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Stronger connectivity 
and higher extraversion protect 
against stress‑related deterioration 
of cognitive functions
Jacek Rogala1,2*, Joanna Dreszer2,3, Urszula Malinowska4, Marek Waligóra4, 
Agnieszka Pluta5, Ingrida Antonova4 & Andrzej Wróbel2,4,6

Here we attempted to define the relationship between: EEG activity, personality and coping during 
lockdown. We were in a unique situation since the COVID‑19 outbreak interrupted our independent 
longitudinal study. We already collected a significant amount of data before lockdown. During 
lockdown, a subgroup of participants willingly continued their engagement in the study. These 
circumstances provided us with an opportunity to examine the relationship between personality/
cognition and brain rhythms in individuals who continued their engagement during lockdown 
compared to control data collected well before pandemic. The testing consisted of a one‑time 
assessment of personality dimensions and two sessions of EEG recording and deductive reasoning 
task. Participants were divided into groups based on the time they completed the second session: 
before or during the COVID‑19 outbreak ‘Pre‑pandemic Controls’ and ‘Pandemics’, respectively. 
The Pandemics were characterized by a higher extraversion and stronger connectivity, compared to 
Pre‑pandemic Controls. Furthermore, the Pandemics improved their cognitive performance under 
long‑term stress as compared to the Pre‑Pandemic Controls matched for personality traits to the 
Pandemics. The Pandemics were also characterized by increased EEG connectivity during lockdown. 
We posit that stronger EEG connectivity and higher extraversion could act as a defense mechanism 
against stress‑related deterioration of cognitive functions.

A personality trait is a stable psychological characteristic that influences an individual’s thoughts, feelings, and 
 behavior1. Traits such as neuroticism and extraversion appear to be key factors that predict adherence to health 
measures. Individuals who score high on neuroticism are often worried about their  health2 and are more likely to 
maintain healthy  habits3,4. In contrast, extraverts seek social engagements and their neural networks are activated 
to a greater extent by external  stimuli5,6.

Investigations tempting to define the relationship between brain activity and personality focused on resting-
state and connectivity as the potential explanatory factors. Several studies have suggested an interrelation between 
personality traits and patterns of whole brain resting state functional  connectivity7,8, although these results have 
been challenged (for review  see9). By contrast, it is generally accepted that individual differences in cognitive 
performance are mediated by differences in dynamical neural systems and brain-wide interactions. Dynamic 
responses of resting-state networks affect memory  performance10,11 and visual  attention12–14. Importantly, both 
memory and attention influence adherence to COVID-19 pandemic  regulations15 and vulnerability to  stress16,17, 
a finding which could be related back to individual variations in brain connectivity. Indeed, several recent studies 
have found stress coping strategies are related to resting state functional  connectivity18,19. Improved understand-
ing about which inter-individual factors shape behavioral responses to perceived threats is crucial for predicting 
and developing relevant actions mitigating unwanted and risky behavior.
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Here we attempted to define the relationship between EEG activity and coping during lockdown. We were in 
a unique situation since the COVID-19 outbreak interrupted our independent longitudinal EEG neurofeedback 
study. We had already collected a significant amount of control data well before lockdown. During lockdown, 
a subgroup of participants willingly continued their engagement in the study. This unique set of circumstances 
provided us with an opportunity to examine the relationship between personality/cognition and associated brain 
rhythms in individuals who continued their engagement during lockdown compared to control data collected 
well before pandemic.

Results
We compared personality dimensions, cognitive function, and EEG between subjects who continued their train-
ing during the COVID-19 pandemic and those who did not. The study design included: a “Pre-pandemic Con-
trols” who completed two test sessions (EEG recording and cognitive tasks) before the COVID-19 outbreak. 
The “Pandemics” had their first session before the COVID-19 outbreak and the second during lock-down. Both 
groups completed psychological assessments before the pandemic, and a questionnaire about fear of COVID-19 
during lockdown.

