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Screening and predicting 
progression from high‑risk 
mild cognitive impairment 
to Alzheimer’s disease
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Hong‑Mei Yu1,4*

Individuals with mild cognitive impairment (MCI) are clinically heterogeneous, with different risks 
of progression to Alzheimer’s disease. Regular follow‑up and examination may be time‑consuming 
and costly, especially for MRI and PET. Therefore, it is necessary to identify a more precise MRI 
population. In this study, a two‑stage screening frame was proposed for evaluating the predictive 
utility of additional MRI measurements among high‑risk MCI subjects. In the first stage, the K‑means 
cluster was performed for trajectory‑template based on two clinical assessments. In the second stage, 
high‑risk individuals were filtered out and imputed into prognosis models with varying strategies. 
As a result, the ADAS‑13 was more sensitive for filtering out high‑risk individuals among patients 
with MCI. The optimal model included a change rate of clinical assessments and three neuroimaging 
measurements and was significantly associated with a net reclassification improvement (NRI) of 0.246 
(95% CI 0.021, 0.848) and integrated discrimination improvement (IDI) of 0.090 (95% CI − 0.062, 0.170). 
The ADAS‑13 longitudinal models had the best discrimination performance (Optimism‑corrected 
concordance index = 0.830), as validated by the bootstrap method. Considering the limited medical 
and financial resources, our findings recommend follow‑up MRI examination 1 year after identification 
for high‑risk individuals, while regular clinical assessments for low‑risk individuals.

Alzheimer’s disease (AD) is the most common cause of dementia in developing countries and is expected to affect 
1 in 85 people worldwide by the year  20501. Mild cognitive impairment (MCI) is a transitional stage between 
normal cognition and dementia, and MCI patients are commonly enrolled as the target population for evaluating 
prognosis and early intervention for  dementia2,3. Moreover, individuals with MCI are clinically heterogeneous, 
with different risks of progression to  AD4. Therefore, identifying patients with MCI who are at risk of progression 
to AD and improving the prognosis of MCI is of vital importance in the personalised clinical management of AD.

Existing studies have used multimodal information, including neurocognitive, magnetic resonance imaging 
(MRI), CSF-based, and positron emission tomography (PET) markers for binary classification  modeling5–7. 
Although these studies have shown high classification accuracy, some approaches are often unavailable in the 
primary clinical setting, considering the cost and invasiveness of the procedures. Numerous convenient medical 
checks, such as neuropsychological tests, are preferred in primary  screening8–10. Advanced examination tech-
nologies should be considered only when they are necessary for more precise diagnosis; otherwise, their value 
in the predictive model may be offset by their inconvenience. To maximise the value of these advanced detection 
methods and to reduce the burden on patients, it is necessary to focus on those at high risk of developing  AD11–14.

Additionally, many studies predicted the probability of conversion from MCI to AD as a binary response 
at a fixed time point (i.e., 3 years or 5 years), which did not consider the time interval during the conversion. 
Some studies used Cox regression models to investigate the time of the development from MCI to AD during 
follow-up15–17; however, most of these studies evaluated the predictive effect of single or combined prognostic 
markers only at the  baseline18. In actual clinical practice, we often collect follow-up information on prognostic 
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markers, such as the cognitive assessment and MRI examinations. It is necessary to make full use of these follow-
up information to predict the progression of MCI.

In the current study, we constructed a two-stage screening frame for individuals with MCI and evaluated 
the prognostic value of MRI in high-risk subjects with MCI. In stage I, we built the Alzheimer Disease Assess-
ment Scale Cognitive 13 items (ADAS-13) and Mini Mental State Examination (MMSE) trajectory-templates 
of cognitive decline. In stage II, two trajectory-templates were used to filter out high-risk MCI subjects. Then, 
these subjects were inputted into the prognosis models which were constructed with different strategies for the 
two groups.

Results
Demographics. Table 1 shows the baseline demographic characteristics (age, gender, marital status, and 
education), genetic information (ApoEε4), clinical assessment scores (ADAS-13_bl, MMSE_bl, and the baseline 
of Clinical Dementia Rating Sum of Boxes (CDRSB_bl)), and trajectory label (ADAS-13 trajectory label, MMSE 
trajectory label) of subjects in two stages. Of the 85 subjects in stage I (trajectory dataset), 35 (41.2%) pro-
gressed to AD over the 3 years of follow-up, with the mean time to onset of AD being 20.4 ± 8.5 months (range 
6.0–36.0 months). In stage II, 80 MCI subjects (21.4%) progressed to AD over 3 years, with the mean time to 
onset of AD being 20.4 ± 10.7 months (range 6.0–36.0 months).

