scientific reports

Check for updates

OPEN Central venous-to-arterial PCO₂ difference as a marker to identify fluid responsiveness in septic shock

Boulos Nassar¹, Mohamed Badr², Nicolas Van Grunderbeeck³, Johanna Temime³, Florent Pepy³, Gaelle Gasan³, Laurent Tronchon³, Didier Thevenin³ & Jihad Mallat^{2,3,4,5}

Defining the hemodynamic response to volume therapy is integral to managing critically ill patients with acute circulatory failure, especially in the absence of cardiac index (CI) measurement. This study aimed at investigating whether changes in central venous-to-arterial CO₂ difference (Δ - Δ PCO₂) and central venous oxygen saturation (Δ ScvO₂) induced by volume expansion (VE) are reliable parameters to define fluid responsiveness in sedated and mechanically ventilated septic patients. We prospectively studied 49 critically ill septic patients in whom VE was indicated because of circulatory failure and clinical indices. CI, ΔPCO_2 , ScvO₂, and oxygen consumption (VO₂) were measured before and after VE. Responders were defined as patients with a > 10% increase in CI (transpulmonary thermodilution) after VE. We calculated areas under the receiver operating characteristic curves (AUCs) for Δ - Δ PCO₂, Δ ScvO₂, and changes in CI (Δ CI) after VE in the whole population and in the subgroup of patients with an increase in VO₂ (Δ VO₂) \leq 10% after VE (oxygen-supply independency). Twenty-five patients were fluid responders. In the whole population, Δ - Δ PCO₂ and Δ ScvO₂ were significantly correlated with Δ CI after VE (r = -0.30, p = 0.03 and r = 0.42, p = 0.003, respectively). The AUCs for Δ - Δ PCO₂ and Δ ScvO₂ to define fluid responsiveness (increase in CI > 10% after VE) were 0.76 (p < 0.001) and 0.68 (p = 0.02), respectively. In patients with $\Delta VO_2 \le 10\%$ (n = 36) after VE, the correlation between $\Delta ScvO_2$ and ΔCI was 0.62 (p < 0.001), and between Δ - Δ PCO₂ and Δ CI was – 0.47 (p = 0.004). The AUCs for Δ - Δ PCO₂ and Δ ScvO₂ were 0.83 (p < 0.001) and 0.73 (p = 0.006), respectively. In these patients, Δ - Δ PCO₂ \leq -37.5% after VE allowed the categorization between responders and non-responders with a positive predictive value of 100% and a negative predictive value of 60%. In sedated and mechanically ventilated septic patients with no signs of tissue hypoxia (oxygen-supply independency), Δ - Δ PCO₂ is a reliable parameter to define fluid responsiveness.

Abbreviations

CO_2	Carbon dioxide
VO_2	Oxygen consumption
DO_2	Oxygen delivery
ΔPCO_2	Venous-to-arterial carbon dioxide tension difference
$\Delta ContO_2$	Arterial-to-venous oxygen content difference
PaCO ₂	Partial arterial carbon dioxide tension
$PcvCO_2$	Central venous carbon dioxide tension
ScvO ₂	Central venous oxygen saturation
SaO_2	Arterial oxygen saturation
PaO ₂	Partial arterial oxygen tension
PvO ₂	Partial venous oxygen tension
Hb	Hemoglobin
CI	Cardiac index
LSC	Least significant change
AUC	Area under the curve

¹University of Iowa Hospitals and Clinics, Pulmonary and Critical Care Division, Iowa City, USA. ²Department of Critical Care Medicine, Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi, United Arab Emirates. ³Department of Anesthesiology and Critical Care Medicine, Centre Hospitalier du Dr. Schaffner, Lens, France. ⁴Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA. 5Normandy University, UNICAEN, ED 497, Caen, France. Zemail: mallatjihad@gmail.com

ROC	Receiver operating characteristic
PPV	Positive predictive value

NPV Negative predictive value

LR Likelihood ratio

VE Volume expansion

HR Heart rate

ICU Intensive care unit

Hemodynamic optimization through fluid resuscitation is commonly used in critically ill patients with tissue hypoperfusion. The goal of volume expansion (VE) is to raise cardiac output and oxygen supply to improve tissue oxygenation. Recognizing patients who would benefit from VE remains challenging¹. Identifying such patients is often dependent on measuring cardiac output^{2,3}. Echocardiography is a skill that has made strides but not fully penetrated all critical care areas; it is limited by ultrasound availability and poor echogenicity, especially in mechanically ventilated patients. Passive leg raising test and end-expiratory occlusion methods also necessitate cardiac output measurement to asses fluid responsiveness^{4,5}. Other measurements such as pulse pressure and stroke volume variations require specific technologies⁶ or are restricted to certain patient populations⁷. With these limitations, defining fluid responsiveness without cardiac output measurement would be of great help to the clinician at the bedside.