Characteristics and comparison of the Pre‑pandemic Control vs Pandemic group. Fear of COV‑
ID‑19 and Socioeconomic Status (SES). The results of the fear of COVID-19 questionnaire are presented in 
Suppl. Inf. Table S1. A two-tailed Wilcoxon test did not show a difference between the fear medians (p = 0.76).

In our study, we also examined SES and found the dominant group of subjects were people with higher SES 
in both Pre-pandemic and Pandemic groups. Group statistics of SES are shown in Suppl. Inf. Table S2.

Personality dimensions. During Session-1 (before pandemic), we found a higher extraversion score (p < 0.05, 
Mann–Whitney U test) in the Pandemic group compared to the Pre-pandemic Control (Fig. 1A) and no differ-
ences for neuroticism scores (Fig. 1B).

Global connectivity index. Higher extraversion scores of the Pandemics, led us to speculate that biopsychologi-
cal differences proposed by  Eysenck6 might be detectable in EEG. We analyzed differences in connectivity using 
the Global Connectivity Index (GCI; see Fig. 2 legend), as similar measures appeared to be a better predictor of 
cognitive performance than detailed connectivity  metrics20.

Analyses of the GCI for Session-1 using a two factor ANOVA for group (Pre-pandemic Control, n = 44 and 
Pandemic, n = 18) and EEG band (theta, alpha, beta-1, beta-2) revealed a significant effect of group (F = 497.59, 
p < 0.01) and EEG band (F = 71.74, p < 0.01) but no significance for interaction (F = 1.79, p = 0.15). Subsequent 
Tukey–Kramer post-hoc testing revealed significantly higher (p < 0.01) GCI values in the Pandemic group com-
pared to controls for all EEG bands (Fig. 2).

Given the differences between the groups in GCI, we examined connectivity using mean PLVs for all pairs 
of electrodes (matrix 57X57) in all EEG bands. The resulting connectivity matrix can be used to assess whether 
GCI differences are local—spread over specific head areas or global. Additionally, the strength of EEG connec-
tivity between frontal and parietal brain areas has recently been shown to be related to task  performance2 and 
personality  dimensions21. Student’s two-tailed t-test with Bonferroni correction confirmed higher PLVs in the 
Pandemic group for most electrode pairs across all frequency bands (theta: higher PLVs for 802 pairs, lower = 56, 
alpha: higher = 800, lower = 56, beta-1: higher = 798, lower = 59, beta-2: higher = 794, lower = 90). PLV differences 
for all four EEG bands are shown in Fig. 3.

Transitive reasoning task. Inter-individual patterns of brain activity have been proposed to contribute to dif-
ferences in cognitive performance in tasks of  attention22 and working  memory23,24. Using a transitive reasoning 
task, which relies on both attention and memory, we next investigated whether connectivity differences between 
the two groups were associated with differences in cognitive function.

Figure 1.  Comparison of level of extraversion (A) and neuroticism (B) on the sten score scale between 
Pandemic and Pre-pandemic Control groups in Session-1. The asterisk denotes a significant difference between 
groups (p < 0.05 Mann–Whitney test). Created using R 4.0.4 (https:// www.r- proje ct. org).

https://www.r-project.org
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Participants were tested two times 8–12 weeks apart; Pre-pandemic Control group – before pandemic (Ses-
sion-1 and 2); Pandemic group – before pandemic (Session-1) and during pandemic (Session-2). Accuracy and 
reaction times did not differ between the groups for Session-1 or Session-2 (Fig. 4). Friedman ANOVA, and 
subsequent post hoc analyses, revealed that in both groups accuracy significantly increased in the second vs. first 
session for moderate and difficult, but not easy, versions of the task. In the Pre-pandemic Control group reaction 
times were faster, in Session-2, for all versions of the task, whereas in the Pandemic group faster reaction times 
were found only for the easy task (Fig. 4, Suppl. Inf. Table S3).

Considering that Pre-pandemic Control and Pandemic groups differed on scores of extraversion and EEG 
connectivity we speculated that this could influence the differences in reaction time between Session-1 and 2.