Stage I: Trajectory modelling. K-means clustering based on ADAS-13 and MMSE separately generated 
two clusters, namely high-risk and low-risk (Fig. 1). Higher ADAS-13 scores and lower MMSE scores resulted in 
a higher risk of cognitive decline from MCI to AD. We used trajectory-templates to assign a trajectory label to 
the 374 patients according to the Euclidean proximity computed from all available time points.

Stage II: Performance of the MCI prognosis models. The subjects labelled with high-risk MCI were 
filtered out and may be prone to developing AD. Table 2 summarises the baseline characteristics and six change 
rate predictors in the first year of the high-risk MCI patients stratified by dementia status at 3 years. In the ADAS-
13 predictive datasets, the groups with and without dementia differed significantly with respect to CDRSB_bl, 
�CDRSB, �Hippocampus, �WholeBrain, but had similar distributions of age, sex, marital status, education, 
ApoEε4, MMSE_bl, ADAS-13_bl, Hippocampus_bl, WholeBrain_bl, Entorhinal_bl, �MMSE, �ADAS-13, and 

Table 1.  Baseline characteristics of subjects in two stages. ADAS-13, Alzheimer Disease Assessment Scale 
Cognitive 13 items; MMSE, mini mental state examination; ADAS-13_bl, Alzheimer Disease Assessment Scale 
Cognitive 13 items at Baseline; MMSE_bl, mini mental state examination at Baseline; CDRSB_bl, Clinical 
Dementia Rating Sum of Boxes at Baseline; SD, standard deviation.

Characteristics

Mean (SD) or N (%)

Stage I: ADNI-1 (N = 85) Stage II: ADNI GO/2 (N = 374)

Age (year) 74.2 (6.9) 71.2 (7.4)

Gender

Male 61 (71.8) 206 (55.1)

Female 24 (28.2) 168 (44.9)

Marital status

Married 73 (85.9) 278 (74.3)

Divorced 2 (2.4) 43 (11.5)

Others 10 (11.8) 53 (14.2)

Education

Medium 0 (0.0) 2 (0.5)

High 85 (100.0) 372 (99.5)

ApoEε4

Absent 36 (42.4) 199 (53.2)

Present 49 (57.7) 175 (46.8)

ADAS-13 Trajectory Label

Low-risk 44 (51.8) 264 (70.6)

High-risk 41 (48.2) 110 (29.4)

MMSE Trajectory Label

High-risk 50 (58.8) 92 (24.6)

Low-risk 35 (41.2) 282 (75.4)

ADAS-13_bl 30.3 (17.0) 14.5 (6.4)

MMSE_bl 27.5 (1.6) 28.1 (1.7)

CDRSB_bl 1.6 (0.9) 1.4 (0.9)

Total 85 374
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Figure 1.  Clinical score distributions at each timepoint for the different trajectories derived from the K-means 
clustering (N = 85). The mean scores at each timepoint are used to build a template for each trajectory class. (a) 
Trajectory based on ADAS-13; (b) trajectory based on MMSE.

Table 2.  Predictors of high-risk patients with MCI based on ADAS-13 (N = 110) and MMSE (N = 92) 
predictive datasets, stratified by dementia status over 3 years of follow-up. ADAS-13_bl, Alzheimer Disease 
Assessment Scale Cognitive 13 items at Baseline; MMSE_bl, Mini mental state examination at Baseline; 
CDRSB_bl, Clinical Dementia Rating Sum of Boxes at Baseline; ∆ADAS-13, (ADAS-13_M12 − ADAS-
13_bl)/1 year; ∆MMSE, (MMSE_M12 − MMSE_bl)/1 year; ∆CDRSB, (CDRSB_M12 − CDRSB_bl)/1 year; 
Hippocampus_bl, The Total Volumes of The Hippocampus at Baseline; WholeBrain_bl, Whole Brain at 
Baseline; Entorhinal_bl, Entorhinal Cortex at Baseline; ∆Hippocampus, (Hippocampus _M12 − Hippocampus 
_bl)/1 year; ∆WholeBrain, (WholeBrain _M12 − WholeBrain _bl)/1 year; ∆Entorhinal, (Entorhinal _
M12 − Entorhinal _bl)/1 year; SD, Standard deviation. **P < 0.001; *P < 0.05.