Venous-to-arterial CO₂ tension difference reflects the balance between CO₂ production and CO₂ delivery to the lungs, a surrogate of the cardiac output^{8,9}. Opposing changes over time in central venous-to-arterial CO₂ tension difference (Δ PCO₂) and cardiac output were reported in septic shock patients^{10–12}. In post-cardiac surgery sedated and mechanically ventilated patients, Yazigi et al. observed a significant inverse correlation between changes in Δ PCO₂ (Δ - Δ PCO₂) and changes in cardiac index (Δ CI) induced by VE¹³. Moreover, in the same population, changes in central venous oxygen saturation (Δ ScvO₂) after VE were a reliable parameter to define fluid responsiveness¹⁴. However, data in the septic population is lacking.

In situations with tissue hypoxia, the increase in cardiac output and oxygen delivery (DO_2) after VE would result in an increase in CO_2 production (VCO_2) and oxygen consumption (VO_2) (oxygen supply dependency). These metabolic changes might confound fluctuations in arteriovenous O_2 and CO_2 parameters attributed solely to circulatory changes. This might reduce the changes in ΔPCO_2 and $ScvO_2$ induced by VE. Clinical studies have shown that the ratio of ΔPCO_2 over the arterial-to venous oxygen content ($\Delta PCO_2/\Delta ContO_2$) was a good indicator of oxygen supply dependency (tissue hypoxia) in critically ill patients^{15,16}. This indicator could perhaps be used to identify such patients and guide the usage of CO_2 and oxygen gaps.

Therefore, our study aimed to investigate: (1) if Δ - Δ PCO₂ and Δ ScvO₂ are reliable parameters to identify fluid responsiveness in overall sedated and mechanically ventilated septic patients; (2) if the reliability of these parameters would be better in the sub-group of patients with no tissue hypoxia, defined as the absence of an increase in VO₂ induced by a rise in DO₂ after VE (oxygen supply independency); (3) if baseline Δ PCO₂ / Δ ContO₂ ratio is a good predictor of tissue hypoxia. Such measurements are readily available in these patients with central venous and arterial catheters.

Materials and methods

This prospective and observational study was conducted in a single, mixed medical and surgical adult intensive care unit (ICU) between April and December 2017. The study was approved by the local institutional ethics committee (Comité d'Ethique du centre hospitalier du Dr. Shaffner de Lens). Informed consent was obtained from the next of kin of each patient. All experiments were performed in accordance with relevant guidelines and regulations.

Patients. We studied mechanically ventilated patients with sepsis¹⁷ for whom the attending physician decided to give VE due to the presence of at least one clinical sign of tissue hypoperfusion¹⁷ as previously described¹⁵: (a) systolic arterial pressure < 90 mmHg, mean arterial pressure < 65 mmHg, or the requirement for vasopressor administration; (b) skin mottling; (c) lactate levels > 2 mmo/l; or urinary output < 0.5 ml/kg/h for ≥ 2 h. Also, patients had to have a PiCCO device (PiCCO, Pulsion Medical System, Munich, Germany) as part of routine management of persistent signs of inadequate tissue perfusion in our ICU. Exclusion criteria were: pregnancy, age < 18 years old, moribund, and risk of fluid loading-induced pulmonary edema.

Measurements. Demographic data, acute circulatory failure etiology, the Simplified Acute Physiology Score (SAPS) II, and the Sequential Organ Failure Assessment (SOFA) scores were obtained on the day of enrollment. CI was obtained with the PiCCO device by central venous injections of 20 ml of iced 0.9% saline solution and recorded as the average of the three measurements.

Arterial and central venous blood gases were measured using the GEM Premier 4000 (Instrumentation Laboratory Co, Paris, France). The central venous blood was collected from a central venous catheter with the tip confirmed to be in the superior vena cava, near or at the right atrium, by radiograph as previously described¹⁵. Δ PCO₂ was calculated as the difference between the central venous carbon dioxide tension and the arterial carbon dioxide tension. The arterial oxygen content was calculated as CaO₂ (ml) = 1.34 × Hb (g/dl) × SaO₂ + 0.003 × PaO₂ (mmHg), where SaO₂ is the oxygen saturation of arterial blood, Hb the hemoglobin concentration, and PaO₂ the arterial oxygen tension. The central venous oxygen content was calculated as CcvO₂ (ml) = 1.34 × Hb (g/dl) × ScvO₂ + 0.003 × PcvO₂ (mmHg), where PcvO₂ is the central venous oxygen tension. Δ ContO₂ (ml) was calculated as CaO₂ ~ Ct × 10. VO₂ (ml/m²) was calculated as