Assessment of the impact of COVID‑19 lockdown using Pre‑pandemic controls matched for 
personality traits. We attempted to control for personality differences by selecting individuals from the 
Pre-pandemic Controls to match Pandemics subjects for personality traits, SES, sex and age. We retrospec-
tively analyzed 18 participants and termed this group “Matched Controls” (see Suppl. Inf. Table S4 for details). 
Matched Controls and Pandemics had similar scores for fear of COVID-19 (median based on all questions for 
both groups: med = 11.5, Wilcoxon test p = 0.75) and similar scores in transitive reasoning task and GCI (see 
“Effect of pandemic threat on performance in a transitive reasoning task” and “Assessment of impact of pan-
demic threat on GCI and PLV” sections).

Effect of pandemic threat on performance in a transitive reasoning task. Comparison of Pandemics and Matched 
Controls revealed a significant difference (Friedman test) in accuracy for the difficult task variant, and in reac-
tion times for the easy variant. Post-hoc analyses for sessions and groups did not find significant differences. 
Within group comparisons (Session-1 vs. Session-2) revealed improved accuracy and shorter reaction times 

Figure 2.  Group means of Global Connectivity Index in four EEG bands during Session-1 (before COVID-19 
pandemic). Between-group differences in all bands were significant (p < 0.01, ANOVA followed by Tukey post-
hoc test). GCI was calculated as the averaged phase locking value (the measure of connectivity was based on the 
phase of the EEG signal) in the four canonical EEG bands: theta (4-7 Hz), alpha (8–12 Hz), beta-1 (14–20 Hz) 
and beta-2 (21–30 Hz). Created using MATLAB 2020a (The MathWorks, Inc, www. mathw orks. com).

Figure 3.  PLV differences between Pandemic and Pre-pandemic Control groups in Session-1. Green squares 
denote a lack of significance. Differences significant at p < 0.01, Bonferroni corrected. Abbreviation for regions 
with appropriate electrodes: AF – anterofrontal; F – frontal; C – central; CP – centroparietal; P – parietal; PO – 
posterooccipital; O – occipital. Created using MATLAB 2020a (The MathWorks, Inc, www. mathw orks. com).

http://www.mathworks.com
http://www.mathworks.com
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Figure 4.  Accuracy and reaction times in a transitive reasoning task. Mean accuracies (upper row) and mean 
reaction times (lower row) results for Pandemic and Pre-pandemic Control groups in the easy (A), moderate 
(B) and difficult (C) task variants. The stars above lines joining results of Sessions-1 and Session-2 denote 
significant differences (*p < 0.05; **p < 0.01; ***p < 0.001) of  Chi2 post-hoc test followed by Friedman’s test.). 
Created using JASP 0.14.1 (https:// jasp- stats. org).

Figure 5.  Accuracies and reaction times in transitive reasoning tasks performed in Session-1 and 2. Mean 
accuracies in difficult task variant (A) and mean reaction times in easy task variant (B). Stars above lines joining 
the results of Sessions-1 and Session-2 denote significant differences (p < 0.05) of  Chi2 post-hoc test followed by 
Friedman’s non-parametric ANOVA. Created using JASP 0.14.1 (https:// jasp- stats. org).

https://jasp-stats.org
https://jasp-stats.org
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for the Pandemics alone (Fig. 5). Thus, excluding the pandemic threat as a factor underlying these effects in the 
Pandemics (see Suppl. Inf. Table S5).

To exclude differences in EEG connectivity as a potential factor influencing reaction we compared GCI scores 
in Pandemics and Matched Controls. We found no group differences for Session-1 for any band (theta: p = 0.18; 
alpha: p = 0.18; beta-1: p = 0.27; beta-2: p = 0.14; one-way ANOVA, post-hoc Tukey–Kramer test) or in the fear 
of COVID-19 level (p = 0.76, Wilcoxon test). Thus, GCI and extraversion were excluded as potential factors 
accounting for the difference in cognitive performance.

