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5G‑enabled contactless multi‑user 
presence and activity detection 
for independent assisted living
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Wireless sensing is the state-of-the-art technique for next generation health activity monitoring. 
Smart homes and healthcare centres have a demand for multi-subject health activity monitoring 
to cater for future requirements. 5G-sensing coupled with deep learning models has enabled 
smart health monitoring systems, which have the potential to classify multiple activities based on 
variations in channel state information (CSI) of wireless signals. Proposed is the first 5G-enabled 
system operating at 3.75 GHz for multi-subject, in-home health activity monitoring, to the best of 
the authors’ knowledge. Classified are activities of daily life performed by up to 4 subjects, in 16 
categories. The proposed system combines subject count and activities performed in different classes 
together, resulting in simultaneous identification of occupancy count and activities performed. The 
CSI amplitudes obtained from 51 subcarriers of the wireless signal are processed and combined to 
capture variations due to simultaneous multi-subject movements. A deep learning convolutional 
neural network is engineered and trained on the CSI data to differentiate multi-subject activities. The 
proposed system provides a high average accuracy of 91.25% for single subject movements and an 
overall high multi-class accuracy of 83% for 4 subjects and 16 classification categories. The proposed 
system can potentially fulfill the needs of future in-home health activity monitoring and is a viable 
alternative for monitoring public health and well being.

In recent years 5G-based technologies, pointing at seamless integration of the world into a single system, have 
been making significant innovations in numerous real-world implementation and thus introducing significant 
commercial possibilities for several fields such as healthcare and energy conservation. In healthcare, 5G is 
already creating new opportunities for areas such as medical imaging, data analysis, elderly care, diagnostics, 
and prognostication due to its ultra low latency, Massive-Machine Type Communication (mMTC), intelligent 
management and handling of Big Data1. However, Human Activity Recognition (HAR) has received increasing 
attention due to numerous applications in fields such as security, health care and smart utilisation of resources, 
but has not been introduced with 5G-based technologies. HAR and classification not only brings numerous 
benefits to elderly care2,3 but also is a basic key in providing higher-level appropriate information such as posi-
tions, activities, occupancy, and identities in an indoor environment that can be useful for health care, source 
utilisation, security, and in energy saving.

The risks of high carbon emissions on the environment have increased the need for solutions, across all 
societal domains, to achieve carbon neutrality. One of the key points to be considered is reducing energy waste, 
that is, consuming energy only when and if needed4. Presence and activity detection systems can play a vital role 
in this and can complement Internet of Things (IoT) use cases for smart cities, such as the wireless electricity 
data logger introduced in5, to control in-home energy consuming systems such as lights, appliances, and so on.

Several studies in the literature have discussed and evidenced the relationship between building occupancy 
and energy consumption. For instance, a study was reported in6 showing that forecasted energy consumption 
can be skewed by up to 300% if occupancy was not accounted for. Another study7 confirmed this by showing that 
actual consumption could be up to three times greater than the simulation and one of the factors contributing 
to this big gap is occupants’ behaviour and their numbers8,9. Thereby, it is fair to say there is a strong correlation 
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between occupancy and levels of energy consumption10, which makes a compelling case for occupancy monitor-
ing systems and their positive impact on the environment.

In recent years, the attention towards contactless monitoring/detection of human activity has greatly increased 
and a lot of promising research work has been reported in this area. Contactless monitoring/detection of human 
activity employs techniques such as ultrasonic11, vibration12–14, smartphone15, radar16 and Radio Frequency 
(RF) sensing. The primary disadvantages of using ultra sound, vibration and radar sensing systems are the cost 
and set-up of additional equipment. The use of smartphones can be beneficial due to higher powerered mobile 
devices becoming more available however they cannot be considered fully contactless as users must carry their 
device all the time. The use of RF-sensing addresses these disadvantages as RF signals are already present within 
the home with the use of Wi-Fi and is completely contactless. The methods based on RF-sensing17,18 are gain-
ing considerable popularity due to their privacy-friendly feature and for being contactless in comparison with 
conventional systems either based on cameras or wearable sensors19–22 and thus an introduction of 5G-based 
HAR and classification will certainly revolutionise this area of research.