Variables	All patients (n=49)	Responders (n = 25)	Non-responders (n = 24)	<i>p</i> -value
Age (years)	67 [60-73]	62 [59-74]	68 [65-71]	0.25
Weight (kg)	79 [67–96]	80 [67-90]	78 [66–100]	0.89
BMI (kg/m ²)	27.2 [23.6-33.0]	26.5 [22.6-29.2]	27.5 [23.8-32.4]	0.32
Admission SAPS II	62 ± 15	62 ± 17	65±20	0.57
SOFA score	10 [7-14]	10 [7-12]	10 [7-14]	0.54
Male, n (%)	34 (69.4)	19 (76.0)	15 (62.5)	0.30
Mechanical ventilation, n (%)	49 (100)	25 (100)	24 (100)	1.00
Infection source, n (%)				
Pneumonia	27 (55)	14 (56)	13 (54)	0.88
Peritonitis	12 (25)	7 (28)	6 (25)	0.93
Meningitis	3 (6)	2 (8)	1 (4)	0.99
Catheter related infections	2 (4)	0 (0)	2 (8)	0.46
Others	5 (10)	2 (8)	3 (12)	0.96
Norepinephrine, n (%)	37 (75.5)	19 (76)	18 (75)	0.93
Norepinephrine (µg kg min ⁻¹)	0.14 [0.06-0.45]	0.14 [0.05-0.46]	0.13 [0.06-0.47]	0.99

Table 1. Baseline characteristics of the study population. BMI, body mass index; SAPS II, Simplified AcutePhysiologic Score; SOFA, Sequential Organ failure Assessment. Data are expressed as mean ± SD, median[25–75 interquartile range], or count.

 $CI \times \Delta ContO_2 \times 10$. Oxygen extraction was defined as $OE = VO_2/DO_2$. We also calculated the $\Delta PCO_2/\Delta ContO_2$ ratio.

Study protocol. A first set of hemodynamic and oxygen- CO_2 derived variables measurements was performed at baseline, including heart rate (HR), systemic arterial pressure, CI (thermodilution), DO_2 , VO_2 , $ScvO_2$, arterial lactate level, and ΔPCO_2 . A 500 ml of colloid solution (4% Human serum albumin, Vialebex*; LFB) was administered to the patient over 15 min via a specific venous line. The same set of measurements was repeated immediately after the end of VE infusion. Ventilation parameters and infusions of norepinephrine and sedation drugs were remained unchanged during the VE.

Changes in hemodynamic and oxygenation variables were expressed as relative changes (([parameter after volume expansion – parameter before volume expansion]/parameter before volume expansion) × 100).

Statistical analysis. Patients in whom 500-ml VE increased thermodilution-derived CI>10% were defined as responders and the remaining ones as non-responders. Also, patients were divided into two subgroups according to their increases in VO₂ (\leq or>10%) induced by VE. All data are expressed as mean ± SD, or as median [25–75%, interquartile range, (IQR)], as appropriate. The normality of data distribution was assessed using the Shapiro–Wilk test. Comparisons of values between responders and non-responders were performed by two-tailed Student's t test, or Wilcoxon rank-sum test, as appropriate. Pairwise comparisons between different study times were assessed using paired Student's t test or Wilcoxon signed-rank test, as appropriate. Analysis of categorical data was performed using the Chi2 and Fisher's exact tests. Linear correlations were tested by using the Pearson or the Spearman test, as appropriate.

Receiver operating characteristic (ROC) curves were constructed to evaluate the ability of each parameter to predict fluid responsiveness after fluid challenge. The AUCs were compared using the nonparametric technique described by DeLong et al.¹⁸. Previously, we have shown that the upper 95% confidence interval values of the least significant changes (LSC), which are the minimum changes that needed to be measured by a laboratory analyzer in order to recognize a real change of measurement, for ΔPCO_2 and $ScvO_2$ were 36.5% and 5.0% respectively¹⁹. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR⁺), negative likelihood ratio (LR⁻), and their 95% confidence intervals were calculated for Δ - Δ PCO₂ and Δ ScvO₂.

Variables are usually considered of good clinical tool (having good discriminative property tests) when the inferior limits of the 95% confidence interval of their AUC are more than 0.75^{20} . For this purpose, 43 patients would be sufficient for a power of 80% and an alpha risk of 0.05. Statistical analysis was performed using STATA 14.0 (StataCorp LP, College Station, Texas, USA). p < 0.05 was considered statistically significant. All reported p values are 2-sided.

Results

We studied 49 patients whose characteristics are summarized in Table 1. Twenty-five of the 49 patients (51%) were defined as responders because thermodilution CI increased by > 10% after VE of 500-ml.

There were no significant differences in patient characteristics, SOFA score, and norepinephrine between responders and non-responders (Table 1).