Characteristics

ADAS-13 predictive dataset (N = 110)
Mean (SD) or N (%)

MMSE predictive dataset (N = 92)
Mean (SD) or N (%)

No dementia (N = 44) Dementia (N = 66) No dementia (N = 35) Dementia (N = 57)

Age (year) 74.3 (1.9) 71.9 (7.4) 75.1 (6.8) 72.6 (6.9)

Gender

Male 27 (61.4) 35 (53.0) 22 (63.9) 33 (57.9)

Female 17 (38.6) 31 (47.0) 13 (37.1) 24 (42.1)

Marital status

Married 34 (77.3) 53 (80.3) 28 (80.0) 47 (82.5)

Divorced 2 (4.5) 4 (6.1) 2 (5.7) 4 (7.0)

Others 8 (18.2) 9 (13.6) 5 (14.3) 6 (10.5)

Education

Medium 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

High 44 (100.0) 66 (100.0) 35 (100.0) 57 (100.0)

ApoEε4

Absent 21 (47.7) 21 (31.8) 13 (37.1) 17 (29.8)

Present 23 (52.3) 45 (68.2) 22 (62.9) 40 (70.2)

ADAS-13_bl 20.7 (4.0) 22.4 (5.4) 19.2 (5.0) 22.2 (6.0)*

MMSE_bl 27.6 (1.7) 27.1 (1.7) 26.5 (1.5) 26.7 (1.6)

CDRSB_bl 1.5 (0.8) 2.2(1.0)** 1.5 (0.8) 2.2 (0.9)*

Hippocampus_bl  (cm3) 6.4 (1.0) 6.4 (1.0) 6.5 (1.0) 6.4 (1.0)

WholeBrain_bl  (cm3) 1042.3(105.1) 1048.3(114.6) 1033.2(100.8) 1052.0 116.6)

Entorhinal_bl  (cm3) 3.5 (0.6) 3.3 (0.7) 3.5 (0.6) 3.3 (0.7)

�ADAS-13 − 0.2 (4.9) 2.4 (4.2) − 0.1 (5.9) 2.7 (4.6)

�MMSE − 1.3 (2.1) − 1.5 (1.9) − 1.1 (1.8) − 1.6 (1.9)*

�CDRSB 0.3 (0.8) 1.0(1.1) ** 0.4 (0.9) 1.0 (1.1)*

�Hippocampus  (cm3/year) − 0.1 (0.3) − 0.3 (0.2) * − 0.2 (0.2) − 0.3 (0.2)*

�WholeBrain  (cm3/year) − 5.4 (14.5) − 15.6 (10.8)** − 6.6 (15.8) − 15.8(11.6)*

�Entorhinal  (cm3/year) − 0.1 (0.3) − 0.2 (0.3) − 0.1 (0.3) − 0.2 (0.3)
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�Entorhinal. In the MMSE predictive dataset, the groups with and without dementia were significantly different 
with respect to ADAS-13_bl and �MMSE, while the other results were consistent with those of the ADAS-13 
predictive datasets.

Cox proportional hazards regression models were developed using all available data under different strategies 
for the 3-year progression to AD prediction. Five Cox models based on the ADAS-13 (MMSE) prediction dataset 
are shown in Supplementary Table S1 (Supplementary Table S2), with their hazard ratios and 95% confidence 
intervals (CIs).

For the ADAS-13 base model, we incorporated seven conventional risk factors into the baseline model A1 
but found that only ADAS-13_bl was a significant predictor. The extended model A1+ baseline MRI with the 
addition of three baseline MRI measurements, and there were five significant predictors including age, marital 
status, CDRSB_bl, MMSE_bl, and ADAS-13_bl. As shown in Fig. 2, the concordance index (C-index) of model 
A1+ baseline MRI clearly increased with the inclusion of three baseline MRI measurements. Meanwhile, the NRI 
was 0.123 (95% CI 0.045, 0.664), indicating that the predictive performance of model A1+ baseline MRI improved 
by 12.3% compared to that of model A1 (Table 3). The IDI was 0.003, and the confidence interval included zero.

