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Efficacy of a comprehensive binary 
classification model using a deep 
convolutional neural network 
for wireless capsule endoscopy
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The manual reading of capsule endoscopy (CE) videos in small bowel disease diagnosis is time-
intensive. Algorithms introduced to automate this process are premature for real clinical applications, 
and multi-diagnosis using these methods has not been sufficiently validated. Therefore, we developed 
a practical binary classification model, which selectively identifies clinically meaningful images 
including inflamed mucosa, atypical vascularity or bleeding, and tested it with unseen cases. Four 
hundred thousand CE images were randomly selected from 84 cases in which 240,000 images were 
used to train the algorithm to categorize images binarily. The remaining images were utilized for 
validation and internal testing. The algorithm was externally tested with 256,591 unseen images. 
The diagnostic accuracy of the trained model applied to the validation set was 98.067%. In contrast, 
the accuracy of the model when applied to a dataset provided by an independent hospital that did 
not participate during training was 85.470%. The area under the curve (AUC) was 0.922. Our model 
showed excellent internal test results, and the misreadings were slightly increased when the model 
was tested in unseen external cases while the classified ‘insignificant’ images contain ambiguous 
substances. Once this limitation is solved, the proposed CNN-based binary classification will be a 
promising candidate for developing clinically-ready computer-aided reading methods.

Abbreviations
WCE  Wireless capsule endoscopy
CNN(s)  Convolutional neural network(s)
TF-Slim  TensorFlow-Slim
AUC   Area under the curve
ESGE  European Society of Gastrointestinal Endoscopy
GI  Gastrointestinal
AI  Artificial intelligence
CE  Capsule endoscopy
CAP  Class activation map
GAP  Global average pooling
ROC  Receiver operating characteristic
ReLU  Rectified linear unit
t-SNE  t-stochastic neighbor embedding
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The small intestine is the hardest part of the gastrointestinal (GI) tract to examine using traditional endoscopic 
and radiologic techniques, owing to their length and tortuous  course1. In the past few decades, several imag-
ing techniques have been substantially developed to provide images with high temporal and spatial resolu-
tions. Among them, the wireless capsule endoscopy (WCE) is a widely used non-invasive and patient-friendly 
endoscopic exploration of the entire small bowel with complete video-facilitating detection and monitoring of 
lesions that was introduced by Iddan et al. in  20002. The European Society of Gastrointestinal Endoscopy (ESGE) 
recommended WCE as the initial evaluation and diagnostic method for patients with obscure gastrointestinal 
bleeding (OGIB), suspected Crohn’s disease, and negative ileo-colonoscopy  findings3.

However, after two decades since its introduction, the way of reading WCE has not changed, which is very 
time intensive and prone to reader error. Conventionally, it is performed manually by expert gastroenterolo-
gists who check the entire recorded video, which is approximately 10 to 13 h long with an average reading time 
of approximately 30 to 40  min4,5. This time-consuming method acquires and generates thousands of images 
and videos in which relevant findings are only available in few  frames6,7. Moreover, the fast video playback and 
extended reading time lead to the loss of the reader’s concentration, which may increase the chance of missing 
lesions. In addition, the manual reading of WCE images is limited by the insufficient number of gastroenterolo-
gists who have adequate experience with small bowel diseases.

Artificial intelligence (AI) has played an increasing role in the advancement of clinical practices. Specifically, 
the use of AI in capsule endoscopy has gained attention for its potential to automatically detect diseases from 
the video and shorten WCE reading  time8. Previous studies have reported the application of the convolutional 
neural network (CNN), which is the main deep learning algorithm for image analysis, in reading WCE images. 
Some CNN-based algorithms have been successful for detecting a variety of small bowel diseases, including 
ulcers, polyps, Crohn’s disease, angioectasia, and  bleeding9–17. However, the utilization of CNN-based reading 
algorithms remains on the research stage despite their advancements, which includes their potential detection 
of various small bowel lesions with high accuracy in unseen  images18,19. At present, the complete application of 
this technology has not yet been fully realized despite various efforts such as increasing the number of images 
for AI learning.

