fibrosis, except for F4 in cluster 1 (Fig. 1B). There is also a small set of genes that 
shows hepatocyte-specific up-regulation in F3/F4 versus normal liver histology according to the deconvolu-
tion model. Interestingly, the functional enrichment analysis indicated that this signature is enriched with pro-
apoptotic genes as shown in Fig. 4C, D. This pathway is also moderately enriched in the HSC specific signature. 
Meanwhile, the cholangiocyte specific signal inferred by the deconvolution method showed no enrichment in 

Figure 4.  Hepatocyte-specific transcriptional up-regulation of apoptosis pathway. (A) Heatmap of cell-type 
specific differential expression, which is estimated by using regression based method with R package omicwas 
(see method for details), shown as log2 fold change per gene (rows) and cell type (columns) in NASH F3/F4 
versus F0/Normal. (B) Heatmap of number of cell type-specific marker genes overlapping with disease clusters 
shown in Fig. 1B. (C) Cell type-specific functional annotation. Significantly enriched categories are marked with 
asterisk. (D) Enrichment plot of apoptosis pathway obtained from Gene Set Enrichment Analysis. Genes were 
ranked by the level of up-regulation (from left to right).
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the bulk gene clusters. Macrophage specific signals showed general up-regulation of genes but were not enriched 
in specific bulk gene clusters.

Candidate hepatic gene signatures predict fibrosis and related biological profiles. To define 
candidate fibrosis signatures from the bulk data, we determined that the composite sample-level gene scores 
from ordinal logistic modelling showed consistency with histological assessment of fibrosis severity (Kendall 
rank correlation coefficient of 0.57 as shown in Fig. 5A). We derived two gene signatures by selecting lambda 
values (the penalty parameter) that resulted in the minimum (98 genes) and a low (26 genes) mean squared 
error in the tenfold cross-validation of lasso regression (Fig. S9A). The two lambdas were validated using fivefold 
cross-validation (Fig. S9B, S9C).

Table 2 contains the two lists of signature genes. The predicted scores for fibrosis severity (referred to as sig-
nature Scores) showed high correlation with the composite sample-level gene scores (Fig. 5B, D for the 26-gene 
and 98-gene signatures, respectively). Additionally, we validated the two progression signatures with the data 
from Hoang et al.7, which comprised a similar spectrum of disease severity. The correlation between the signature 
Scores using the 26-gene signature and histological fibrosis stage was strong and further increased using the 
98-gene signature. Furthermore, 20 genes from the 26-gene signature and 63 genes from the 98-gene signature 
belong to the up-regulated and down-regulated clusters, namely 30 genes from cluster 3, 19 genes from cluster 
2 and 15 genes from cluster 4. We noted few overlapping genes including THBS2 between our candidate signa-
tures and previously reported signatures in  NAFLD7, HIV associated  NAFLD22, and hepatocellular  carcinoma23.

Cell type and functional enrichment in the 98‑gene signature. Within the larger fibrosis signa-
ture, 62 genes demonstrated cell type-specific differential expression in advanced fibrosis (F3/F4), compared to 
non-fibrotic stages (F0). As shown in Fig. 6, two subsets of these genes showed up-regulation in macrophages 
or HSCs, respectively, whereas only two signature genes (MICAL1 and STMN2) showed cholangiocyte-specific 
up-regulation. The largest subset of cell type-specific differential expression was observed in hepatocytes which 
comprised almost exclusively down-regulated genes. Functionally, the signature genes are involved in biological 
pathways annotated in focal adhesion, PI3K-AKT pathway, and PDGF signaling, among others (see Table S3).

Figure 5.  Gene signature. (A) Relationship between composite sample score and fibrosis stage in the NASH 
data. Validation of 26- (B) and 98-gene (C) signatures using data from Hoang et al. (7).

Table 2.  Candidate fibrosis signatures.