Assessment of impact of pandemic threat on GCI and PLV. Repeated measures ANOVA was used to assess the 
effect of COVID threat on GCI (group*EEG band) for all EEG bands. We found significant differences for group 
and group*session interactions for all bands (theta: group factor F = 254.49, interaction F = 447.98; alpha: group 
factor F = 254.06, interaction F = 447.66; beta-1: group factor F = 260.38, interaction F = 457.26; beta-2: group fac-
tor F = 241.20, interaction F = 437.63; all significant at p < 0.01). Subsequent post-hoc tests showed no difference 
between the groups in Session-1 (p > 0.3), but significant differences in Session-2 for all bands. In Session-2 we 
observed increased GCI values for all bands in the Pandemics (theta: diff = 0.0178, alpha: diff = 0.0179, beta-1: 
diff = 0.0182, beta-2: diff = 0.0200; all significant at p < 0.01), while for Matched Controls GCI decreased (theta: 
diff = -0.0126, alpha: diff = -0.0126, beta-1: diff = -0.0121, beta-2: diff = -0.0165; all significant at p < 0.01).

The same pattern of connectivity differences was found for all pairs of electrode signals. Figure 6 shows PLV 
differences (Bonferroni corrected) calculated between the Pandemics and Matched Controls for the beta-2 band 
for Session-1 and 2 and between both sessions (Fig. SF1 in Suppl. Inf. shows differences for all investigated bands). 
The strengthening of connectivity measured for signals recorded from most pairs of electrodes was observed in 
the Pandemic group between Session-1 (before lockdown) and Session-2 (during lockdown) suggests interrela-
tion with the threat of the pandemic.

Discussion
Here, we attempted to identify if a set of psychological and physiological traits characterized participants who 
willingly continued training during lockdown. To this end we compared Pandemics with a Pre-pandemic Con-
trols and its subgroup—a Matched Controls paired for personality, sex, and age with the Pandemic group. We 
found that Pandemics were characterized by higher intensity of extraversion and stronger EEG connectivity but 
also stable results of cognitive task during lockdown. Notably, these groups did not differ on fear of COVID-19, 
and thus subjective evaluation of the perceived threat between the groups could not account for the difference 
we observed. As such, other biopsychological factors should explain the differences between the Pandemics and 
Control groups.

Stress caused by social  isolation25,26 and fear can increase brain activation by rerouting mental resources 
and decreasing  efficiency15, which in the long-term may lead to anxiety  disorders27,28. The same stressors are 
associated with the current  pandemic29, but the extent of their adverse effects appears to depend on personality 
 traits30,31. Psychological investigations report that higher extraversion is associated with lower stress  levels32–34. 
This relationship may arise from a reduced physiological response to stress in  extraverts35,36, their tendency 
to appraise a situation as less  threatening37, and positive  reinterpretation38. Consequently, extraverts might be 

Figure 6.  Comparison of differences for all PLV pairs measured between Pandemic and Matched Control 
groups and between sessions for these groups, in an exemplary beta-2 band. (A) Differences between all PLVs 
for Pandemic and Matched Control groups in Session-1 performed for both groups before the pandemic 
outbreak; (B) the same for Session-2 which was performed for Matched Control group before the pandemic 
outbreak, and for Pandemic group during lockdown; (C) differences between all PLVs measured in Session-2 
and Session-1 for Matched Control group, both sessions performed before pandemic outbreak; (D) Differences 
between Session-2 (performed during lock-down) and Session-1 (before the pandemic outbreak) for Pandemic 
group. Black triangular outlines denote frontocentral and centroparietal PLV values with the most numerous 
differences. Differences significant at p < 0.01, Bonferroni corrected. Created using MATLAB 2020a (The 
MathWorks, Inc, www. mathw orks. com).

http://www.mathworks.com
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more optimistic when faced with threats and/or use social engagement as a stress-coping  mechanism39. Indeed, 
our results showed that individuals who continued to participate in this study, despite the increased risk of 
COVID-19, had higher extraversion compared to the controls (comp. Figure 1). Considering that extraversion 
is associated with a drive for social  interaction29,40,41 and  stimulation42, social reward may have been sufficiently 
motivating in the Pandemic group to outweigh fear of COVID-19.