Therefore, we aim to create a new CNN-based model that is practical and clinically ready-to-use. As part of 
that effort, we developed a CNN-based binary classification algorithm that could categorize images into clini-
cally meaningful lesions and those that are not. With this, the reading time can be drastically reduced since 
only AI-selected images need to be reviewed by gastroenterologists. Hence, we developed a CNN-based binary 
classification model for capsule endoscopy and validated it with external unseen cases.

Methods
Preparation of images for AI training, validation, and internal testing. The study protocol was 
approved by Dongguk University Ilsan Hospital Institutional Review Board (No. 2018-00-009-002). Eighty-four 
capsule endoscopy (CE) videos that were taken from June to December 2019 were retrospectively acquired 
from a single institute (Dongguk University Ilsan Hospital) employing a Mirocam MC1600 device (Intro-
medic, Seoul, South Korea) to be used for training and development of the CNN-based AI. These images were 
extracted in PNG format (320 × 320 pixel) using MiroView 4.0. After data anonymization, all small bowel images 
were reviewed and labeled manually into 7 subgroups (normal mucosa, bile predominant, air bubbles, debris, 
inflamed mucosa, atypical vascularity, and bleeding) by three experienced gastroenterologists. Two expert gas-
troenterologists (clinical professors with more than 3 years of experience in CE, SHK, and DJO) from Dongguk 
University Ilsan Hospital independently read 84 CE videos image-by-image. Then, these were reviewed by a 
senior gastroenterologist (with more than 10 years of experience in CE, YJL) to see if there were inconsistent 
readings. Then, these images were binarily categorized as ‘Significant’ if it contains a lesion of clinical signifi-
cance, such as inflamed mucosa, atypical vascularity, or bleeding, and ‘Insignificant’ if the image does not present 
any abnormalities, including normal mucosa, bile, air bubbles, or debris. A total of 400,000 images, consisting of 
200,000 clinically significant images and 200,000 insignificant images, were randomly selected for AI training, 
validation, and internal testing. In this study, although CE images were collected retrospectively, we obtained 
informed consent from all patients participating in the study. Moreover, we obtained the informed consent for 
minor participants (age 18 or younger) from their legally authorized representatives. All research protocols were 
conducted following relevant guidelines and regulations.

Distribution of collected CE images. The labeled images (n = 400,000) were then classified into the fol-
lowing three categories (Fig. 1): training (n = 240,000, 60%), validation (n = 80,000, 20%), and internal testing 
(n = 80,000, 20%). It was necessary to set the best parameters for 80,000 (20%) images used for validation to 
ensure optimal diagnostic accuracy. Moreover, these images for validation were also used for additional training. 
Therefore, a total of 320,000 images were used in the development of the algorithm, while the remaining 80,000 
(20%) images were used for internal testing as they were not used for training.

Collection of external hospital images for testing of the developed AI model. We retrospectively 
collected 30 CE videos from another medical hospital (Jeju National University Hospital) with the approval of 
its Institutional Review Board (Jeju National University Institutional Review Board, ‘JEJUNUH 2019-11-010’). 
A total of 258,256 images (significant: 179,246; insignificant: 79,010) were extracted from videos using Mirocam 
MC1600 and the same image extraction protocol. In addition, the three expert gastroenterologists who partici-
pated in the image classification for AI training were also the ones who classified the collected images into two 
groups (‘significant’ and ‘insignificant’) based on the same criteria used for training. With this, it was possible to 
evaluate the diagnostic accuracy of the AI model for ‘unseen’ data acquired from a non-trained hospital.
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Development of the CNN-based AI for auxiliary reading model. We employed the Inception-
Resnet-V2 model in the TensorFlow-Slim (TF-Slim) library, which is known for its light and efficient multi-level 
feature extraction of an inception module and deeper layers of a Resnet module to train an AI, for the binary 
classification of CE images. For better recognition accuracy, we applied transfer learning using the pre-trained 
model from imageNet dataset. First, we used the learning rate of 0.01 for training the last ‘logits’ layer during 
10,000 steps. Then, we trained all the layers with the learning rate of 0.0001 during 200,000 steps. Similarly with 
original InceptionResnetV2 model, we did not use dropout, and we used the rectified linear unit (ReLU) as a 
transfer function. The elapsed time to transform the image data into TFrecord (binary data rapidly readable in 
Tensorflow) for 80,000 test images was 2621.208 s. Meanwhile, the processing time for evaluating the trans-
formed data was 431.258 s. Therefore, the proposed AI showed a processing speed of 26.208 fps. Class activation 
maps (CAP) were drawn based on a channel-wise aggregation method (Fig. 2), which employs a global average 
pooling (GAP) for each channel after the final convolutional layer stage that demonstrates pixel-wise predicted 
values for the class, to analyze which regions influenced the selection of the final class. We were able to verify 
that predictions made by the trained deep learning network were similar to those of endoscopists using CAP 
in which regions with clinical significance were indicated by the red color. From Fig. 2, the jet color map shows 
normalized prediction in which the reddish and bluish colors refer to 1 and 0, respectively. This figure describes 
the approximate mechanism of the developed AI.