	Before volume expansion	After volume expansion			
Heart rate (beats min ⁻¹)					
Responders	101±26	100±26			
Non-responders	99±25	97±26			
Systolic arterial pressure (mmHg)					
Responders	102±21	119±20#			
Non-responders	107±29	116±28#			
Diastolic arterial pressure (mmHg)					
Responders	58±12	$59 \pm 12^{#}$			
Non-responders	55±12	$62 \pm 10^{#}$			
Mean arterial pressure (mmHg)					
Responders	72±13	81±12#			
Non-responders	72±17	78±17#			
Pulse pressure (mmHg)					
Responders	44±18	57±17#			
Non-responders	52±21	57±22#			
Central venous pressure (mmHg)					
Responders	13±6	16±6#			
Non-responders	16±5	19±6#			
Intra-thoracic blood volume index (ml m ⁻²)					
Responders	841 ± 188	951±215#			
Non-responders	858 ± 236	971±223#			
Extravascular lung water index (ml kg $^{-1}$)					
Responders	9.1±4.2	9.2±4.3			
Non-responders	8.9±3.6	9.1±3.4			
Systemic vascular resistance index (DS $m^{-2} cm^5$)					
Responders	1702 [1218-2225]	1587 [1220–1990]#			
Non-responders	1540 [957–1894]	1678 [1123-2096]			
Cardiac index (l min ⁻¹ m ⁻²)					
Responders	2.6 [2.1-3.5]	3.46 [2.59-4.16]#			
Non-responders	2.9 [2.2-3.9]	2.78 [2.19-4.07]			
Stroke volume index (ml m ⁻²)					
Responders	29.6±10.5	36.6±10.7#			
Non-responders	33.6±13.6	33.6±12.2			
Hemoglobin (g/dL)					
Responders	10.3±1.6	9.5±1.3 [#]			
Non-responders	9.6±1.8	9.1±1.6 [#]			
Arterial pH					
Responders	7.35 [7.28–7.37]	7.34 [7.26–7.36]			
Non-responders	7.34 [7.20–7.39]	7.31 [7.21–7.37]			
Central venous pH					
Responders	7.28 [7.22–7.33]	7.30 [7.22–7.33]			
Non-responders	7.30 [7.15–7.34]	7.28 [7.16–7.34]			
Base excess (mmol L ⁻¹)					
Responders	-6.5 [-8.9 to -1.7]	-6.7 [-9.5 to -2.1]*			
Non-responders	-4.7 [-12.4 to -1.1]	-5.1 [-12.1 to -1.7]#			

Table 2. Hemodynamic and acid–base variables before and after 500 ml of volume expansion. Data are expressed as mean (SD) or median [25–75 interquartile range]. Responders n = 25; Non-responders n = 24. *p < 0.05 comparisons between responders and non-responders.*p < 0.05 comparisons between before and after before volume expansion.

.....

Effect of volume expansion on hemodynamic variables. At baseline, all the tested hemodynamic variables were similar between the two groups (Table 2). VE significantly increased arterial pressures, CVP, and intrathoracic blood volume, and decreased hemoglobin in both groups. CI and stroke volume index increased significantly only in responders after VE, whereas HR and extravascular lung water did not change (Table 2). Arterial and venous pH were not significantly different between responders and non-responders' groups at baseline, and did not change significantly after VE (Table 2).

	Before volume expansion	After volume expansion
Central venous oxygen saturation (%)		
Responders	62±13	68±13 [#] *
Non-responders	57±15	56±15
Oxygen delivery (ml min ⁻¹ m ⁻²)	1	
Responders	382±130	441±134#
Non-responders	388±163	368±151
Arterial oxygen content (mL)		
Responders	13.4±2.2	12.5±1.8#
Non-responders	12.3±2.5	11.8±2.2
Central venous oxygen content (mL)		
Responders	8.6±2.2	8.7±2.1*
Non-responders	7.4±2.6	7.1±2.6
Oxygen consumption (mL min ⁻¹ m ⁻²)		
Responders	129.6±44.5	125.8±45.2
Non-responders	144.3±49.5	139.3±51.0
Oxygen extraction (%)		
Responders	36.0±12.8	30.4±12.8*#
Non-responders	40.0±15.0	41.1±14.9
PaCO ₂ (mmHg)	•	
Responders	38 [33-41]	39 [32-41]
Non-responders	38 [34-40]	38 [33-41]
PcvCO ₂ (mmHg)		
Responders	45 [38-49]	44 [36-48]#
Non-responders	45 [42-47]	45 [41-50]
ΔPCO ₂ (mmHg)	•	
Responders	7.0 [5.0-9.0]	5.0 [3.0-6.0]#
Non-responders	7.0 [5.0-9.0]	6.5 [5.0-9.0]
$\Delta PCO_2/\Delta ContO_2$ (mmHg/mL)		
Responders	1.59 ± 0.53	1.51 ± 0.56
Non-responders	1.60 ± 0.70	1.60 ± 0.49
Lactate (mmol/L)		
Responders	2.0 [1.1-3.6]	1.7 [1.0-3.4]*
Non-responders	1.5 [1.3-4.7]	1.6 [1.3-4.2]
Arterial oxygen saturation (%)		
Responders	96 [92-99]	96 [94-98]
Non-responders	96 [93-97]	96 [94–97]
PaO ₂ /FiO ₂ ratio (mmHg)		
Responders	202 [149-294]	211 [157-295]
Non-responders	197 [124-273]	202 [154-265]

Table 3. Oxygenation and CO₂-derived variables before and after 500 ml of volume expansion. PaCO₂, arterial CO₂ tension; PcVO₂, central venous CO₂ tension; Δ PCO₂, central venous-to-arterial PCO₂ difference; Δ ContO₂, arterial-to-venous oxygen content difference; PaO₂, arterial oxygen tension; FiO₂, inspiratory oxygen fraction. Data are expressed as mean (SD) or median [25–75 interquartile range]. Responders n = 25; Non-responders n = 24. **p* < 0.05 comparisons between responders and non-responders.**p* < 0.05 comparisons between before and after before volume expansion.