Other specific traits of the Pandemic group (compared to Pre-pandemic Controls) were higher GCI and 
stronger PLVs. To date, only a few studies have addressed patterns of EEG connectivity and stress/fear in healthy 
 subjects16,43. In particular Alonso and  colleagues43 showed that stress induced by cognitive task led to increased 
connectivity in the beta-2 band. This finding is consistent with our observations, but in our case the extent of 
increased connectivity spanned over all investigated bands probably due to higher and persistent stress caused 
by the pandemic threat.

Theoretical considerations indicate that strong EEG connectivity in the beta-2 band is highly  stable44,45, less 
prone to  disturbance44,46 and consequently results in less dynamic processing and  behavior47,48. This lower recon-
figuration capability is also in line with our previous investigation which showed that subjects with stronger PLVs 
exhibited less flexible connection  patterns49. Negative correlations between the strength of EEG connectivity and 
performance in attention and memory tasks has been confirmed in ADHD  patients50–52. These studies showed 
that strong parietal and occipital connectivity correlated with inattention type ADHD. In the context of the 
current study, the decision by Pandemics to continue engagement in the study, despite risk, could be reinforced 
by a lower reconfiguration capability of neuronal networks and subsequently, reduced capacity to adjust their 
behavior to current environmental  conditions49. Thus, lower network reconfiguration capacity, combined with 
higher extraversion appear to be associated with the decision to continue participation in this study. Exposure 
to a threat and associated stress, could lead to the increased EEG connectivity we observed in the cognitive test 
session, which took place during lockdown [comp. 43]. By contrast, under control conditions (before COVID-19) 
we observed decreased PLV scores in the second session in both control groups.

Exposure to stress among Pandemics was associated with faster reaction times in a transitive reasoning task 
compared to Matched Controls (Fig. 5) and no change in reaction time, in its two most difficult variants, com-
pared to Pre-pandemic Controls (Fig. 4). These seemingly contradictory observations may result from strong 
EEG connectivity specific for Pandemics and Matched Controls. Lower capability of behavioral adjustment 
caused by strong  connectivity49 could result in worse performance of Matched Controls under control conditions. 
Only strong stimulation by pandemic threat allowed network reconfiguration of the Pandemic group leading to 
outperformance of Matched Controls. Paradoxically, such a mechanism might not necessarily be disadvanta-
geous—in stressful situations strong EEG connectivity and low capability of behavioral adjustment may help 
to protect cognitive resources against deterioration and subsequent decrease of efficiency, although at the same 
time it could also result in less adherence to pandemic regulations.

Methods
Study design. The study included two groups recruited for an independent, ongoing neurofeedback experi-
ment. Independent analysis yielded that neurofeedback training did not affect neither the cognitive abilities 
nor the EEG characteristics of the participants who had completed the experiment, and the other group who’s 
training period happened during lock-down had their two examinations (separated by two months) before 
awaited training and therefore changes in their behavioral performance were neither expected. None partici-
pants from either group reported COVID-19 contagion. Both groups completed psychological assessments and 
repeated testing of cognitive tasks and resting-state EEG (Session-1 and Session-2, two months apart; Suppl. Inf. 
Table S6). Participants from the first group who completed all examinations before the pandemic formed the 
Pre-pandemic Control group, while participants whose’ second testing session fell within the lockdown period 
were qualified to the Pandemic group (in contrast to five subjects who decided to discontinue their engagement 
after the announcement of a lock-down). The Fear of COVID-19 questionnaire was administered to both groups 
mean = 55.53 (SD = 12.37) days after the announced lockdown (i.e., between April and May 2020).