For the ADAS-13 longitudinal model, we added three change rates of clinical assessments in the longitudinal 
model A2, the significant variables were age, CDRSB_bl, ADAS-13_bl, �CDRSB, and �ADAS-13. A2+ baseline 
MRI included three baseline MRI imaging measurements based on A2, although these three neuroimaging vari-
ables were not significant in predicting the progression of MCI subjects, the discrimination performance of the 
A2+ baseline MRI was slightly improved as measured by the C-index. Similarly, three additional changes in MRI 
imaging measurements were incorporated into A2, resulting in six significant predictors in the model A2+ �
MRI (age, CDRSB_bl, ADAS-13_bl, �CDRSB, �WholeBrain, and �Entorhinal). Figure 2 shows that the C-index 

Figure 2.  The concordance index (C-index) of models using different strategies to predict progression 
to dementia within 3 years. (a) The concordance index of ADAS-13 predictive dataset (N = 110); (b) the 
concordance index of MMSE predictive dataset (N = 92); (c) the concordance index of ADAS-13 predictive 
dataset by internet validation (bootstrap) (N = 110); (d) The concordance index of MMSE predictive dataset by 
internet validation (bootstrap) (N = 92).
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of model A2+ �MRI was the highest, and it slightly increased with the inclusion of three change values of MRI 
imaging measurements compared to A2. Meanwhile, the NRI was 0.246 (95% CI 0.021, 0.848), and the IDI was 
0.090 (95% CI − 0.094, 0.209). This indicated that the predictive performance of model A2+ �MRI improved by 
24.6% compared to that of model A2 (Table 3) by NRI. We undertook internal validation by bootstrap, and the 
longitudinal model A2+ ∆MRI had the best discrimination performance (Optimism-corrected c-index = 0.830) 
(Supplementary Table S3).

For the MMSE base model, the Cox model was built using a similar strategy. As shown in Fig. 2, the extended 
model M1+ baseline MRI clearly increased with the inclusion of three baseline MRI measurements. Both the 
NRI and IDI indices were positive, but the confidence interval included zero.

For the MMSE longitudinal model, the C-index of the extended model M2+ baseline MRI with additional 
three baseline MRI imaging measurements increased significantly (Fig. 2). Both the NRI and IDI indices were 
positive, although the confidence interval did not include zero (Table 3). Figure 2 shows that the C-index of model 
M2+ baseline MRI was the highest. It did not increase with the inclusion of three change rates of MRI measure-
ments in the validation of the data. Meanwhile, the longitudinal model M2+ baseline MRI validated by bootstrap 
had the best discrimination performance (Optimism-corrected c-index = 0.802) (Supplementary Table S3).

Moreover, to compare the change rate in the first year, we also computed for the cognitive decline rate in the 
second year and acceleration in the first 2 years (Fig. 2). The Cox model incorporating the change rate in the first 
year had the best predictive performance, except for M2. A2+ �MRI, including the change rates of clinical assess-
ment scores and MRI measurements, showed the best performance of the prognosis model for patients with MCI.

Discussion
In this study, we constructed and validated a two-stage screening frame for subjects with MCI at an increased 
risk of developing AD in 3 years.

Previous studies have indicated that clinical assessment tests are excellent at predicting patients with MCI 
progressing to AD and should be a critical component of identifying AD at the predementia  stage19. In addi-
tion, there was a significant improvement in classifying MCI that were at risk using the duration of follow-up20. 
We enrolled subjects assessed by clinical assessments at seven time points over 5 years to characterise the MCI 
progression trajectory.

Considering the heterogeneity of MCI progression, we chose two clusters for the ADAS-13 and MMSE. The 
clustering yielded two groups, namely the high-risk and low-risk group, which reflected the different risks of 
progression to AD (see Fig. 3). The number of clusters depended not only on the data-driven approach but also 
on the desired specificity of the trajectory. Higher ADAS-13 scores and lower MMSE scores indicate a higher 
risk of conversion to  AD21. Trajectory labels were used to filter out high-risk patients with MCI. Several stud-
ies have utilised hierarchical clustering to identify target populations, but they considered trajectory labels as 
the goal of the predictive  task22–24. This strategy has three advantages. First, the trajectory labels characterised 
the progression of MCI without being restricted by strict cut-offs, defining a specific time window. Second, the 
trajectory-templates could assign a trajectory label for subjects with missing follow-up  data22; in other words, 
the technique provides a method for solving the problem of missing time points in a longitudinal study. Third, 
the trajectory labels can be used to predict the risk of AD onset at an individual level and provide a screening 
strategy for high-risk patients with  MCI25. This may have useful clinical implications for more precise disease 
management and personalised interventions.