Outcomes and statistical analysis. The crucial results, including the area under the receiver operating 
characteristic (ROC) curve, sensitivity, specificity, and accuracy of the CNN-based AI model, indicate whether 
each image possessed lesions of clinical significance. The trained model shaped the region of clinical significance 
and described the probability score of the lesion (range: 0–1). We verified the score threshold for the best output 
through the validation process. Data were analyzed using the Statistical Package for Social Science, Ver 20.0 
(SPSS Inc., Chicago, IL, USA).

Results
Study population. The clinical and demographic characteristics of images used for algorithm training and 
external testing are shown in Table 1. Meanwhile, the composition of the two datasets is described in pie charts 
(Fig. 3). The average age of the cases used for training is 49.84 years (range: 16–92 years), while 52.31 years for 
the external testing (range: 16–76 years). In addition, the indications for CE for both datasets were obscure GI 
bleeding, inflammatory bowel disease, small bowel tumors, and others. Moreover, significant and insignificant 
images were randomly selected for both dataset (200,000 each for the training dataset and 179,246 and 79,010 

Figure 1.  Flowchart of the study design.
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Figure 2.  Class activation map of significant lesions. (Capsule endoscopy image taken by Mirocam MC1600, 
processed by MiroView 4.0—http:// www. intro medic. com/ eng/ main).

Table 1.  Clinical and demographic characteristics of cases.

Characteristics Training dataset (n = 84) External test dataset (n = 30)

No. of images 400,000 256,591

Age (years), mean (± SD) 49.84 (± 19.17) 52.31 (± 19.08)

Sex, male 55 (65.5%) 18 (60.0%)

Indication of capsule endoscopy

Obscure GI bleeding 43 (51.2%) 19 (63.3%)

Small bowel tumors 10 (11.9%) 3 (10.0%)

Inflammatory bowel disease 30 (35.7%) 8 (26.7%)

Others 1 (1.2%) 0 (0.0%)

Types of included images

Normal mucosa 42,729 21,317

Bile 58,812 18,196

Air bubbles 87,494 6,550

Debris 10,965 32,947

Vascular 32,116 4,733

Inflammatory 92,297 85,387

Bleeding 75,587 89,126

Binary classification of included images

Significant 200,000 179,246

Insignificant 200,000 79,010

http://www.intromedic.com/eng/main
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for the external test dataset). Based on the table below, the relative proportions of inflammatory lesions and air 
bubbles were high for the training dataset. Moreover, the significant images with inflammatory lesions or bleed-
ing were included relatively more than others. Therefore, there was a difference in image composition between 
data used for training and data used for external testing.

Internal test result: binary classification capability through optimal threshold setting. The 
calculated probabilities of significance and results of class map activation for all images were reviewed by three 
gastroenterologists who contributed to the labeling of training images (Table  2). The difference in the clas-
sification ability for each cut-off probability score was reviewed by endoscopists who agreed to set the cut-off 
threshold at 0.5 after examining the concordance between manual classification results and calculated probabil-
ity values for validation images. Based on this threshold, the AI system’s sensitivity was 98.691%, specificity was 

Figure 3.  Composition of two datasets, such as the (A) learning and internal test and (B) external test.