In the final step, we aimed at assessment of the impact of the pandemic threat on cognitive and electrophysi-
ological features of brain activity. To this end, we selected from Pre-pandemic Controls participants matching 
personality traits, sex, age, and socio-economic status (SES) of the Pandemics (the Matched Controls). Next we 
compared differences between Session-1 and Session-2 for the Pandemics and Matched Controls.

Participants. The procedures were approved by the Local Bioethics Committee at Nicolaus Copernicus 
University in Torun. All participants gave their written informed consent to participate in the experiment in 
accordance with the WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human 
Subjects. All experiments were performed under all relevant guidelines and regulations.

We examined 62 healthy adults (34 women) recruited through announcements at local universities and 
work agencies. The exclusion criteria were based on neurological screening and questionnaires and included 
neurological disorders, brain injury, current use of analgesic medication, substance abuse or dependence, and 
mental disorders. All participants were right-handed and had a normal or corrected-to-normal vision. The 
mean ± standard deviation of their age was 26.8 ± 4.7 ranging between 23 and 46 years.

The groups and times of their testing are summarized in Supplementary materials in Suppl. Inf. Table S6.

Personality dimensions. Personality dimensions (i.e., extraversion—E and neuroticism—N) were 
assessed using the paper-and-pencil individually administered Polish version of the revised Eysenck Personality 
 Questionnaire5.
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The Polish  version52 consisted of 106 dichotomous items (yes/no) to assess the three dimensions of personality 
(extraversion, neuroticism, and psychoticism in E, N, and P scales, respectively) and the tendency to lie or distort 
responses in a favorable direction (L Scale). We focused on extraversion and neuroticism (E and N Scales). The 
result of a given scale consisted of the sum of points obtained in response to the questions it comprised, i.e., 23 
for E scale (e.g., “Do you enjoy meeting new people?”), and 24 for the N scale (e.g., “Would you call yourself a 
nervous person”). The Polish version of the EPQ-R was shown to possess good reliability (α = 0.62–0.72, 0.78-0.81, 
0.86-0.88, and 0.76–84 for P, E, N, and L scales, assessed in the Polish standardization trials and the four-factor 
structure. The reliability of the E and N Scales in the current sample was also good (α = 0.71 and 0.74, for E and 
N scales, respectively).

The raw scores for E and N Scales were converted into standard scores using the following formula (the sten 
scale): (Z-score × 2) + 5.5, in relation to groups distinguished by sex and  age52.

The fear of COVID‑19 scale. The computerized, self-administered scale of Fear of COVID-19 (the FCV-
19S;53; Polish translation: Gola, 2020) was used to assess the fear of coronavirus. The questionnaire consisted 
of seven items: 1. “I am most afraid of COVID-19”, 2. “It makes me uncomfortable to think about Corona”, 3. 
“My hands become clammy when I think about Corona”, 4. “I am afraid of losing my life because of Corona”, 
5. “When watching news and stories about Corona on social media, I become nervous or anxious”, 6. “I cannot 
sleep because I’m worried about getting Corona”, 7. “My heart races or palpitates when I think about getting 
Corona”. Participants responded to each item on a five-point Likert scale (from “strongly disagree” to “strongly 
agree”). A total score (ranged from 7 to 35) was calculated by summing the scores obtained for all items.

The original version of the questionnaire was shown to present a good internal consistency (α = 0.82) and 
the one-factor structure (confirmatory factor analyses). Our sample also showed good reliability (Cronbach’s 
α of 0.839).

Transitive reasoning task. The laboratory task, which effectively evaluates the effect of threat on cogni-
tion, should engage cognitive functions that are vulnerable to anxiety-induced changes (such as working mem-
ory and attention). We chose a transitive reasoning test that requires simultaneous processing, maintenance, and 
manipulation of information, which requires effective attention and working memory  capacities54.