Considering the two different progression trajectories of MCI, we filtered out high-risk patients who tended 
to develop cognitive decline and may progress to AD in the future. Cox models were developed to evaluate 
the value of additional MRI measurements for a 3-year prognosis model. The results imply that models with 
additional MRI measurements could improve predictive performance. Therefore, high-risk patients with MCI 
should be recommended for a follow-up MRI 1 year later. Several studies have evaluated the predictive utility 
of prognostic markers, but only focused on baseline  measurements15. One study developed a joint modelling of 
longitudinal markers and a time-to-event data method to evaluate the effects of longitudinal markers. However, 
this method only analysed each marker  independently18. We transformed the longitudinal predictors for change 

Table 3.  Performance of prognosis models among high-risk patients with MCI. A1, ADAS-13 baseline 
Prognosis Model; A2, ADAS-13 longitudinal Prognosis Model; M1, MMSE baseline Prognosis Model; 
M2, MMSE longitudinal Prognosis Model. ADAS-13, Alzheimer Disease Assessment Scale Cognitive 13 
items; MMSE, Mini mental state examination; NRI, Net Reclassification Improvement; IDI, Integrated 
Discrimination Improvement. Values based on the following assumptions: Risk of event = 10%. *The indices 
are statistically significant.

Predictive dataset Prognosis model NRI (95% CI) IDI (95% CI)

ADAS-13 (N = 110)

A1+ baseline MRI versus A1 0.123 (0.045, 0.664)* 0.003 (− 0.118, 0.093)

A2+ baseline MRI versus A2 − 0.062 (− 0.074, 0.391) 0.006 (− 0.172, 0.172)

A2+ ∆MRI versus A2 0.246 (0.021, 0.848)* 0.090 (− 0.094, 0.209)

MMSE (N = 92)

M1+ baseline MRI versus M1 0.177 (− 0.035, 0.902) 0.008 (− 0.085, 0.087)

M2+ baseline MRI versus M2 0.201 (− 0.046, 0.685) 0.005 (− 0.148, 0.107)

M2+ ∆MRI versus M2 0.489 (− 0.132, 0.878) 0.065 (− 0.062, 0.170)
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rate and constructed base and longitudinal prognosis models including multiple predictors for different clinical 
application scenarios.

In the current study, the predictive performance of the baseline model (A1, A1+ baseline MRI) was lower 
than that of the longitudinal model (A2, A2+ baseline MRI, and A2+ �MRI) according to the C-index (see 
Fig. 2). Similarly, the predictive performance of the baseline model (M1, M1+ baseline MRI) was lower than 
that of the longitudinal model (M2+ baseline MRI, M2+ �MRI) (see Fig. 2). As CDRSB_bl did not satisfy the 
proportional hazards assumption in models A1, M1, and M2, we translated the continuous variable CDRSB_bl 
into the categorical variable (CDRSB_bl1) using X-tile software. The stratified Cox models were then performed 
using CDRSB_bl1 in models A1, M1, and M2 and by marital status in A2.

Overall, the ADAS-13 longitudinal model has better performance than that of MMSE. The results indicate 
that ADAS-13 is more sensitive in classifying patients with MCI and filtering out high-risk individuals. Fur-
thermore, the A2+ �MRI model had the best predictive performance for progression to AD among high-risk 
patients with MCI. There were six significant variables in A2+ �MRI, including age, CDRSB_bl, ADAS-13_bl, 
�CDRSB, �WhileBrain, and �Entorhinal. We computed the change rate in the first year simply and avoided the 
longitudinal variables that needed complex technology. Meanwhile, it is helpful to find an interpretable marker 
in the early stage. In model A2+ �MRI, �WholeBrain and �Entorhinal significantly improved the predictive 
performance for AD over a 3-year follow-up. Several studies have also shown that atrophy estimates in charac-
teristically vulnerable brain regions, such as the hippocampus and entorhinal cortex, reflect the disease stage 
and are predictive of progression of MCI to  AD26.