Table 2.  Changes in the classification ability for each cut-off probability score tested on the validation set of 
images. (*) is the estimated value according to the Youden index.

Cut-off value (probability score) Sensitivity (%) Specificity (%) Accuracy (%)

0.1 0.893 0.999 0.946

0.2 0.928 0.999 0.963

0.3 0.949 0.997 0.973

0.4 0.963 0.994 0.978

0.5 0.973 0.988 0.980

0.541* 0.977 0.985 0.981

0.6 0.982 0.978 0.980

0.7 0.989 0.957 0.973

0.8 0.994 0.911 0.953

0.9 0.998 0.784 0.891
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97.208%, and accuracy was 97.946% for the selected internal test set of images. The area under the curve (AUC) 
value in the internal testing was 0.998.

External test result: accuracy drop for new and unseen cases. The accuracy of the developed algo-
rithm that was tested with an external set of images was reduced to 85.470%, with a sensitivity of 89.684% and a 
specificity of 75.994%. In addition, the AUC value was 0.922 in the external testing. Moreover, the ROC for the 
external testing compared to the internal validation process is demonstrated in Fig. 4.

The performance of the CNN model at each validation level is described in Table 3. The sensitivities of the 
model at the preset cut-off value of 0.5 for significant lesions were 97.3% for the internal validation, 97.2% for 
the internal testing, and 89.7% for the external testing.

Additional, comprehensive sensitivity analysis. By randomly selecting 8,000 images from 400,000 
images, we performed t-SNE (t-Stochastic Neighbor Embedding) for additional sensitivity analysis. As shown in 
Fig. 5, images are separated into two groups quite well in the deep learning feature.

Difference in classification performance according to image type. We compared the ability of the 
CNN model in classifying images into significant and insignificant groups compared to the manual classifica-
tion done by endoscopists (Table 4). A total of 160,849 images out of the 179,246 ‘significant’ images classified by 
endoscopists were classified correctly by the CNN, leading to a false-negative rate of 10.3%. On the other hand, 
60,770 images were correctly classified as insignificant from the total of 79,010 ‘insignificant’ images classified by 
endoscopists, showing a false-positive rate of 23.1%. We found that achieving specificity was more challenging 
than sensitivity in the binary classification process by the CNN model.

Among several subtypes of insignificant images, the subtype that was more prone to misreading was then 
analyzed. As a result, we found that images were more likely to be classified as significant even without abnor-
malities in 40.3% of cases when air bubbles occupied most of the image (Table 5). For example, as shown in 
Fig. 6, although only air bubbles and normal mucosa were present in the small bowel lumen, the CNN class 
activation map pointed out that the area without significance possessed a lesion with a probability score above 
the threshold. On the other hand, for significant images, while the probability of misreading was lower, images 
with bleeding were more error-prone than other etiologies (Table 6).

Figure 4.  Receiver operating characteristic curves of (A) internal validation, (B) internal testing, and (C) 
external testing.

Table 3.  Performance of binary classification model at each validation level. All performance outcomes were 
calculated when a cut-off value of 0.5 was applied.

Internal validation Internal testing External testing

No. of images 80,000 80,000 256,591

AUC 0.99794 0.99775 0.92194

Accuracy, % 98.067 97.946 85.470

Sensitivity, % 97.322 97.208 89.684

Specificity, % 98.817 98.691 75.994
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Discussion
In this study, we developed a practical CNN-based AI model that performs comprehensive binary classification. 
The accuracy of the model was tested using acquired CE images from two institutions, including where the AI 
learning was conducted (Dongguk University Ilsan Hospital) and an independent external hospital (Jeju National 
University Hospital). To the best of our knowledge, this is the first AI model developed and tested using Mirocam 
capsule image-set. The diagnostic accuracy during validation and internal testing was 98%, with an excellent 
AUC of 0.99. However, the accuracy of the model decreased by 10% when tested on the external hospital data 
with an AUC drop of 0.07.