The version used in the current study was described in detail by  Chuderski55. Briefly, we used three pairs of 
Greek letters with greater than or less than symbols. They were displayed for 10 s in the center of the screen, for 
example: (Ψ > Ω) (Ω > ή) (έ < ή) describing the relationship between the putative values of four different letters. 
Participants had to deduce the order of the four elements. After 10 s of familiarization, three new pairs appeared 
on the screen below the three original pairs with only one of them correct. The correct answer should match the 
guessed arrangement of the original rule. Participants were allowed 10 s for the answer. The task consisted of 
three conditions: 1. The easiest: where the premises and the elements inside them were arranged linearly from 
left to right on the basis of "greatest" to "smallest" or vice versa with equal probability; 2. Medium: The same as 
the easiest but the order of one element was random (keeping the relationship within elements); 3. Difficult: The 
same as the easiest but the order of two elements was random (keeping the relationship within elements). The 
whole task consisted of 60 trials.

EEG recording and preprocessing. Four minutes resting-state eyes open EEG was recorded in both ses-
sions with 128 Ag/AgCl electrodes (Quick Amp; Brain Products GmbH, extended 10–20 system, sampling rate 
of 1000 Hz), reference at FCz and ground at FPz electrode. The impedance of electrodes was below 10 KΩ. 
The preprocessing included 0.5–70 Hz filtering, baseline correction, exclusion of 1 s data segments containing 
artifacts, and independent component analysis (ICA). The identified eye movement and muscle artifacts com-
ponents were removed (maximum 10% of all ICA components).

Connectivity analyses. Spontaneous brain activity of the large-scale EEG and fMRI networks can predict 
cognitive  performance49,56,57 we seized the opportunity to investigate the effect of the threat on the EEG connec-
tivity. As a proxy we used phase-locking value [PLV, 58]. PLV is used for connectivity estimation in EEG/MEG 
 studies59–62. PLV does not depend on spectral power and is robust to noisy  signals63. Zero-phase correlations 
present the PLV provide information enabling prediction of the task results, not possible  otherwise64. Methods 
preserving zero-phase correlations (PLV and AEC) significantly relate to the results of fMRI analyses unlike 
 others65.

To compute PLV in a given frequency range, we filtered the EEG data using a two-sided finite impulse 
response filter and then subjected them to a Hilbert transform for computation of the instantaneous amplitude 
and phase. Only the phase component was used for PLV computation. The PLVs were calculated for 1-s non-
overlapping epochs. The number of epochs was limited to the shortest EEG resting-state signal which remained 
after preprocessing, i.e. to 140 epochs. For the purpose of analyses, epochs were group averaged yielding the 
same number of samples (140) independently of the group size. As a general measure of connectivity in the 
given frequency band, we averaged PLVs of all electrode pairs (Global Connectivity Index—GCI). Similar global 
measures of EEG connectivity were proposed as potential biomarkers of different abnormal brain  states66,67.

Due to high correlations of the signals collected from closely located electrodes in a 128 cap set we used subset 
matching standard positions of the 64 electrode cap (AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, 
FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, BP3, CP1, CPz, 
CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz and O2) except for 
the 7 electrodes located near jaws and neck, usually most contaminated by muscle artifacts.
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Assessment of the impact of pandemic threat on the cognitive and electrophysiological pro‑
cesses. The assessment was performed by comparing within-group differences between Session 2 and Ses-
sion 1 in the Pandemic and Matched Control groups. The Matched Control group consisted of participants 
selected from the Pre-pandemic Control group that matched the Pandemic subjects in terms of personality 
dimensions, sex, age, and socioeconomic status.

Statistical methods. Data were tested for normality by the Kolmogorov–Smirnov test and checked for the 
presence of outliers. The values deviating from the mean for more than three standard deviations were removed. 
Comparison of the groups were conducted using two-tailed two-sample t-tests or ANOVA. In cases of small 
samples, the Man-Whitney test and Friedman ANOVA with Chi square post-hoc test, were used. All PLV analy-
ses were performed on single trial data. Results were corrected for false positives using Bonferroni adjustment 
where appropriate unless otherwise stated. Analyses and figures were created using MATLAB 2020a (connectiv-
ity analyses), R 4.0.4 (personality dimensions and SES analyses) and JASP (behavioral statistics).
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