Here, we propose a two-stage screening framework for MCI subjects facing the risk of AD. The trajectory-
template could classify the subjects with MCI into high-risk and low-risk groups at the individual level. When 
an individual with MCI is predicted to be high-risk, more assessments and additional MRI 1 year later and 
personalised interventions would be recommended by the clinician. Otherwise, low-risk MCI subjects should 
be considered for regular clinical assessment. The goal of prognosis models is to provide a simple and accurate 
tool to forecast the risk of high-risk patients progressing to AD in 3  years27. In short, this strategy could facili-
tate decision-making pertaining to the frequency and monitoring methods that should be conducted in MCI 
 individuals12,28. Additionally, it also saves multiple medical resources and reduces the patient’s burden.

This study has some limitations. First, the ADNI cohorts may not represent the general population, and most 
of the subjects were well-educated. Next, because of the two-stage design of the screening frame, only high-risk 
patients were filtered out according to the trajectory labels. Because of the small sample size used for progno-
sis models, we ran the analyses on the entire sample, instead of splitting the sample into training and testing 
 datasets29. However, the performance of the prognosis models was evaluated via internal validation (bootstrap 
method). Bootstrapping is an attractive method for internal validation, and it uses the entire dataset for model 
development and provides nearly unbiased estimates of predictive  accuracy30. Whether MRI enhances prediction 
in other dementia risk models requires further independent validation. Finally, we did not consider the specific 
money and time saved using this method, but this is our future work.

The key strength of this study is that it is a two-stage screening strategy for MCI patients, which is likely to 
have clinical utility and save on medical resources. In future studies, we may explore additional MRI clinical 
application scenarios for different targeting populations.

In conclusion, the study indicated that follow-up MRI examination is recommended 1 year after identification 
for high-risk patients, and regular clinical cognitive assessments for low-risk MCI patients, especially consider-
ing limited medical and financial resources. We believe that this work will further motivate the exploration of 
multimodal longitudinal prognosis models, which will improve prognostic predictions in MCI.

Figure 3.  Kaplan–Meier curves for 3-year progression to AD in MCI based on ADAS-13 (N = 110) and MMSE 
(N = 92) predictive dataset. (a) ADAS-13 Trajectory Label; (b) MMSE Trajectory Label.
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Materials and methods
Datasets and subjects. The data used in this study were downloaded from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (http:// adni. loni. usc. edu/). The ADNI was launched in 2003, and the 
primary goal of ADNI was to test whether serial clinical assessments, neuropsychological assessments, MRI, 
PET, and other biological markers can be combined to measure the progression of MCI and early AD. Detailed 
information regarding the ADNI study procedures, including participant inclusion and exclusion criteria, can 
be found at http:// www. adni- info. org. As part of the ADNI, subjects with MCI were assessed using the ADAS-13 
and MMSE at baseline and at 6, 12, 24, 36, 48, and 60 months. For stage I modelling, 85 ADNI-1 subjects with 
MCI were included in the trajectory dataset, which was used to build trajectory-templates of cognitive decline. 
For stage II, 374 subjects with MCI from ADNI GO/2 with two clinical assessments in at least four time points 
over 5 years were assigned trajectory labels. MCI subjects labelled as high-risk were filtered out and included in 
the predictive dataset. The ADNI was approved by the institutional review board of each participating site. All 
participants provided written informed consent. For more information, see http:// www. adni- info. org. This study 
was approved by the ethics committee of Shanxi Medical University. All methods were carried out in accordance 
with relevant guidelines and regulation. We considered all these subjects as MCI patients in our analysis. The 
criteria for MCI diagnosis were the same as those defined by Hojjati et al.31.

Measures. In the present study, the potential prognostic factors were clinical assessment and MRI measure-
ments at baseline and their change rate in the first year. The Alzheimer Disease Assessment Scale Cognitive 
(ADAS-Cog) is a widely used clinical assessment tool for evaluating the cognitive characteristics of AD. The 
ADAS-13 is the total score of 13 items ranging from 0 to 85, with higher scores indicating poorer cognitive 
function. The MMSE includes 11 questions with scores ranging from 0 to 30, with lower scores reflecting more 
severe cognitive  impairment10. The Clinical Dementia Rating Scale (CDR) is widely used for the detection and 
severity classification of AD. We usually calculated the Clinical Dementia Rating Sum of Boxes (CDRSB) rang-
ing from 0 to 18, with higher scores indicating more severe  dementia32,33. Evidence supports the usefulness of 
CDR in detecting MCI and dementia. CDR should be considered for staging cognitive impairment in at-risk 
 populations34. Three structural MRI measurements associated with cognitive decline and dementia, the total 
volumes of the hippocampus, whole brain, and entorhinal cortex were selected for  analysis29,35. The details of the 
MRI protocols used to acquire the image datasets in the ADNI project can be found at http:// adni. loni. usc. edu/ 
metho ds/ docum ents/. Demographic data and apolipoprotein E (ApoE) ε4 allele status (present or absent) were 
collected at the baseline visit.