Generally, the existing HAR systems based on RF-sensing differ from each other on basis of various factors 
such as hardware specifications, operating radio frequency, classification techniques, number of activities to 
monitor and number of subjects performing those activities. Available HAR systems either make use of Received 
Signal Strength Indicator (RSSI)23–25 or Channel State Information (CSI)26–28, for the purpose of activity rec-
ognition. However, studies, such as29, suggest that CSI is more robust to the complex environments as CSI is 
fine-grained and measured per Orthogonal Frequency-Division Multiplexing (OFDM) from each packet while 
RSSI contains the coarse information that is a single value per packet. This makes CSI more stable to be used for 
localisation and activity recognition. Furthermore, due to recent advances CSI based systems do not require the 
user to carry wearable devices and do not depend on lighting. Also, it can detect human behaviour through the 
wall and complex situations. Making them a good alternative for RSSI based recognition systems.

Recently, many CSI and machine learning-based approaches have been proposed to accurately detect and 
count people in a given coverage area of a Wi-Fi network. For example, in26 the authors proposed a Wi-Fi-based 
multi-user gesture recognition method to recognise 6 different gestures performed by 10 volunteers. A similar 
approach based on CSI has been proposed in30 for crowd counting. Both of these studies make use of 1 transmit-
ter (Tx) and 3 receiver antennas (Rx) and use the intel wireless network card. However, Network Interface Card 
(NIC) usually presents numerous limitations. For instance, the transmitter used in those system sends a group 
of 56 subcarriers, however, the NIC only reports 30 subcarriers, nearly 46% of the information lost in this case. 
The authors in31 exploit the CSI of Wi-Fi to detect multiple subjects’ activities. This system applied a three-phase 
system Wi-multi to recognise three different activities performed in parallel, including in a noisy environment. 
They achieved an accuracy of around 96% using 2 Tx and 3 Rx antennas. In another study32, the authors pre-
sented a method of crowd counting based on CSI extracted from a Wi-Fi device with 2 Tx and 3 Rx antennas. 
The proposed method exploits both amplitude and phase information of CSI signal to perform crowd counting 
only and does not deal with activity recognition. The work presented in33 used CSI data of Wi-Fi device with 2 Tx 
and 3 Rx antennas to detect sixteen different exercises performed by ten different subjects. However, the authors 
did not deal with the activities performed in parallel. 5G has been used in34,35 to detect breathing rates of people 
suffering from diabetic keto acidosis (DKA). The proposed system makes use of C-band sensing operating at 4.8 
GHz. C-band communication is an important component of 5G communication. 4.8 GHz was also used in the 
work of36 to detect the Freezing of Gait (FOG) which is an abnormal gait pattern that accompanies Parkinson’s 
disease. This work used the 5G spectrum to detect and classify FOG by sensing the human movements. The work 
of37 made use of the 5G frequency of 3.45 GHz to detect human presence and walking speed using RF-sensing.

The brief overview of the literature, presented above, suggests some important insights. For example (i) most 
of the studies involve CSI data extracted from commercial Wi-Fi devices such as NICs that report a limited num-
ber of data subcarriers and causes a loss of information and thus adversely affect the classification performance. 
Moreover, NICs are primarily used for networking functions, hence it’s reliability can be significantly impacted 
if it was simultaneously utilised for sensing. Hence, to ensure high accuracy and reliability, this paper presents a 
system that makes use of Universal Software Radio Peripheral (USRP) devices, where the hardware can be con-
trolled over the software, and parameters such as the number of subcarriers can be controlled and fully utilised. 
The USRP platform also allows to modify the transmitted and received power and the operating frequency swing, 
through which the system could be easily configured to operate in the 5G-band (< 6 GHz). Furthermore, the 
ease in implementation of signal processing algorithms and the ability to reuse hardware encourages research-
ers to choose USRP devices for their applications. (ii) All of the above-mentioned studies use more than one Tx 
and Rx antennas to capture the maximum information, whereas in this paper experimental results show that 
the proposed method achieved even better performance in recognising multiple activities performed in parallel 
with one Tx and Rx antenna.

The remainder of this paper is structured as follows: In “Methodology and framework”  the details of the 
proposed methodology, tools, and experimental design aspects are described in details; “Results and discussion” 
goes on to detail the conducted experiments, the obtained results, and their discussion; and finally, in “Conclu-
sions and future work” the paper is concluded.