It is essential to detect various gastrointestinal pathologies for the automated AI reading in CE. Moreover, a 
broad spectrum of diseases can be present in the small intestine, making it difficult for an AI algorithm to classify 
them correctly in a multi-class manner. In addition, it is difficult to develop a successful model using AI learning 
because of several problems, including data imbalance between normal and lesion images. In addition, when 
two or more lesions are mixed in a single image without individually annotating them may lead to incorrect 

Figure 5.  t-SNE plot demonstrating cluster assignment of the CNN model.

Table 4.  Classification results of manually labeled images by the CNN. The contents marked in bold indicate 
the accuracy of the algorithm. PPV positive predictive value, NPV negative predictive value.

CNN classification (external testing)

Classification by endoscopists

TotalSignificant Insignificant

Significant 160,849 18,240 179,089 PPV 89.8%

Insignificant 18,397 60,770 79,167 NPV 76.8%

Total 179,246 79,010

Sensitivity 89.7% Specificity 76.9%

Table 5.  False positive rate by the CNN model according to subtypes of insignificant images.

Subtypes of insignificant images

Mucosa Bile Air bubbles Debris Total

Total No 21,317 18,196 6550 32,947 79,010

False (+) No 5051 3172 2637 7380 18,240

False (+) % 23.69% 17.43% 40.26% 22.40% 23.09%
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Figure 6.  Examples of Several Class Activation Maps of Misclassified Images. (A) Is a case of incorrect 
detection of induration caused by capsule and small bowel mucosa adhesion. (B) Is misclassified as ’significant’ 
for bends around a large bubble. (C) Is a case that was successful in discriminating bile and debris but 
misclassified as ’significant’ for a peripheral dimmed lesion with a flow of bile. (D) Is misclassified semi-solid 
debris as ’significant’ lesion. (E) Is a case showing inappropriate higher activation in debris rather than focusing 
on inflammation and hyperemia of the mucosa. (Capsule endoscopy image taken by Mirocam MC1600, 
processed by MiroView 4.0—http:// www. intro medic. com/ eng/ main).

Table 6.  False negative rate by the CNN model according to subtypes of significant images.

Subtypes of significant images

Inflamed Vascular Bleeding Total

Total No 85,387 4733 89,126 179,246

False (−) No 2220 351 15,826 18,397

False (−) % 2.60% 7.42% 17.76% 10.26%

http://www.intromedic.com/eng/main
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learning and inappropriate reading. In this regard, a CNN-based model that can perform binary classification 
is considered to be a practical and achievable concept. The sensitivity and positive predictive value (PPV) are 
important parameters when evaluating such a model because it was used in selecting images with relevant find-
ings that were being provided to endoscopists. Our algorithm showed a high sensitivity of 89.7% and a PPV of 
89.8% even for unseen external cases, indicating lesser reading time and reduced rate of misreadings.

Furthermore, the AI-assisted image recognition and classification technology is auspicious because reading 
CE videos is a time intensive and tedious process. In the last 2 years, previous studies on the automated reading of 
CE have been published, including a study showing very high sensitivity and specificity by detecting angioectasia 
using a CNN model proposed by Leenhardt et al.14, a model published by Aoki et al. that judged erosions and 
ulcerations with an accuracy of 90%12, and a study by Iakovidis et al. using weakly supervised learning AI model 
for diagnosing a variety of  pathologies20. In addition, Ding et al.17 collected over 100 million CE images from 77 
hospitals and trained AI with 158,235 images from 1970 cases and evaluated whether an accurate diagnosis of 
various types of lesions was possible.

Nevertheless, most AI models for CE are considered insufficient for clinical use because they only detect 
one or two specific disease entities with insufficient diagnostic accuracy despite training these models with a 
relatively large number of images. Indeed, a study design that was tested using images from the same institution 
where the training images were gathered (even though it was multi-center based) raised questions whether the 
developed AI model will have high accuracy when tested with images from external hospitals. In this study, 
we tested the algorithm in a ‘patient isolation’ manner with unseen images from an external hospital to test its 
real-world efficacy. We found that there was still a difference in AUCs between the internal and external tests.