Stage I: Trajectory modelling. The progression trajectory was characterised using multiple-timepoint 
clinical assessment scores, including the ADAS-13 and MMSE  scales22,36. The trajectory dataset was used as the 
input for K-means clustering. The Euclidean distance between the longitudinal clinical assessment score vectors 
was used as a similarity metric, and Ward’s method was used as a linkage criterion for clustering. The average 
clinical assessment scores from each cluster at each time point were used as trajectory templates for each class.

Stage II: Construction and evaluation of the MCI prognosis models. The trajectory template was 
used to assign a trajectory label for the 374 ADNI-GO/2 MCI subjects. High-risk MCI subjects were filtered 
out according to the ADAS-13 and MMSE trajectories (n = 110 and 92, respectively). To evaluate the benefit of 
MRI measurements for predicting the conversion of MCI, we developed 3-year survival models using high-risk 
patients. The main outcome of the prognosis model was AD that was first diagnosed during follow-up. Multi-
variate models were calculated using the Cox proportional hazards regression analysis. The proportional hazards 
assumption was tested in R, and the variable that did not satisfy the assumption was input into the model as a 
stratified variable. For convenience, the first letter of the ADAS-13 and MMSE was used to distinguish between 
the two different predictive datasets. The abbreviations are used to represent the different prognosis models. 
Models A1 and A2 indicate baseline and longitudinal models for ADAS-13, while Models M1 and M2 indicate 
baseline and longitudinal models for MMSE. The extended models were renamed according to the increased 
variables compared to the baseline and longitudinal models (Table 4). Considering the longitudinal nature, we 
computed the change rate of clinical assessment scores ( �ADAS-13, �MMSE, and �CDRSB) and MRI measure-
ments ( �Hippocampus, �WholeBrain, and �Entorhinal) in the first year. For example, we defined the �CDRSB 
as follows: �CDRSB = (CDRSB_M12 − CDRSB_bl)/1 year (with “_M12” indicating the 12th month, with “_bl” 
indicating baseline). To compare the change rate in the first year (rate 1), the change rate in the second year (rate 
2) and acceleration in the first 2 years (acceleration) were also computed.

The C-index was calculated for the comparison of different models, which is commonly used to evaluate the 
discriminative abilities of Cox  models37,38. Additionally, we evaluated the improvements in discriminating ability 
attained with the extended models in comparison with the basic model by the net reclassification improvement 
(NRI; with cut = 10%)37, and the integrated discrimination improvement (IDI)39–41.

Statistical analyses. The categorical variables in the present study were recorded as follows: gender (1: 
male, 2: female), marital status (1: married, 2: divorced, 3: others), education (1: medium (years of educa-
tion < 12), 2: high (years of education ≥ 12)), and ApoEε4 (1: absent, 2: present).

Differences in demographic characteristics were tested using the chi-square test (for categorical variables), 
one-way analysis of variance (for continuous normally distributed variables), or the Kruskal–Wallis test (for 
continuous, non-normally distributed variables). X-tile software (version 3.6.1; Yale University School of Medi-
cine, New Haven, CT, USA) was applied to the X-tile plots. An optimum cut-off was automatically selected by an 
approach provided by X-tile plots, and it was based on the highest chi-square statistic defined using the log-rank 
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test and Kaplan–Meier survival analysis. To correct for optimism bias in the C-index, we undertook internal 
validation using 500 bootstrap  samples30,42,43. All other statistical analyses were performed using SPSS 25.0 and 
R version 3.6.1. The R packages used in this study included survival, pec, and rms. GraphPad Prism 6 software 
was used to plot the data. A two-sided P < 0.05, was considered to indicate a significant difference.

Data availability
The data analyzed in the study are available from the ADNI website. (http:// adni. loni. usc. edu).
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