Signature Genes

26-gene signature AKR1B1, AL035706.1, ARL4C, ARRDC2, BTG2, COL4A1, COL4A2, CYTOR, EHD4, ERVW-1, FTOP1, GSN, 
HTR2A, IER5, IL27RA, INMT, LINC01725, LPAL2, NFKB2, PKM, S100A4, SOX5, TPM4, TRBC2, VIM, XYLB

98-gene signature

AC004022.2, AC007370.2, AC009974.1, AC093797.1, AC099509.1, ACOX2, ADAMTSL2, ADHFE1, AEN, AIMP1P1, 
AKR1B1, AL035706.1, AL121988.1, AL354890.1, AL359715.1, AL589880.1, AL591848.4, AL713866.1, APOBEC3C, 
ARL4C, ARRDC2, BICD2, BTG2, C2orf91, CDC42SE1, CDNF, COL4A1, COL4A2, COL5A1, CTD-2369P2.2, 
CXCL6, CYP51A1P2, CYTOR, DCAF6, DDI2, DTNA, EHD4, ERVW-1, F11, GLIPR2, GPNMB, GSN, H1-3, HK1, 
HTR2A, ICOS, IER5, IL32, INMT, IRF8, ITGAX, KPNA2, LAMC3, LCP2, LINC00939, LINC01725, LPAL2, MEAF6, 
MICAL1, MIR4435-2HG, NFKB2, NFYC-AS1, PGP, PIK3IP1, PKM, PLK3, PVT1, RASSF2, RGPD3, S100A11, 
S100A4, SERPINB9, SH2D2A, SLC16A10, SLC1A3, SLC1A7, SLC38A11, SMLR1, SOX5, STMN2, STX17-AS1, 
SWAP70, TAGLN2, TCEAL9, THBS2, THEMIS, THRB-IT1, TMEM51, TMSB4XP6, TNFAIP8, TOMM40L, TPM4, 
VIM, VOPP1, VWA7, WIPF1, XYLB, YWHAH
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Figure 6.  Cell type-specific differential expression of the 98-gene signature. The 98-gene signature includes 62 
genes that are included in the cell type-specific marker genes with information on cell type-specific differential 
expression. Color code shows the cell type-specific log2 fold change in NASH F3/F4 versus Non-NASH as 
inferred from the deconvolution analysis. The annotation column on the right indicates the log2 fold change in 
the bulk RNASeq data.
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Discussion
Standard histologic and non-invasive NAFLD indices do not fully capture the complex biological spectrum and 
the heterogenous clinical outcomes in liver fibrosis. Though the underlying biological mechanisms are incom-
pletely  understood20,21, studies using transcriptome sequencing have provided some molecular insights in NAFLD 
and  fibrosis7,9,22. Similarly, advances in single cell technologies allow for unprecedented molecular characteriza-
tion of specific cell types in murine models and human samples from  NAFLD12,13,19,23. In this study, we attempt 
to complement previous work (see Table S1) by including a large cohort of adults with advanced NAFLD, provid-
ing balanced representation across fibrosis stages, and leveraging relevant liver scRNA-Seq studies to identify 
disease-classifying molecular and cell type profiles associated with histologic fibrosis stage. We observed four 
extracellular matrix protein encoding genes (COL1A2, EFEMP2, FBLN5 and THBS2) being up-regulated with 
fibrosis in NASH across all transcriptomic data sets that we have used for comparison with our data (Table S1). 
Interestingly, EFEMP2 (alias FBLN4) and FBLN5 are paralogous genes from the fibulin-like extracellular matrix 
protein family sharing 48% protein sequence identity. The fibulins protein family has five members which are 
characterized by the presence of EGF2-like domains and a C-terminal fibulin-type module. Fibulin-3,-4,-5 have a 
modified calcium binding EGF-like module at their N-terminus and are much smaller compared to fibulin-1 and 
fibulin-224. Both, EFEMP2 and FBLN5 are essential for elastic fiber formation in connective  tissues25,26. Proteom-
ics studies have also shown increased fibulin-5 protein levels with hepatic  fibrosis27 and recent functional studies 
show that fibulin-4 is essential for elastin and collagen fiber crosslinking and extracellular matrix assembly via 
lysyloxidase (LOX)28. THBS2 (thrombospondin-2) also encodes a secreted ECM glycoprotein, which modestly 
correlates with histologic severity of NASH and fibrosis in a recent  study29.