Contributions and study motivation In this paper a novel 5G-enabled presence and activity detection system, 
of multiple subjects, is presented. The proposed RF-sensing system was designed to operate in the 5G frequency 
band, particularly at 3.75 GHz. The ultimate goal is to enable the incorporation of 5G-based non-invasive in-
home activity monitoring systems in our community to maximise the utilisation of the opportunities offered by 
5G and its enabling technologies. The contributions in this paper can be summarised to the following with the 
motivation behind each described after every point: 
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1.	 Presence and activity detection of multiple subjects performing different activities in parallel. Activity recog-
nition for single subjects has been greatly explored by several studies in the literature38–42. The research team 
presenting this paper, have led several studies on activity recognition using software defined radios43–45, which 
motivated them to take it to the next level and conduct one to explore the capability of the technology to do 
so for multiple subjects. By utilising RF-sensing technology and Artificial Intelligence (AI), a single system 
is presented that can simultaneously monitor occupancy, that is count the number of people in a room, and 
detect the parallel activities of all subjects. The contribution here has two folds, the first is accounting for a 
combination of three different activities occurring in parallel, amongst four different subjects. Secondly, the 
variation introduced in the training data by introducing intra-class variation, that is, training the system to 
classify the same activity or combination of activities performed in different positions within the room and 
by different test subjects, as the same class. This was performed to strengthen the machine learning model 
and improve its detection accuracy.

2.	 5G-enabled sensing, that is, the proposed RF-sensing system was designed to operate in the 5G-band, par-
ticularly at 3.75 GHz. To the best of the authors’ knowledge, the use of 5G for multi-user sensing applications 
has not been considered elsewhere in the literature. The motive and ultimate goal for the use of this frequency 
is to utilise 5G technology with its high data rates and ultra-low latency capabilities in developing real-time 
non-invasive activity and presence detection systems for assisted living. Moreover, primary findings from 
the experiments conducted in this paper have shown that the CSI, reflecting activities performed by a test 
subject, captured using the 5G frequency 3.75 GHz are much more evident in pattern compared to those 
captured at the Wi-Fi frequency. To confirm this, the experimental setup, presented later on in “Methodol-
ogy and framework”, was used to collected CSI samples at both frequencies for the “Standing Activity” and 
for “Empty Room” at the Wi-Fi frequency 5.00GHz. All three captures can be found in Fig. 1, where Fig. 1a 
and 1b, are of a “Standing Activity” captured at 5 GHz and 3.75 GHz, respectively. Whilst Fig. 1c, represents 
a capture of an “Empty Room”, at 5.00GHz. The evident pattern in the captured CSI, such as that in Fig. 1b 
is more likely to increase the accuracy of classification, compared to that in Fig. 1a, especially in a real-time 
system when massive amounts of data are captured and processed.

3.	 The data sets collected during the course of the experiments, presented in this paper, are made publicly 
available through this link46. The lack of a comprehensive data set for this type of activities has motivated 
the research team to make the data available and benefit the wider community with this rich data set that 
covers a wide range of activities. Researchers can use the data set to apply different processing techniques, 

(a) (b)

(c)

Figure 1.   Channel state information patterns of activities performed at 5 GHz (Wi-Fi frequency) and 3.75 GHz 
(5G Frequency); (a) Standing Activity at 5 GHz, (b) Standing Activity at 3.75 GHz, (c) Empty Room at 5 GHz.
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replicate the experiment and collect more data for bench marking. The online data set contains a total of 
1777 samples divided amongst 16 classes, as detailed later on in “Experimental design”.

Methodology and framework
This section details the methodology and framework adopted to conduct the experiments and achieve the 
reported results. It starts by presenting the specifications of the hardware design stage, followed by a detailed 
outline of the experimental design stage including experimental variables, data collection, data processing, system 
training, and testing. The system conceptualisation and main building blocks are presented in Fig. 2.

Hardware design specifications.  The experiments conducted and reported in this paper utilised two 
USRPs devices each equipped with the VERT2450 omnidirectional antenna. One USRP is used as the transmit-
ter and the second USRP is used for the receiver. Each USRP is connected to a separate PC that uses the Intel(R) 
Core (TM) i7-7700 3.60 GHz processors and has a 16 GB RAM. The system makes use of virtual machines to 
provide the Ubuntu 16.04 operating system. On the Ubuntu virtual machines, Gnu Radio is used to commu-
nicate with the USRPs. Gnu Radio allows for the creation of flow diagrams for the USRP function to be carried 
out. These flow diagrams can then be converted to python scripts. One python script is created to transmit data 
and another script is configured to receive the data from the transmitter. The transmitter transmits random 
numbers between 0 and 255 using OFDM. The receiver side is configured to receive the transmitting signal from 
the transmitter USRP. The script ran on the receiver side then outputs the CSI complex number to the terminal. 
This output is then processed to extract the amplitude values from the CSI complex numbers. The system’s main 
configuration parameters are shown in Table 1.