-

Effect of volume expansion on oxygenation and CO₂-derived variables. At baseline, there were no significant differences between the responders and non-responders' groups regarding all the oxygenation and CO₂-derived variable (Table 3). DO₂ and ScvO₂ increased significantly, and OE decreased only in responders' group after VE. VE significantly reduced Δ PCO₂ and lactate levels only in the responders' group (Table 3). VO₂ and Δ PCO₂/ Δ ContO₂ ratio remained unchanged in both groups after VE.

We observed significant correlations between Δ ScvO₂ and Δ CI (r = 0.42, p = 0.003) and between Δ - Δ PCO₂ and Δ CI (r = -0.30, p = 0.03) after VE.

In patients with an increase in VO₂ \leq 10% (n = 36) after VE, the correlation between Δ ScvO₂ and Δ CI was of 0.62 (p < 0.001). Also, in these patients, Δ - Δ PCO₂ was significantly correlated with Δ CI (r = -0.47, p = 0.004).

Figure 1. Receiver operating characteristic (ROC) curves showing the ability of the changes in $\triangle PCO_2$ ($\triangle - \triangle PCO_2$) (green curve), ScvO₂ ($\triangle ScvO_2$) (blue curve) between before and after 500 mL of volume expansion to define fluid responsiveness (increase in cardiac index > 10% after volume expansion).

.....

Ability of \DeltaScvO₂ and \Delta-\DeltaPCO₂ to define fluid responsiveness (increase in CI>10% after VE). The AUC for Δ ScvO₂ was 0.68 (95% CI: 0.53–0.83) (p=0.02) and for Δ - Δ PCO₂ was 0.76 (95% CI: 0.63–0.89) (p<0.001) (Fig. 1). There were no significant differences between the AUCs for Δ ScvO₂ and Δ - Δ PCO₂ (p=0.41).

The best cutoff value (according to Youden index) for Δ ScvO₂ was \geq 3.5% (sensitivity = 64% [95% CI: 42–82%], specificity = 65% [95% CI: 43–84%]), which was lower than its LSC (5%). Taking into account the repeatability (LSC), the best cutoff value was \geq 7.4% (sensitivity = 56% [95% CI: 35–76%], specificity = 71% [95% CI: 49–87%], PPV = 63% [95% CI: 39–83%], NPV = 61% [95% CI: 41–78%], LR⁺ = 1.8 [95% CI: 0.9–3.7], and LR⁻ = 0.7 [95% CI: 0.4–1.1]).

The best cutoff value (according to Youden index) for Δ - Δ PCO₂ was \leq -23.5% (sensitivity = 52% [95% CI: 31–72%], specificity = 87% [95% CI: 68–97%], which was lower than its LSC (36.5%). Taking into account the repeatability (LSC), the best cutoff value was \leq -37.5% (sensitivity = 32% [95% CI:15–53%], specificity = 92% [95% CI: 73–99%], PPV = 79% [95% CI: 42–97%], NPV = 58% [95% CI: 42–74%], LR⁺ = 3.8 [95% CI: 0.9–16.3], and LR⁻ = 0.7 [95% CI:0.6–1.0]).

In patients with an increase in VO₂ \leq 10%, the AUC for Δ ScvO₂ was 0.73 (95% CI: 0.57–0.90) (p=0.006) and for Δ - Δ PCO₂ was 0.83 (95% CI: 0.69–0.97) (p<0.001) (Fig. 2). There was no significant difference between the AUCs for Δ ScvO₂ and Δ - Δ PCO₂ (p=0.41).

The best cutoff value (according to Youden index) for Δ ScvO₂ was ≥ 8.1% (sensitivity = 65% [95% CI: 38–86%], specificity = 74% [95% CI: 49–91%]), PPV = 73% [95% CI: 47–91%], NPV = 65% [95% CI: 40–85%], LR⁺ = 2.5 [95% CI: 1.1–5.6], and LR⁻ = 0.5 [95% CI: 0.2–1.0]).

The best cutoff value (according to Youden index) for Δ - Δ PCO₂ was \leq -25% (sensitivity = 59% [95% CI: 33–82%], specificity = 89% [95% CI: 65–99%], which was lower than its LSC (36.5%). Taking into account the repeatability (LSC), the best cutoff value was \leq - 37.5% (sensitivity = 41% [95% CI: 18–67%], specificity = 100% [95% CI: 59–100%], PPV = 100% [95% CI: 62–100%], NPV = 60% [95% CI: 40–78%], LR⁺ = ∞ , and LR⁻ = 0.60 [95% CI: 0.4–0.9]).