We deconvolved the hepatic transcriptome with a newly derived scRNA-Seq reference dataset. This compu-
tational approach showed increasing proportions of HSCs, macrophages, and transdifferentiated cholangiocytes 
with disease severity while hepatocyte proportion decreased in converse. Two candidate gene signatures reliably 
predicted fibrosis stage and reflected known and plausible biological mechanisms of disease progression. This 
study provides novel molecular insights into NAFLD pathogenesis and surrogates for patient stratification, 
prognosis, and therapeutic discovery.

The hallmark of fibrosis is an aberrant deposition of extracellular matrix (ECM) in response to hepatocyte 
injury through complex molecular processes, which are less understood. These fibrosis-associated molecular 
signals maintain profibrotic cell niches during disease  progression12,30. In this study, the global hepatic transcrip-
tome demonstrated molecular changes associated with fibrogenic processes in NAFLD (Fig. 1). The genes that 
positively correlated with increasing fibrosis stage (i.e. clusters 2 and 3) involved ECM activation and collagen 
processing, angiogenesis, cytoskeletal interactions, immune cell trafficking and inflammation, and platelet acti-
vation/signaling (Fig. 2). Conversely, the genes that inversely correlated with fibrosis stage (clusters 4 and 15) 
involved hepatocyte-specific functions such as metabolism of lipids, fatty acids, and small molecules (Fig. 2). 
These findings underscore important roles for immune cell  trafficking31, platelets activation/signalling32, and 
EMC biology in fibrosis progression and point to a concomittant supression of hepatocyte function as fibrosis 
 progressess33.

Cell type deconvolution with suitable scRNA-Seq reference data demonstrated that these bulk transcriptional 
profiles are driven in large part by changes in the proportions of liver parenchymal and non-parenchymal cell 
populations. The activated gene profiles were largely represented by genes associated with increasing proportions 
of macrophage and HSC whereas the down-regulated genes, functionally enriched with hepatocyte-specific 
pathways are consistent with a continous loss of hepatocyte cell proportions across fibrosis stages (Fig. 3B, C). 
Cell type-specific differentially expressed gene profiles were mostly observed in severe fibrosis F3/F4 compared 
to non-fibrotic patients F0/normal histology (Fig. 4A, B) and enriched in the candidate hepatic gene signatures 
as noted in Fig. 6 and Table S2.

Although the deconvolution model predicted a continous loss of hepatocytes versus other cell types with 
advanced fibrosis stage (Fig. 3B, C) as the major cause of the global downregulation of their metabolically-
related functions (Fig. 2B), a small subset of the hepatocyte-defined genes was differentially up-regulated in 
severe fibrosis (Fig. 4A). This subset was functionally enriched in apoptotic pathways (Fig. 4C, D), which may 
partially explain the observed depletion of hepatocytes in worsening fibrosis. NAFLD results in toxic accumula-
tion of metabolites and unhealthy organelles that drive programmed cell death in  hepatocytes34,35. In addition 
to cell death, it is possible that the observed hepatocyte depletion is secondary to transdifferentiation into 
 cholangiocytes36 or represents a relative reduction versus other cell types i.e. infiltrating immune cells and/or 
increase of hepatic stellate cells. Together, these observations are consistent with recent reports that fibrosis is 
also characterized by distinct niches of bipotent hepatocytes or biphenotypic progenitor cells whose fate depends 
on molecular cues within the diseased  liver37.