Experimental design.  To validate the effectiveness of the proposed framework, various experiments have 
been performed in a rectangular 2.8× 3m2 activity area as shown in Fig. 3. The two X Series USRP devices for 
the transmission and the reception of CSI signals have been installed in the two corners facing each other. To 
capture maximum intra-class variation for all the activities that include sitting, standing and walking, the sub-
jects have kept changing their positions randomly in the prescribed activity area while keeping a 1m distance 
among themselves during the course of multiple experiments. This is to simulate a small setting such as a care 

Figure 2.   System concept diagram showing the contactless sensing system for multi-users using wireless 
signals.

Table 1.   Software configuration and parameters’ selection.

Parameter Value

Platform USRP X300/310

OFDM subcarriers 51

Operating frequency 3.75 GHz

Transmitter GAin (dB) 70

Receiver gain (dB) 50
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home with a limited number of people. Currently the focus of the experiment is to accommodate 4 people. Part 
of the future work will seek to increase this number.

Furthermore, the proposed deep learning-based classification methodology to recognise multi-user activi-
ties is comprised of two major modules: (i) System Training and (ii) System Testing, as depicted in a high-level 
signal flow diagram shown in Fig. 4. The system training module is based on an offline process that involves 
already acquired and preprocessed CSI samples data set to train the 1-D Convolutional Neural Network (CNN). 
The system testing is performed in an online setting in which an input CSI data sample, after all necessary pre-
processing is performed, is classified as one of the human activities. A detailed description of the two modules 
is provided in subsequent sub-sections.

System training.  The system training module of the proposed classification architecture is mainly based on the 
three major components (see Fig. 4): (i) Data collection, (ii) Data processing and (iii) 1-D CNN. The CSI data 
acquisition was performed using the setup shown in Fig. 3. To prepare the captured CSI data for subsequent 
classification, tasks are done in the data collection and data processing modules, respectively. Whereas the third 
component deals with the training and learning of the 1-D CNN model. A detailed discussion on each of these 
components is presented in the following sections.

Figure 3.   Experimental setup for capturing activities using 5G frequency.

Figure 4.   Signal flow diagram for multi-user activity classification.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17590  | https://doi.org/10.1038/s41598-021-96689-7

www.nature.com/scientificreports/

Data collection The data collection for the proposed system training involved five steps with four volunteers 
each performing three different activities, “Sitting”, “Standing”, and “Walking” in a lab environment, with the 
setup shown in Fig. 3b. The setup was replicated in two different lab environments as means of introducing dif-
ferent clutter levels which increases the variability of the data and further strengthens the model. Nevertheless, 
the data for a particular class collected in both environments were treated as the same data set, that is, clutter 
level due to environment was not a measured variable in the conducted experiments.

As with any experiment, there were some fixed attributes as well as variable ones. For the experiments pre-
sented in this paper, the fixed attributes included (1) The hardware and its configuration (2) The data process-
ing and deep learning techniques and (3) The experimental setup, shown in Fig. 3. The experimental variables 
included (1) the number of subjects (2) The subject identity, in the data collection for one and two subjects and 
(3) The location of the performed activity, that is, for example, for one subject performing “Sitting Activity” it 
was performed in different chair locations, as per Fig. 3. The first variable was measured as will be highlighted 
in the remainder of this section and in the results, whilst the second and third variables were only utilised to 
introduce maximum intra-class variation in the collected data. All the data was collected over a calendar week, 
with a random number of samples collected for all 16 classes in every day of the week to ensure the repeatability 
of the data over different days.

The “Sitting” and the “Standing” activities are representations of the action of performing these activities 
and not the posture or the position of the person in the sitting/standing state. Moreover, while capturing the 
activity data the volunteers were not stressed or forced to keep the upper body still and static so both “Sitting” 
and “Standing” activity data included the small variations of upper body.