Characteristics of patients with tissue hypoxia (\Delta VO_2 > 10\% after VE). At baseline, $\Delta PCO_2/\Delta ContO_2$ ratio was significantly higher in patients with $\Delta VO_2 > 10\%$ (tissue hypoxia) induced by volume expansion compared to patients with $\Delta VO_2 \le 10\%$ (2.03 [1.73–2.27] vs. 1.39 [1.00–1.71] mmHg/mL, p = 0.03, respectively). We did not observe significant differences between patients with $\Delta VO_2 \le 10\%$ and $\Delta VO_2 \le 10\%$ regarding baseline lactate levels (2.35 [1.02–3.97] vs. 1.70 [1.40–3.10] mmol/L, p = 0.89, respectively) and baseline ScvO₂ levels (60 ± 17% vs. 59 ± 13\%, p = 0.78, respectively).

The AUCs of baseline lactate and ScvO₂ values to predict Δ VO₂>10% were 0.48 (95% CI: 0.28–0.69) (p=0.89) and 0.54 (95% CI: 0.33–0.74) (p=0.72), respectively. The AUC of baseline Δ PCO₂/ Δ ContO₂ ratio to predict Δ VO₂>10% after volume expansion was 0.84 (95% CI: 0.71–0.96) (p<0.001) (Fig. 3). The best cutoff value (according to Youden index) for baseline Δ PCO₂/ Δ ContO₂ ratio was > 1.70 (sensitivity=77% [95% CI: 46–95%], specificity=77% [95% CI: 60–90%]), PPV = 90% [95% CI: 73–98%], NPV = 55% [95% CI: 31–78%], LR⁺ = 3.4 [95% CI: 1.7–6.6], and LR⁻ = 0.3 [95% CI: 0.1–0.8]).

Figure 2. Receiver operating characteristic (ROC) curves showing the ability of the changes in ΔPCO_2 (Δ - ΔPCO_2) (green curve), ScvO₂ (Δ ScvO₂) (blue curve) between before and after 500 mL of volume expansion to define fluid responsiveness (increase in cardiac index > 10% after volume expansion) in the subgroup of patients with an increase in oxygen consumption \leq 10%.

Figure 3. Receiver operating characteristic (ROC) curves showing the ability of baseline $\Delta PCO_2/\Delta ContO_2$ (red curve), ScvO₂ (yellow curve), and lactate (black curve) to predict an increase in oxygen consumption > 10% after 500 mL of volume expansion.

Discussion

The main findings of our study are: (1) in the whole population Δ - Δ PCO₂ induced by VE has an acceptable ability to define fluid responsiveness, but not Δ ScvO₂; (2) The abilities of Δ - Δ PCO₂ and Δ ScvO₂ to define fluid responsiveness improved when we considered only patients in whom changes in VO₂ were minimal (Δ VO₂ ≤ 10%) after VE, i.e., patients without tissue hypoxia; 3) Baseline Δ PCO₂/ Δ ContO₂ ratio has a good ability to predict the presence of tissue hypoxia (increases in VO₂ > 10% after VE).

Applying the modified Fick method to CO₂, venous-to-arterial PCO₂ difference reflects cardiac output. Several experimental studies have demonstrated the primary role of decreased tissue blood flow in the increased venous-to-arterial PCO₂ gap^{8,21,22}. Similarly, a mathematical model analysis has confirmed that blood flow represents the major determinant in the elevation of venous-to-arterial PCO₂ gap²³. A rise in mixed venous-to-arterial PCO₂ gap that was directly linked to a decrease in cardiac output has been observed in different types of circulatory failure including septic shock^{24,25}. Mecher et al. found a significant negative correlation between the changes in cardiac output and mixed venous-to-arterial PCO₂ gap after fluid resuscitation in septic shock patients (r = -0.42, p < 0.01)²⁴. In post-cardiac surgery sedated and mechanically ventilated patients with cardiac index < 2.5 L/min/m², Δ CI induced by VE (500-mL bolus of crystalloid given over 30 min) was found to be significantly correlated with Δ - Δ PCO₂ (r = -0.53, p = 0.001)¹³. However, the AUC for Δ - Δ PCO₂ to define fluid responsiveness was not determined in that study.