We derived two predictive gene signatures that reliably reflected these biological profiles and correlated with 
histologic severity of fibrosis (Fig. 5 and Fig. S9). We focused our functional analyses on the 98 gene signature 
which largely included the 26 set signature as a subset (23 of 26 genes, see Table 2). Over 60% of the signature 
genes showed cell type-specific differential expression (Fig. 6), which underscores its inherent biological and 
predictive potential. The gene signatures were predictive of fibrosis stage when applied to two publicly available 
human NAFLD  datasets7,38. We also compared our candidate signatures with two other published NAFLD fibrosis 
signatures: Only a single gene, ADHFE1, overlaps with the 18-gene fibrosis signature reported  by7, while three 
genes overlap with the 25-genes progression signature derived  by10 i.e. IL32, STMN2, and DTNA. Between the 
two published gene signatures there is one overlapping gene, TNFRSF12A. Interestingly, IL32 has been previ-
ously reported as the top up-regulated liver transcript in  NAFLD39. We also checked the 25-gene signature  from10 
in our cluster analysis, with 17 of the 25 genes corresponding to cluster 2 (CCL20, CFAP221, DTNA, DUSP8, 
IL32, ITGBL1, STMN2, TNFRSF12A), cluster #3 (COL1A1, COL1A2, LTBP2, PDGFA, RGS4, THY1) and cluster 
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5 (AKR1B10, CLIC6, TYMS) of up-regulated genes. PDGFA and AKR1B10 are also the among the top three 
marker genes reported in this study.

Notably, the cell type resolved fibrosis signature shown in Fig. 6 underscores previously described molecular 
influences on the fibrotic  microenvironment12. Molecular cues from damaged hepatocytes activate aberrant 
intercellular cross-talk between heterogenous monocyte-derived macrophage  subpopulations39 and hepatic cells 
to orchestrate a progressive fibrotic  niche12,19,23. Our data identified potential key drivers of these pathways within 
the deconvoluted macrophage, cholangiocyte, HSC, and hepatocyte specific genes in the signature. For example, 
the functional analysis revealed a potential role of pERK-vimentin-KPNA2 signaling genes (VIM and KPNA2) 
within the disease progression signature (see Table S2). This pathway was recently characterized in hepatic 
fibrogenesis, where VIM mediates cytoskeletal crosstalk and signal transduction through the ERK/AKT pathway 
to activate HSCs in  fibrosis40. Consistent with our findings (Fig. 6), monocyte-derived macrophages express 
reasonably high KPNA2 and VIM41, which suggests that infiltrating macrophages also employ this pathway and 
its member genes to promote  fibrogenesis19,23. Other macrophage-annotated genes may play additional roles in 
hepatic cell stemness during persistent inflammatory injury (S100A4)42,43.

Moreover, the most robust functional profiles among these signatures included genes coding for ECM pro-
teins and membrane receptors (Fig. 6 and Table S2), which were largely represented in HSCs (CXCL6, COL4A2, 
COL4A1, LAMC3, BTG2, THBS2) and which are also members of the overrepresented PDGF signaling path-
way (see Table S2) which is known to activate epithelial-mesenchymal transition (EMT) in HSCs and promote 
fibrogenic  signals44.

Together, the hepatic transcriptome revealed DE gene profiles and candidate gene signatures, which were 
highly enriched in pathways that plausibly reprogram HSCs, macrophages, cholangiocytes and hepatocytes 
toward fibrotic states in NAFLD. These proposed dynamics are not well understood and need to be further 
characterized.

We noted that the cell composition changes in this study do not fully reflect the heterogenous plethora of 
additional cell types that drive fibrosis in NAFLD, including liver sinusoidal endothelial cells (LSECs) (13), T 
and B lymphocytes, and other immune cells. Practically, our analysis focused on cell types that were reliably 
represented in the single cell reference datasets as well as the deconvoluted cell type proportions of the bulk 
samples. As scRNA-Seq gains momentum in hepatologic studies to generate more reference datasets, future 
efforts may reliably improve the sensitivity of deconvolution methods and thus resolve additional cell types and 
sub-populations in disease progression. Also, this will allow to replace the mouse single cell reference data by 
human single cell reference data once these are available for all cell types and disease conditions at reasonable 
coverage and resolution. However, this computational approach demonstrates dynamic cell compositions (Fig. 3), 
which define some of the transcriptional and functional profiles associated with fibrosis within our dataset.