WCE was taken as a motion video in which 50,000 images were saved per session. Each CE image may contain 
either pure significant (or insignificant) content or significant lesions mixed with some insignificant materials. 
Most AI models are specialized in detecting ‘lesions’ only and get confused when the lesion is widely covered 
by insignificant content. In this regard, our model also showed that insignificant images were more likely to be 
classified as false positives especially images with poor bowel preparation (which contains bile, bubbles, and 
debris). The AI model should also be trained to recognize ‘insignificant’ contents correctly and show an accurate 
probability value even with images of mixed significance, indicating that an improved algorithm that can separate 
groups of consecutive low-quality images and exclude these groups from AI reading may enhance the reading 
accuracy and reduce the presentation of unnecessary images to ‘human’ interpreter. Therefore, promoting the 
ability to judge the quality of bowel preparation by the CNN-based model is important.

The results showed that the diagnostic accuracy of AI tested with unseen external data decreased by approxi-
mately 10%, owing to the demographic difference of patients undergoing CE at each hospital. The trained AI 
model might have also faced completely new endoscopic images that were not experienced during training. 
For the AI detection model for CE to be used in real-world clinical practice, the algorithm’s sensitivity must 
be at least 99%. In this study, although the internal test result was very encouraging (sensitivity of 97.3%), the 
relatively lower sensitivity (89.7%) was observed for external unseen cases that was below the cut-off value for 
commercialization.

Based on the study conducted by Segui et al., increasing training images by ten times improved the diagnostic 
accuracy by 3% in the WCE  analysis21. Moreover, the following accuracy test with CE images of two hospitals 
is expected to improve over 95% by adding supervised learning using the unseen external data. However, there 
are still concern regarding ‘catastrophic forgetting’ in which the accuracy of the diagnosis for the dataset of the 
initial training from a single institution may be reduced when the AI is additionally trained with a large number 
of images from other institutions. In addition, manually annotating massive data for CE images is also a laborious, 
error-prone, and expensive process that may lead to huge label bias. Therefore, a large number of multi-center 
based training images will not necessarily lead to a clinically-ready AI model.

We believe that it is necessary to form an optimized training image set that is suitable for the health environ-
ment of a regional community where capsule endoscopy is performed to advance to a stage of multi-class reading. 
In this study, we considered the data balance when setting up the learning image database since we knew that the 
significant images were too small even in hundreds of thousands of capsule images. Therefore, we set the ratio 
of pathological and nonpathological images to 1:1 for AI training to detect pathological images sensitively and 
deliver them to a human reader without any loss. However, by properly adjusting ‘Significant’ and ‘Insignificant’ 
ratios of images as well as the compositions of lesions (for example, the ratio among inflammatory, vascular, 
bleeding, and small bowel tumors), we expected a more rational AI reading outcome. Regarding the optimal 
image composition ratio for each regional community, additional studies are still needed.

This study has several limitations. First, the AI training was based on images from a single institution. 
Second, the labeling of images was done by three gastroenterologists, which may include some inter-observer 
differences. In addition, it only used retrospectively collected data without utilizing clinical data during learning 
and feedback processes.

Securing the reliability of AI decision-making is very important to whether it can be used in the real world. 
There are questions about which AI systems should be trusted more or less, and performing a comprehensive 
uncertainty quantification and trustworthiness is a very difficult  process22. Accuracy and AUC may be repre-
sentative metrics, but they are still not perfect. Developing a format that can quantify the uncertainty of artificial 
intelligence that considers both the dataset and the trustworthiness of the inner algorithmic workings would be 
one of many future challenges.

In summary, we demonstrated the practical applicability of a CNN-based comprehensive binary classification 
model in the small bowel CE, which is a promising tool that can be used in everyday practice in the near future.

Data availability
The datasets analyzed in the current study are available upon reasonable request from the corresponding authors.
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