In the first data collection step, the CSI data for a single subject were collected separately for all three activities, 
that is “Sitting”, “Standing”, and “Walking”, where a total of 420 samples were collected. To introduce maximum 
variation into the data set, three different subjects participated in this data collection phase. Each subject con-
tributed equally to the data collection, that is, each participant was involved in the collection of 140 samples, 
divided among the three activity classes. For each CSI data sample, 1200 packets in three seconds are transmitted.

The second step involved data collection for two subjects performing the above mentioned three activities, 
where a total of 400 samples were collected, as highlighted in Table 2. The same three participants were involved 
in this data collection stage, with equal contributions from each, that is, each participant was involved in the 
collection of at least 33 samples for each of the four classes identified for this stage of data collection.

In the third and fourth data collection steps, three and four participants were recruited to participate in col-
lecting the data for three and four subjects performing activities, as outlined in Table 2. The participants recruited 
for these data collection stages were fixed throughout. In these two steps, 540 and 300 data samples were col-
lected, respectively. In addition to the activity data, 117 data samples were collected for the class “Empty” which 
represents the status of the room when the subjects are absent from it. All the 16 classes are shown in Table 2. 
Some of the data samples representing different activities are shown in Fig. 5. The inter-class variation in the 
data samples of different activity classes is obvious and can be exploited in subsequent classification process to 
get better results.

Data processing CSI for one transmitter and one receiver antenna forms a matrix that contains frequency 
responses of all N = 51 subcarriers as shown in Eq. (1),

here frequency of each subcarrier Hi can be represented as

(1)H = [H1(f ),H2(f ), . . . ,HN (f )]
T
,

Table 2.   Number of subjects and activities performed.

No. of subjects Class number Class/activity Number of data samples

0 1 Empty 117

1

2 1 sitting 140

3 1 standing 140

4 1 walking 140

2

5 1 sit + 1 stand 100

6 1 walk + 1 sit 100

7 2 sitting 100

8 2 standing 100

3

9 1 sit + 2 stand 120

10 1 walk + 2 sit 120

11 2 sit + 1 stand 100

12 3 sitting 100

13 3 standing 100

4

14 4 sitting 100

15 4 standing 100

16 2 sit + 2 stand 100
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Figure 5.   CSI data samples representing various activity classes: (a) Empty, (b) 1-Subject Sitting, (c) 2-Subjects 
(1 Walking and 1 Sitting), (d) 3-Subjects (1 Sitting and 2 Standing), (e) 3-Subjects Standing and (f) 4-Subjects 
Standing.
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where |Hi(f )| and ∠Hi(f ) are the amplitude and phase responses of the ith subcarrier. Each of these subcarrier 
response is related to system input and output as given in Eq. (3),

where Xi(f ) and Yi(f ) are the Fourier transforms of input and the output of the system.
In general, the acquired CSI data is masked due to the high-frequency environmental noise and multipath 

propagation of CSI signal. Therefore, to denoise the data and to prepare it for the subsequent training of the 1-D 
CNN the data is passed through the following data processing steps:

•	 In the first step, each CSI data sample is averaged across all 51 subcarriers, see Eq. (4), to get one averaged 
data sample to be used in subsequent processing, 

 where xi is the ith data sample that represents the average across corresponding subcarriers yij for 
(j = 1, 2, . . . 51).

•	 Afterwards, a Butterworth lowpass filter of order n = 4 is used to smooth out and to remove small variations 
from each averaged data sample xi.

•	 Lastly, a discrete wavelet transform (dwt) at level 3 with a Haar basis function is applied to get the approxima-
tion coefficients Ai for each of the smooth data samples si . The approximation coefficients represent the output 
of the lowpass filter in dwt, therefore it further helps in reducing the noise. Mathematically, the convolution 
and downsampling process involved in the wavelet decomposition for all three levels is represented as follow: 

where g[k] for k = 1, 2, . . . ,K  is the lowpass filter of length K for each decomposition level, si[m] for 
m = 1, 2, . . . ,M is the smooth signal of length M after applying Butterworth lowpass filter, and Al

i for levels 
l = 0, 1, 2 . is representing the approximation coefficient of three levels of dwt.

Figure 6 shows a raw data sample and the results obtained after each of the data processing steps. Once all 
the samples are processed, data set is ready to train the 1-D CNN.