Current fibrosis staging standards do not capture the full histologic continuum of liver fibrosis, particularly 
at the boundaries between stages (e.g., F2–F3) where cellular and phenotypic changes cannot be assessed by 
discrete scores. Our digital pathology model supported the deconvolution method by providing continuous 
morphometric scores, which reliably predicted fibrosis stage (Fig. S3) and allowed advanced statistical methods 
to correlate the cell type proportions with histologic stages (Fig. 3C). We acknowledge that digital pathological 
staging is an emerging deep learning technology, which would require larger image sample sizes beyond the 
scope of this  study45.

Given the limiting challenge of acquiring clinically and demographically representative biopsy specimens for 
this observational study, our findings may only reflect the degree of variability and clinicopathologic classifica-
tions within this study cohort. Also, there is a risk of sampling bias due to different types of biopsies in F0–F3 
(mostly derived from wedge biopsies) versus F4 (8 of 11 samples are explant). Nonetheless, compared to prior 
studies, the inclusion of samples from fibrosis at the most advanced stage of the disease improved histologic 
heterogeneity, which provides confidence that our approach has substantial potential to identify and reflect 
targetable pathways in NAFLD.

We are aware that the present study is descriptive and mainly based on the newly generated bulk RNASeq 
and histology data. Some of the observed transcriptional signals are in very good agreement with previously 
published data but the functional consequences of these findings remain to be clarified, as validation using 
orthogonal methods such as single cell RNASeq, RNA or protein in situ, and/or protein quantification assays on 
liver samples from appropriately-powered NAFLD patient cohorts would be required. Nonetheless, based on 
our data, we believe that the RNASeq method is sufficiently robust to not require additional RNA quantitation. 
It will be important for future studies in NASH to provide additional lines of evidence to strengthen the findings 
from the present study.

Herein, we characterized hepatic transcriptional and cell-composition profiles that coordinately associate with 
the histologic continuum of NAFLD fibrosis, to identify hepatic gene signatures that correlate with disease sever-
ity. This study provides an integrated framework to understand cellular and molecular perturbations underlying 
NAFLD fibrosis and inform the discovery of new biomarkers and disease therapies.

Material and methods
Sample collection and histologic evaluation. Subjects were selected from the Massachusetts Gen-
eral Hospital (MGH) NAFLD Cohort. The MGH NAFLD Cohort includes adults with suspected or established 
NAFLD based on imaging or liver histology. Individuals are recruited from the MGH Fatty Liver Clinic, the 
MGH Weight Center in Boston, MA and from the Bon Secours Health System in Richmond, VA. Subjects 
include adults with a standard of care liver biopsy performed at the time of bariatric surgery, adults under-
going a percutaneous liver biopsy for evaluation and staging of NAFLD and patients with NAFLD cirrhosis 
with liver tissue available from liver explant at the time of transplantation. Individuals in the current study 
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were recruited between December 2010 and December 2015. Inclusion criteria were the following (1) men and 
women age ≥ 18 years; (2) alcohol use < 20 g daily for women or < 30 g daily for men and (3) sufficient liver tis-
sue available for RNA sequencing. Those with other causes of chronic liver disease or those with chronic use 
of steatogenic medications including methotrexate, amiodarone, corticosteroids or tamoxifen were excluded.