The correlation between Δ - Δ PCO₂ and Δ CI induced by VE was weaker in our septic patients than what was observed in post-cardiac surgery patients¹³. Also, the ability of Δ - Δ PCO₂ to define fluid responsiveness was not robust (AUC = 0.76). These findings could be explained by several factors. First, the relationship between ΔPCO_2 and CI is curvilinear⁹, which means that the magnitude of changes in ΔPCO_2 is more pronounced at low CI than at normal or high CI. Second, the relationship between CO₂ content and PCO₂, which is curvilinear rather than linear, is influenced by many factors such as the degree of metabolic acidosis, hematocrit, and oxygen saturation (Haldane effect)^{9,26}. However, we believe that this factor is unlikely to have occurred in our patients. Although base excess and hemoglobin significantly decreased in both groups (responders and non-responders) and ScvO₂ increased only in the responders' group (Tables 2, 3) after VE, it is unlikely that these clinically irrelevant changes could have affected the PCO_2/CO_2 content relationship. If these changes had affected the PCO_2/CO_2 content relationship, it would have resulted in an increase in ΔPCO_2 in both groups. Third, in situations of tissue hypoxia with VO₂/DO₂ dependency phenomenon and anaerobic CO₂ production, the rise in CI would increase VO₂ and VCO₂. This would attenuate the decrease in Δ PCO₂ related to the increase in blood flow^{9,27}. We believe that this factor may have contributed to the reduction in the performance of Δ - Δ PCO₂ (AUC=0.76) in defining an increase in CI > 10% induced by VE (fluid responsiveness) in the overall population. When we excluded patients with tissue hypoxia, patients with an increase in $VO_2 \le 10\%$ (VO₂/DO₂ independency), we observed an improvement in the ability of Δ - Δ PCO₂ to define fluid responsiveness with a very good AUC of 0.83 (Fig. 2). A decrease in Δ - Δ PCO₂ of more or equal than 37.5% induced by VE allowed discrimination between responders and non-responders with a PPV of 100%. Also, the correlation between Δ - Δ PCO₂ and Δ CI was higher than in the overall population.

Venous oxygen saturation is a global marker of adequacy between oxygen consumption and oxygen supply²⁸. Therefore, changes in venous oxygen saturation reflect changes in the balance between VO₂ and DO₂ and indicate tissue oxygenation. Giraud et al. observed, in 30 cardiogenic shock or postoperative cardiac surgery patients, that Δ ScvO₂ was significantly correlated with Δ CI induced by a bolus of 500 mL of normal saline administered over 10-min (r = 0.67, *p* < 0.001)¹⁴. Also, Δ ScvO₂ had an excellent ability to define an increase in CI \geq 15% after VE (fluid responsiveness) with an AUC of 0.90. Our findings are different from those reported by Giraud et al.¹⁴. We observed in our whole septic population a weaker correlation between Δ ScvO₂ and Δ CI (r = 0.42), and Δ ScvO₂ had a poor ability to discriminate between responders and non-responders. In the subgroup of patients without tissue hypoxia (no significant increase in VO₂, or VO₂/DO₂ independency), even though the correlation between Δ ScvO₂ and Δ CI improved, the ability of Δ ScvO₂ to characterize fluid responsiveness was not good. The main explanation of the discrepancies between our findings and those of Giraud et al.¹⁴ is that the patient populations are different. As has been previously described, venous oxygen saturation may not be a good indicator of tissue oxygenation in the setting of sepsis, due to microcirculatory shunting and mitochondrial dysfunction that can result in oxygen extraction abnormalities²⁹.

It has been suggested that $\Delta PCO_2/\Delta ContO_2$ ratio, considered as a surrogate of the respiratory quotient, can be used as a marker of global tissue hypoxia in critically ill patients^{15,16,30}. In our study, we found that baseline $\Delta PCO_2/\Delta ContO_2$ value was significantly higher in patients with global tissue hypoxia (defined as an increase in $VO_2 > 10\%$ after VE) than those without global tissue hypoxia. Also, baseline $\Delta PCO_2/\Delta ContO_2$ ratio had a very good ability to predict the presence of VO_2/DO_2 dependency (global tissue hypoxia). Our results confirmed our previous findings¹⁵ and those reported by Monnet et al.¹⁶, who observed excellent predictability of baseline $\Delta PCO_2/\Delta ContO_2$ value for tissue hypoxia (AUCs = 0.96 and 0.94, respectively). Baseline lactate and ScvO_2 levels had poor ability to predict VO_2/DO_2 dependency (global tissue hypoxia) in our study. This finding is in line of what we observed previously in septic shock patients¹⁵.

To the best of our knowledge, our study is the first to investigate the role of Δ - Δ PCO₂ and Δ ScvO₂ in defining fluid responsiveness in septic patients. Our findings are valuable as they can be integrated in a clinical algorithm and used by the bedside provider as part of the assessment of fluid responsiveness. These values are readily available as patients in septic shock usually have arterial and central venous catheters inserted. After measuring O₂ content and CO₂ partial pressures, the Δ PCO₂/ Δ ContO₂ ratio can help the provider recognize patients without tissue hypoxia. In these patients, Δ PCO₂ can be measured before and after VE and be used to appreciate if the latter has resulted in a significant increase in CI and to guide further fluid resuscitation when cardiac output monitoring is not available.

Our study presents several limitations. First, it is a single-center study, so the results might not universally apply. Second, we used central venous samples instead of mixed venous to assess oxygen and CO_2 -derived variables, limiting its accuracy. However, we were interested in the changes in these variables induced by fluid challenge rather than their absolute values. Moreover, it has been shown that calculating the oxygen and CO_2 -derived variables from the central venous blood permitted the detection of global tissue hypoxia in critically ill patients^{15,16}. Third, our patients were sedated and mechanically ventilated with stable oxygen consumption; thus, our findings might not apply to spontaneously breathing patients with varying oxygen demands. Finally,

our study was not sufficiently powered for subgroup analyses; thus, our findings need to be replicated in a future study with larger sample size.

