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Enhanced (t, n) threshold d‑level 
quantum secret sharing
Kartick Sutradhar* & Hari Om

The quantum secret sharing is an essential and fundamental technique for sharing a secret with the 
all participants in quantum cryptography. It can be used to design many complex protocols such as 
secure multiparty summation, multiplication, sorting, voting, etc. Recently, Song et al. have discussed 
a quantum protocol for secret sharing, which has (t, n) threshold approach and modulo d, where t and 
n denote the threshold number of participants and total number of participants, respectively. Kao 
et al. point out that the secret in the Song et al.’s protocol cannot be reconstructed without other 
participants’ information. In this paper, we discuss a protocol that overcomes this problem.

The quantum secret sharing includes a dealer and a group of n  participants1–7. The dealer distributes the shares 
of a secret among n participants. When the dealer requires to retrieve the original secret, the t (threshold) 
number of participants will work together to retrieve  it8–11. The quantum secret sharing can be used in various 
 applications12–20, namely, secure multiparty  summation21,22,  multiplication23, comparison, sorting, voting, etc., 
as it preserves the secret from getting lost, damaged, or  changed24–26. There have been discussed numerous 
protocols for sharing a secret in  literature8,27–31. There are two approaches followed in quantum secret sharing 
protocols, namely, (t, n) and (n, n) threshold approaches. The first (n, n) threshold based quantum secret sharing 
 protocol31 was discussed by Hillery et al. in 1999. Xiao et al.32 generalized this two-party protocol to a multi-
party protocol. In 2005, the direct sharing of secret was discussed by  Zhang33 based on quantum secure direct 
 communication34–36. Qin et al. discussed a quantum secret sharing  protocol27 based on (n, n) threshold in 2018. 
The first (t, n) threshold quantum based secret sharing  protocol28 was introduced by Li et al. with modulo 2 in 
2009. Ye et al.37 discussed the d-level quantum Fourier transform for secure quantum protocol in 2011. Yang et al. 
discussed a d-level and (t, n) threshold quantum based secret sharing  protocol29 in 2013, that uses the quantum 
Fourier transform (QFT). Qin et al. introduced a (t, n) threshold quantum based secret sharing  protocol38 with 
level-2 in 2015, using the operation of phase shift and creation of quantum  entanglement39,40.

An (t, n) threshold quantum based secret sharing protocol with level-d was discussed by Song et al. in 
2017 that used the CNOT operation, QFT, generalized Pauli operator, and inverse quantum Fourier transform 
(IQFT)9. This protocol includes a dealer and a group of participants. The dealer chooses one participant as a 
trusted reconstructor and SHA-141 as the hash algorithm to evaluate the secret hash value. The dealer sends the 
secret’s hash value to a trusted reconstructor, who can recover the secret using a collision attack. Further, the 
trusted reconstructor cannot reconstruct the original secret from the IQFT  operation42. The IQFT operation 
cannot sum up all the states. To recover the original secret, the trusted reconstructor needs other participants’ 
secret information. In 2020, Mashhadi improved the Song et al.’s  protocol43 by using the d-level SUM opera-
tion, QFT, and IQFT. This protocol is efficient but it has high computation and communication costs due to the 
transmission of (t − 1) decoy particle, more number of IQFT operation, and SUM operation. Moreover, if the 
reconstructor is corrupted or dishonest, then the threshold number of participants cannot recover the secret in 
both the Mashhadi’s and Song et al.’s protocols. Hence, in these protocols, the reconstructor must be honest. In 
addition, similar to the Song et al.’s protocol, the trusted reconstructor may also recover the secret by performing 
the collision attack because the dealer sends the secret’s hash value to the trusted reconstructor directly. In this 
paper, we propose a new d-level quantum based secret sharing protocol using the (t, n) threshold approach that 
overcomes the above mentioned problems. We may summarize our contributions as follows.

• The reconstructor Bob1 can reconstruct the original secret efficiently.
• The reconstructor Bob1 cannot reveal the secret by performing the collision attack.
• The proposed protocol can also resist the coherent and collective attacks.
• The proposed protocol can also detect the eavesdropping by comparing the hash values of the secret even if 

the reconstructor transmits a fake secret to other participants after recovering the original secret.
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Preliminaries
Here, we introduce the Shamir’s secret sharing, QFT, and IQFT, which will be used in our proposed protocol.