1-D Convolutional Neural Network The CNN47 is one of the most widely used Deep Neural Network (DNN) 
for the purpose of pattern classification from both 2-D images and 1-D data signals. 1-D CNNs that have been 
recently introduced and got a lot of popularity in dealing with the classification problems related to 1-D signals48. 
Motivated by its high accuracy rates in the classification applications49, in this paper, we have also adopted a 19 
layers 1-D CNN to recognise multiple human activities performed by multiples subjects in parallel. The purposed 
1-D CNN structure is comprised of 6 blocks of convolutional layers and one block of fully connected layers. 
Out of 6 blocks of convolutional layers, the first block contains one convolutional layer and one pooling layer 
whereas each of the remaining 5 blocks contains 3 convolutional layers and one pooling layer. Finally, the block 
of fully connected layers contains 3 layers. The complete architecture of the network is shown in Fig. 7 whereas 
the detail of various parameters used is given in Table 3. Once all the data is preprocessed and the 1-D CNN is 
trained the trained model is stored for the subsequent testing phase to classify incoming test CSI signal in one 
of the activity classes.

System testing.  The second phase of the proposed methodology is the system testing that involves the 
following steps:

•	 In the first step, the CSI signal obtained from the USRPs is first processed by a Butterworth filter to make 
it smooth by removing small variations. Then the smooth signal is passed through Wavelet Transform, as 
described in the previous section, to get approximation coefficients at level three.

•	 In the second phase, the trained 1-D CNN model is used to classify the processed signal into one of the 
activity classes.

Ethics.  The current study was approved by the University of Glasgow’s ethics board (application number: 
(300190109). All experiments were performed in accordance with relevant guidelines and regulations and 
informed consent was sought from all participants prior to conducting the experiments.

(3)Hi(f ) =
Xi(f )

Yi(f )
,

(4)xi =
1

J

J
∑

j=1

yij ,

(5)A0
i [m] =

M−1
∑

k=0

si[k] × g[2m− k], for m = 1, 2, . . . ,M.

(6)A1
i [t] =

T−1
∑

k=0

A0
i [k] × g[2t − k], for t = 1, 2, . . . ,T =

M

2
.

(7)A2
i [u] =

U−1
∑

k=0

A1
i [k] × g[2u− k], for u = 1, 2, . . . ,U =

M

4
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Results and discussion
The proposed human activity monitoring system was evaluated using two different types of experiments. The 
first set of experiments focused on determining the accuracy of the system to count the number of people per-
forming particular activities in a room (see Phases 1 and 2 in Table 4). Whilst the second set was conducted to 
measure the system’s accuracy in identifying different postures/activities of multiple people in the same room. 
Both types of experiments were performed under a train-and-test split strategy with 80% of the random data was 
considered as training data while the remaining 20% was taken as the testing data. Furthermore, each experiment 
was repeated 10 times to get the average accuracy rates for both sets of experiments. The proposed 1-D CNN 
architecture consists of 100 epochs and Adamax as the optimiser with 0.001 learning rate. A detailed discussion 
on the experimental results related to both experiments is given in the following subsections.

Multi‑user presence.  The purpose of this experiment is to determine the number of people in an indoor 
setting. The experiment is done in multiple phases to gradually incorporate different activities as shown in 
Table 4.

•	 In the first phase, the experiment involves only standing activity performed by a different number of subjects 
in parallel. The data is divided into 5 classes including the “Empty” class that represents “no-subject in the 
room” as shown in Table 4. For this phase of the experiment, the total number of data samples used is 557, 
out of which 80% (i.e. 445 samples) are randomly selected to train the model and the remaining 20% (i.e. 
112 samples) are used to test the system.

•	 The second phase involves only the sitting activity data of all the subjects. Again, the total number of samples 
are 557 and the data is divided into 5 classes, 4 sitting activity classes and 1 “Empty” class.

•	 In the third phase, sitting and standing activity data for each number of subjects are merged to form the 4 
activity classes and 1 “Empty” class. Therefore, the total number of data samples becomes 1417 out of which 
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Figure 6.   Data processing: (a) Raw data sample, (b) Averaged across all 51 sub-carriers, (c) Butterworth low 
pass filtering and (d) Approximation coefficients of a 3 level Discrete Wavelet Transform.
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80% (i.e. 1133 samples) are used to train the system while the remaining 20% (i.e. 284) samples are used for 
the test purpose. This data also includes the data for mixed activities like one subject sitting and one standing.