Conclusions

In sedated and mechanically ventilated septic patients with no signs of tissue hypoxia, Δ - Δ PCO₂ is a reliable parameter to define fluid responsiveness and can be used in the absence of CI measurement. Baseline Δ PCO₂/ Δ ContO₂ ratio could help the physician recognize the presence of tissue hypoxia.

Received: 10 May 2021; Accepted: 6 August 2021 Published online: 26 August 2021

References

- 1. Michard, F. & Teboul, J. L. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121, 2000–2008 (2002).
- 2. Vincent, J. L. & Weil, M. H. Fluid challenge revisited. Crit. Care Med. 34, 1333-1337 (2006).
- 3. Cecconi, M., Parsons, A. K. & Rhodes, A. What is a fluid challenge?. Curr. Opin. Crit. Care 17, 290-295 (2011).
- 4. Monnet, X. et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit. Care Med. 34, 1402–1407 (2006).
- 5. Monnet, X. *et al.* Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. *Crit. Care Med.* **37**, 951–956 (2009).
- Mallat, J. et al. Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsiveness. Br. J. Anaesth. 115, 449–456 (2015).
- Mahjoub, Y. et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br. J. Anaesth. 112, 681–685 (2014).
- Vallet, B., Teboul, J. L., Cain, S. & Curtis, S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J. Appl. Physiol. 89, 1317–1321 (2000).
- 9. Mallat, J., Lemyze, M., Tronchon, L., Vallet, B. & Thevenin, D. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. *World J. Crit. Care Med.* **5**, 47–56 (2016).
- Mallat, J. et al. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Eur. J. Anaesthesiol. 31, 371–380 (2014).
- Vallée, F. et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock?. Intensive Care Med. 34, 2218–2225 (2008).
- 12. Cuschieri, J. et al. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 31, 818–822 (2005).
- 13. Yazigi, A. *et al.* Correlation between central venous-arterial carbon dioxide tension gradient and cardiac index changes following fluid therapy. *Ann. Card Anaesth.* **13**, 269–271 (2010).
- 14. Giraud, R. et al. ScvO(2) as a marker to define fluid responsiveness. J Trauma 70(4), 802-807 (2011).
- 15. Mallat, J. *et al.* Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. *Ann. Intensive Care.* **6**, 10 (2016).
- Monnet, X. et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxy-gen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit. Care Med. 41, 1412–1420 (2013).
- Dellinger, R. P. et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 41, 580–637 (2013).
- DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. *Biometrics* 44, 837–845 (1988).
- 19. Mallat, J. *et al.* Repeatability of blood gas parameters, PCO2 gap, and PCO2 gap to arterial-to-venous oxygen content difference in critically ill adult patients. *Medicine (Baltimore)* **94**, e415 (2015).
- 20. Ray, P., Le Manach, Y., Riou, B. & Houle, T. T. Statistical evaluation of a biomarker. Anesthesiology 112, 1023-1040 (2010).
- Nevière, R., Chagnon, J. L., Teboul, J. L., Vallet, B. & Wattel, F. Small intestine intramucosal PCO(2) and microvascular blood flow during hypoxic and ischemic hypoxia. Crit. Care Med. 30, 379–384 (2002).
- 22. Dubin, A. et al. Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit. Care 6, 514-520 (2002).
- Gutierrez, G. A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. Am. J. Respir. Crit. Care Med. 169, 525–533 (2004).
- Mecher, C. E., Rackow, E. C., Astiz, M. E. & Weil, M. H. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit. Care Med. 18, 585–589 (1990).
- 25. Bakker, J. et al. Veno-arterial carbon dioxide gradient in human septic shock. Chest 101, 509-515 (1992).
- 26. Teboul, J. L. & Scheeren, T. Understanding the Haldane effect. *Intensive Care Med.* 43, 91–93 (2017).
- 27. Lamia, B., Monnet, X. & Teboul, J. L. Meaning of arterio-venous PCO2 difference in circulatory shock. *Minerva Anestesiol.* **72**, 597–604 (2006).
- 28. Squara, P. Central venous oxygenation: when physiology explains apparent discrepancies. Crit. Care 18, 579 (2014).
- 29. Vallet, B., Pinsky, M. R. & Cecconi, M. Resuscitation of patients with septic shock: please "mind the gap"!. *Intensive Care Med.* **39**, 1653–1655 (2013).
- Mekontso-Dessap, A. et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 28, 272–277 (2002).

Acknowledgements

The authors thank the research nurses of the intensive care unit at Lens hospital. Without their participations, this work would not have been possible.

Author contributions

J.M., B.N., and M.B. designed the study. J.M. conducted statistical analyses. N.V., G.G., F.P., and J.T. collected data. J.M., B.N., L.T., and D.T. participated in manuscript writing and reviewing. All authors read and approved the final manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to J.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021