Shamir’s secret  sharing44. This protocol has two phases as discussed below.

Sharing of secret. The dealer creates n shares of the secret using a polynomial f(x) of degree ( t − 1 ) and distrib-
utes n shares among n participants.

Reconstruction of secret. The threshold number of participants reconstructs the secret as follows.

Quantum Fourier transform (QFT)9. The quantum Fourier transform (QFT) is defined as

Inverse quantum Fourier transform (IQFT)9. The inverse quantum Fourier transform (IQFT) is defined 
as

Review of Song et al.’s protocol
Here, we review the Song et al.’s protocol. In this protocol, the dealer shares a secret S among n participants 
B = {Bob1,Bob2, . . . ,Bobn} . From n participants, any one is selected by the dealer as a trusted reconstructor. 
We may consider here Bob1 as a trusted reconstructor.

Distribution of shares. The dealer selects an arbitrary polynomial p(x) of degree ( t − 1 ) such that 
p(x) ∈ Zd , where Zd is a finite field. The ( t − 1)-degree polynomial may be defined as

A non-zero value xi ∈ Zd is also selected by the dealer to compute n shares p(xi) . The dealer encodes p(xi)′s 
using BB84 and sends the qubit string of p(xi) through a secure quantum channel to every participant 
Bobi , i = 1, 2, . . . , n . The dealer chooses a hash algorithm H() to determine the hash value H(S) of the secret S 
and sends this hash value H(S) to the participant Bob1.

Reconstruction of secret. The secret is reconstructed by a certain number of participants using the fol-
lowing steps.

Step 1 Participant Bob1 (reconstructor) prepares a t-qudit particle |l�1, |l�2, . . . , |l�t , which contains m qubits, 
where m = ⌈logd2⌉ . The participant Bob1 applies the QFT on the particle |l�1 that results in the output state |ϕ1� , 
as follows.

Step 2 Participant Bob1 again prepares a v-qudit particle |l�v , where v = 2, 3, . . . , t , which contains m qubits, where 
m = ⌈logd2⌉ . The participant Bob1 applies the d-level CNOT  gate45 on the particle |l�v , where v = 2, 3, . . . , t . After 
performing (t − 1) number of CNOT gates, the state |ϕ1� becomes an entangled state |ϕ2�39,40 as follows.

Step 3 Participant Bob1 sends the particle |u�v through a secure quantum channel to respective participant Bobv , 
v = 2, 3, . . . , t.
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Step 4 Each participant Bobv evaluates the share’s shadow (sv) , v = 1, 2, . . . , t , as follows.

Step 5 The Pauli operator (U0,sv ) is applied by each participant Bobv on their respective private particles |u�v , 
v = 1, 2, . . . , t , as follows.

After performing the Pauli operator on each participant particle, the state |ϕ2� extends as follows:

Step 6 Finally, the participant Bob1 applies the IQFT on his private particle |u�1 and, based on computational basis, 
measures it to acquire the secret p(0)′ =

∑t
v=1 sv mod d.

Comments on Song et al.’s protocol
Here, we show the incorrectness of the reconstruction phase of the Song et al.’s protocol. Kao et al. point out that, 
without other participants’ information, Bob1 can never retrieve the secret. Song et al. mention that QFT(

∑t
v=1 sv) 

is the qubit of Bob1 in |ϕ1� . The participant Bob1 evaluates IQFT over its particle QFT(
∑t

v=1 sv) and measures 
it on a computational base, where Bob1 retrieves the secret S′ =

∑t
v=1 sv . We have the following observation.

The secret S′ =
∑t

v=1 sv cannot be retrieved even when IQFT is performed over the particle |l�1 and measured 
computationally by Bob1.

For better understanding of the problem, consider an example, where d = 3, t = 2, n = 4 and S = 2 . From step 
5 of the reconstruction phase of the Song et al.’s protocol, we have

On applying the inverse quantum Fourier transform IQFT over the particle |u� , we get
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The result to the equation comes out as |0�, |1� or |2� , not accurately |2�.

Attack on Song et al.’s protocol. The dealer chooses Bob1 as a trusted reconstructor in the Song et al. 
protocol, and the hash algorithm SHA− 1 to evaluate the secret’s hash value. After computing the hash value, the 
dealer transfers this hash value through a secure quantum channel to Bob1 . From this hash value, Bob1 can easily 
reveal the secret by performing the collision attack.