•	 Similarly, in the fourth phase sitting, standing, and walking data are used together to make 4 activity classes 
plus 1 “Empty” class. In this phase, the total number of data samples used are 1777 (1421 training samples 
and 356 testing samples). This data also includes mixed activity data as described previously.

The average classification percentage accuracies for all the phases across all the 10 repetitions of each experi-
ment are shown in the bar graph given in Fig. 8. It is observed that, in general, the proposed system works well 
for all the cases. However, it works better when the sitting and standing activities (Phase-1 and Phase-2) are 
used separately to form the activity classes. Whereas due to an increase in intra-class variation and a decrease in 
inter-class variation, when the sitting and standing activities are merged in Phase-3 and a new activity “walking” 
is introduced along with the other mixed activities in Phase-4, the overall accuracy shows a decrease.

A further analysis of the confusion matrices, shown in Fig. 9, reveals that maximum misclassifications are 
due to 3-subject class or 4-subject class. That can be due to more subjects in a relatively smaller space that causes 
more noise in the USRP data. The performance can be further improved by changing the experimental envi-
ronment. In this experiment, the aim is to classify human activity in one of the 16 classes given in Table 2. For 
this experiment, 80–20% hold-out validation is utilised and all 1777 data samples are split into training (80%) 
and test (20%) data and the experiment is repeated 10 times to get the average performance results. The aver-
age percentage accuracy across all 10 repetitions comes as 79.5% (± 2.6) which is very promising considering a 
large number of classes and lots of variation within the data. Figure 10 shows the normalised confusion matrix 
with the highest accuracy that is 83% for the activity recognition experiment. Here, the numbers 1, 2, . . . , 16 are 
representing the 16 classes given in Table 2, respectively.

Figure 7.   Architectural diagram of the proposed 1-D CNN.
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Table 3.   Parameter values used in the 1-D CNN.

Parameter Value

Architecture

Block-1

1D conv layers 1

Kernels for each layer 8

Kernel size 5

Block-2

1D conv layers 3

Kernels for each layer 16

Kernel size 5

Block-3

1D conv layers 3

Kernels for each layer 16

Kernel size 5

Block-4

1D conv layers 3

Kernels for each layer 32

Kernel size 5

Block-5

1D conv layers 3

Kernels for each layer 64

Kernel size 5

Block-6

1D conv layers 3

Kernels for each layer 64

Kernel size 5

Block-7

1D conv layers 480

Kernels for each layer 40

Kernel size 16

Training

Learning Algorithm Adamax

Batch size 32

Epochs 100

Learning rate 0.001

Table 4.   Number of classes for all 4 phases for the subject count experiment.

Class number Class labels Phase-1 Phase-2 Phase-3 Phase-4

1 No-subject Empty Empty Empty Empty

2 1-subject 1-standing 1-sitting 1-standing/sitting 1-all activities

3 2-subject 2-standing 2-sitting 2-standing/sitting 2-all activities

4 3-subject 3-standing 3-sitting 3-standing/sitting 3-all activities

5 4-subject 4-standing 4-sitting 4-standing/sitting 4-all activities

Figure 8.   Percentage classification accuracy for all 4 phases of the subject counting experiment.
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Figure 9.   Normalised confusion matrices with maximum accuracy for all 4 phases of the experiment. The 
class labels for classes 1 to 5 are given in Table 4. In here (a) is representing Phase-1 with an accuracy of 98.22%, 
(b) is for Phase-2 with an accuracy of 94.64%, (c) is the Phase-3 with an accuracy of 93.31% whereas (d) is 
representing Phase-4 with an accuracy of 90.17%.

Figure 10.   Activity monitoring: normalised confusion matrix for the fold with accuracy of 83%.
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Activity recognition.  It can be seen in the given normalised confusion matrix that in general classification 
performance is good for most of the activities except a few classes. The normalised confusion matrix provides the 
highest accuracy for empty (class 1), 1 subject sitting (class 2) and 1 subject walking (class 4) of 100%, 90% and 
93%, respectively. However, there is a resemblance in CSI variations in sitting and standing activities as they are 
similar movements. The 1 subject standing, however, has been misclassified as standing in 14% of the samples 
resulting in lower accuracy of 82%. Overall, as expected the 1 subject activities provide higher accuracies due to 
lesser variations in CSI data as compared to multi-subject activities.