The majority of subjects (N = 133) underwent bariatric surgery and had standard of care wedge liver biopsies 
performed intra-operatively, 8 subjects had NAFLD cirrhosis and underwent liver transplantation with tis-
sue taken at the time of surgery and 2 underwent a second pass at the time of clinically indicated liver biopsy 
(Table 1). Half of each tissue biopsy was either immediately flash frozen or stored in RNAlater and stored 
at − 80 °C, while the remaining tissue was formalin-fixed and paraffin embedded for pathologic evaluation. A 
single hepatopathologist evaluated most biopsies (N = 117) in a blinded manner while 26 were read by clinical 
pathology. Normal liver histology was defined as < 5% steatosis without evidence of inflammation, hepatocyte 
ballooning or fibrosis. NASH was defined by the predominance of zone 3 macrovesicular steatosis, hepatocyte 
ballooning grade ≥ 1 with or without lobular inflammation as defined by the NASH Clinical Research Network 
(NASH CRN). Patients with steatosis grade > 1 (= > 5%) not meeting criteria for NASH were diagnosed with 
NAFL. The NASH CRN system was used to stage fibrosis on a scale from 0 (absent) to 4 (cirrhosis).

Written informed consent was obtained from each patient included in the study and the study protocol con-
forms to the ethical guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval by the Mass 
General Brigham Human Research Committee.

Morphometric image analysis. Histological liver images were broken down to tiles using Halcon Version 
18 (MVTec Munich). Due to type of biopsy, the number of tiles ranged from less than 10 to more than 500 per 
biopsy image. For each tile, parameters to be used as features were recorded to train the predictive model, includ-
ing compactness of the tissue, compactness of the voids, number of voids, equivalence radius, area of collagen, 
collagen area per tissue area, collagen area per section and void area. A Support Vector Regression (SVR) model 
was fit using the package  e107146. The model was trained using a 20-fold cross-validation round. Observed 
fibrosis scores for normal Stage (N), and F0 to F4 were set to discrete values of − 1, 0.4, respectively. Given that 
each sample image had a variable number of tiles, we down-sampled the number of tiles to six tiles per image. 
To avoid a selection bias, we repeated the down-sampling 100 times. Tiles that were not selected to train the 
algorithm were reserved for the validation stage. For each cross-validation round, we extracted patient-wise 
features by performing PCA using the tiles and taking the median of the PCA scores of the tiles that correspond 
to that patient. The PCA model was trained using the pcaMethods R  package47. During this stage, a fibrosis score 
(designated as imageScore) for each patient was predicted using the tiles of the validation set. Therefore, after the 
training stage of the model, each sample had 100 different predicted imageScores. We used the median of these 
100 values as the final imageScore for the assessment of fibrosis severity (see Figs. S2, S3). We used the continu-
ous score from the morphometric image analysis to check the consistency of the pathologist-assigned fibrosis 
score and to assess the change in predicted cell type decomposition by deconvolution. For differential expression 
analysis, we used the pathologist assigned fibrosis scores.

RNA‑seq analysis. Total RNA was extracted using MagMax AM1830 kit (Fisher Scientific GmbH, Schw-
erte, Germany) and reverse-transcribed with 100 ng RNA using TruSeq Stranded Total RNA LT Sample Prep 
Kit with Ribo-ZeroTM H/M/R (Order # RS-122–2202, Illumina Inc, San Diego, CA, USA). This kit transcribes 
protein coding, non-coding and non-polyadenylated RNAs while cytoplasmic ribosomal RNA is depleted. The 
sequencing libraries were built according to manufacturer’s procedures. Sequencing was carried out at a depth 
of 50–55 million reads on two Illumina HiSeq systems (HiSeq 3000 for batch 1–3; HiSeq 4000 for batch 4 and 5). 
The Illumina TruSeq methods (cluster kit TruSeq SR Cluster Kit v3-cBot GD-410-1001, sequencing kit TruSeq 
SBS Kit HS- v3 50-cycle FC-410-1001) were applied as 85 bp, single reads and 8 bases index read.

The sequencing data were processed using the bcbio-nextgen RNA-Seq analysis  pipeline48. Reads were 
mapped to reference genome hg19 using STAR 49 for quality assessment and to the transcriptome using  Salmon50 
for quantification. Covariates with significant correlations with gene expression variation based on principal 
components analysis (PCA) (Fig. S4) were identified and controlled for further downstream analysis. Accord-
ingly, batch, site code, age, sex, race, intergenic rate, rRNA rate, and RNA integrity number (RIN) were included 
in the linear model for differential expression (DE) analysis, which was restricted to protein coding genes. DE 
genes were identified using  DESeq251 in comparisons between fibrosis stage 0 and Normal liver histology, and 
between each fibrosis stage of 1, 2, 3, 4 and stage 0. In addition, a likelihood ratio test (LRT) was performed using 
the fibrosis stage as a model variable to detect genes only explained when the fibrosis stage variable was included 
in the model. Gene expression patterns for DE genes were computed and visualized using the DEGreport R 
 package52. Functional analysis was performed in R using  ReactomePA53,  clusterProfiler54 for the DE genes, and 
g:Profiler for the signature gene  set55, using a false discovery rate (FDR) threshold of less than 0.05 for statistical 
significance. Sequencing raw data is available at the GEO with accession number GSE162694.

Cell type deconvolution of liver bulk RNASeq. Based on the performance of the cell type proportion 
predictions from pseudo-bulk  mixtures1, we employed  MuSiC15,17, which applies weighting of genes according 
to cross-subject and cross-cell consistency. We validated the deconvolution method and generated a combined 
human and mouse single cell reference data set for our approach as described in the Supplemental method sec-
tion. To estimate cell type-specific differential expression based on predicted cell type proportions, we applied 
a regression-based method implemented in the omicwas R  package56. We combined fibrosis stages 3 and 4 as 
the disease group denoting advanced fibrosis, and stage 0 fibrosis and normal liver histology as the control, 
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non-fibrotic group. With raw expression as TPM, cell type-specific differential expression between disease and 
control groups was identified by the ctassoc function, while controlling for sex as a confounder.

Identification of gene signatures associated with fibrosis stage. We adapted the method by Hoang 
et al.7 to define a gene signature that associates with fibrosis stage. Briefly, we modelled the relationship between 
the clinical classification of fibrosis stage and each gene’s expression level by fitting an ordinal logistic regression 
model using the variance stabilizing transformation (VST) data from  DESeq251. In contrast to the differential 
expression and functional analysis, we included also non-coding genes in this model. A weighted gene-level 
score was calculated based on the fitted model for each gene and each sample. Genes were ranked by the coef-
ficient of variation of the gene-level scores, and the mean of the top 1000 genes was calculated to obtain a sample-
level score indicative of fibrosis severity. Next, the composite sample-level scores were used to fit a lasso regres-
sion against gene expression. Lambda, the regularization penalty parameter was chosen to achieve a desirable 
number of predictor genes based on the results of k-fold cross-validation. We verified that the gene signatures 
were predictive of fibrosis stage using independent NAFLD RNA-Seq data sets from Hoang et al.7 and Fourman 
et al38 (data not shown). We also assessed the extent of enrichment of the deconvolved cell type-specific genes 
within the signatures.

For systematic review of previously published sets of genes that are up-regulated with fibrosis in NASH we 
screened the literature and gene expression repositories (GEO and ArrayExpress). We included all studies with 
reasonable sample size of biopsy confirmed patients with NASH and fibrosis and accessible primary data.

Data availability
Raw RNASeq bulk data of the human NASH samples from the present study is available under the Gene Expres-
sion Omnibus (GEO) deposition number GSE162694. In addition, we re-processed data from the following 
previously published data sets: Single cell reference data set for Human liver cirrhosis (12): GSE136103. Single 
cell reference data set for mouse NASH model (18):(18): GSE129516. Source code to run the morphometric 
image analysis and cell type deconvolution can be obtained on request to the authors.
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