In the multi-subject case, some activities have similar patterns and are difficult to differentiate such as “1 sit 
+ 1 stand” (class 5), “2 sitting” (class 7) and “2 standing” (class 8). Since sitting and standing movements result 
in quite similar motions, whether moving up or down. Also “1 sit + 1 stand” has at least 1 subject performing 
similar motion with “2 sitting” and “2 standing”, resulting in 15% and 10% misclassification rate of “1 sit + 1 
stand” activity as “2 sitting” and “2 standing”, respectively.

Moreover, “1 walking + 1 sitting” (class 6) and “1 walking + 2 sitting” (class 10) result in a higher misclas-
sification rate between the two activities with accuracies of 80% and 75%, respectively. As illustrated in the 
confusion matrix 21% of “1 walking + 2 sitting” is misclassified as “1 walking + 1 sitting” and 15% of “1 walking 
+ 1 sitting” activity is misclassified as “1 walking + 2 sitting” activity resulting in the decrease of respective class 
accuracies. Similarly, “2 sit + 1 stand” (class 11) and “3 sitting” (class 12) resemble each other due to the same 
activities performed by at least two subjects. Furthermore, standing as mentioned before is quite similar to sit-
ting in terms of similar motion resulting in 20% misclassification of class 11 samples as class 12. Also, similar 
CSI patterns exist between “4 sitting” and ”2sit + 2 stand”.

Due to the above-mentioned reasons and several classes performing sitting and standing activities with a 
different number of subjects, class 5 which represents two subjects (1 sitting and 1 standing) and class 11 that 
represents three subjects (1 sitting and 2 standing) provide the least accuracy rates of 60% and 50%, respectively 
in our deep learning classification model.

Conclusions and future work
In this paper, a novel 5G-enabled contactless RF-sensing system has been presented to monitor the human pres-
ence and to detect multi-user parallel activity using CSI signals. The system’s frequency of operation was 3.75 
GHz, which falls within the 3.4 to 3.8 GHz band of 5G, and to the best of the author’s knowledge, no other study 
has implemented 5G-sensing before. The main idea of the paper was to present a 5G-sensing based non-invasive 
system that is capable of detecting the presence and activities of multiple users in the same room. Furthermore, 
The results presented earlier in the paper have shown that by combining RF-sensing technology with standard 
machine learning algorithms such as CNN, it is possible to detect different human activities including counting 
the number of people in the room with high accuracy. The system was tested to evaluate its capability of counting 
as well as detect parallel activities amongst a variable number of subject, that is, between 0 and 4, as highlighted 
in “Multi-user presence”, respectively. The subject counting experiment reported high accuracy results between 
approximately 86% and 95%, with the accuracy decreasing with the increase in inter-class variations. On the 
other hand, the activity recognition experiment has reported approximately 80% accuracy in recognising multi-
ple activities performed amongst all test subjects. The reported accuracy in the activity recognition experiment 
was greatly impacted by the intra-class variation introduced in the data. however, the variation was introduced 
to train the system on the maximum possible combination of input activities, to mimic a real-life scenario. The 
results obtained in this paper are promising and have a high potential to be improved through more data col-
lection and the implementation of different learning algorithms. Furthermore, as the major focus of this paper 
is to show the significance and effectiveness of 5G-sensing in capturing variation in CSI data caused due to 
human activities, therefore the paper currently focuses on a small setting, such as rooms in a care home, with 
four persons performing three major and common activities i.e “Sitting”, “Standing” and “Walking”. In future, 
the aim is to scale it up to cover most of the human activity spectrum performed by a larger group in multiple 
rooms. Moreover, current implementation of the proposed system is based on one transmitter/receiver antenna 
pair and is giving better performance in comparison with most of the existing work where more than one trans-
mitter and receiver antenna have been used for the same purpose. Moreover, and given the current system is a 
proof of concept with focus on showing the significance and effectiveness of 5G frequency band in capturing 
variation in CSI data, in future the experiments will be performed to assess the impact of number of rooms vs 
the number of transmitter/receiver antennas on the performance of proposed system, as well different heights 
and positions for the transmitter and receiver devices. Furthermore, and as mentioned earlier, the data set used 
to achieve the previously reported results is made publicly available, at46, to encourage other researchers and the 
wider communities to take this system a step further.

Data availability
The datasets generated during and/or analysed during the current study are available in the the University of 
Glasgow’s repository (Enlighten), and can be accessed here46.
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