Proposed quantum secret sharing protocol
Here, we propose a new quantum secret sharing protocol that has (t, n) threshold and d-level. The distribution 
of the shares and the reconstruction of secret are its two main phases, as discussed below.

Distribution of share. The dealer selects an arbitrary (t − 1)-degree polynomial p(x) ∈ Zd , Zd is a finite 
field, as follows:

The dealer selects a non-zero value xi ∈ Zd to compute n shares p(xi) , encodes p(xi)s using BB84 and sends 
the qubit string of p(xi) via a secure quantum channel to every participant Bobi , i = 1, 2, .., n . Then, the dealer 
chooses a hash algorithm to determine the secret hash value H(S) . After computing H(S) , the dealer shares it 
using a polynomial h(x) = H(S)+ γ1x + γ2x

2 + · · · + γt−1x
t−1 among n participants. Participant Bobi only 

learns the share h(xi) , i = 1, 2, . . . , n.

Reconstruction of the secret. Let B = {Bob1,Bob2, . . . ,Bobt} be a qualified subset of t participants. The 
dealer chooses a reconstructor participant from the qualified subset. In this phase, the dealer chooses Bob1 as a 
reconstructor participant that recovers the secret and the secret hash value using the following steps:

Step 1 Reconstructor Bob1 prepares t qudit particle |l�1, |l�2, . . . , |l�t , which contains m qubits, m = ⌈logd2⌉ . The 
participant Bob1 applies the QFT45 on the particle |l�1 . The output state |ϕ1� is computed as follows.

Step 2 The participant Bob1 prepares v qudit particle |l�v , v = 2, 3, . . . , t and this particle contains m qubits, 
m = ⌈logd2⌉ . Bob1 performs d-level CNOT gate on the particle |l�v , where v = 2, 3, . . . , t . After performing (t − 1) 
CNOT gates, the state |ϕ1� becomes an entangled state |ϕ2�39,40 as follows.

Step 3 Bob1 sends the particle |u�v , v = 2, 3, . . . , t , to respective Bobv participants through a secure quantum 
channel.

Step 4 Each participant Bobv evaluates the share’s shadow (sv) , v = 1, 2, . . . , t.

Step 5 The Pauli operator (U0,sv ) applied by each participant Bobv on his private particle |u�v , v = 1, 2, . . . , t.

After performing the Pauli operator on each participant particle, the state |ϕ2� extends as follows:

(10)
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Step 6 Each participant Bobv applies the IQFT on his private particle |u�v and measures the result of IQFT. After 
measuring, each participant Bobv broadcasts the result of measurement.

Step 7 Each participant Bobv computes the secret p(0)′ =
∑t

v=1 sv mod d by adding the measurement results.
Step 8 Finally, all seven steps discussed above are again performed by the threshold number of participants t to 

reconstruct the secret hash value. The secret hash value h(0)′ =
∑t

r=1 gr mod d is reconstructed by the participant 
Bob1 , where gr represents the hash value share’s shadow. The participant Bob1 uses the hash algorithm SHA− 1 
to determine the hash value H(p(0)′) and matches it with the secret’ hash value h(0)′ . If (H(p(0)′) = h(0)′) , then 
the participant Bob1 perceives that the threshold number of participants have executed the protocol honestly; 
otherwise, Bob1 believes that the one or more corrupt participants have executed the protocol.

Security analysis
In this section, we discuss the collision, coherent, and collective attacks, which can be resisted by the proposed 
protocol.

Collision attack. An attacker uses the hash algorithm attack to generate the same secret hash value for two 
inputs in this attack. In the Song et al.’s9 and Mashhadi’s43 protocols, the Bob1 can execute the collision attack to 
get the secret because the dealer sends the secret’s hash value to Bob1 and hence it is not secure against the col-
lision attack. Our protocol is secure against the collision attack because the dealer determines the secret hash 
value and shares this value among n participants. So, the reconstructor participant Bob1 has no knowledge about 
the hash value and hence he is unable to execute the collision attack.

Coherent attack. In this attack, an attacker creates an independent ancillary particle |w� and intercepts 
every participant’s particle |l�v by jointly interacting with every qudit of participant Bobv , v = 1, 2, . . . , t . On 
every participant’s particle |l�v , the attacker conducts the measurement process in computational basis. The 
attacker just gets l with 1d probability from this calculation of particle |l�v . However, l does not hold any valuable 
data about the share’s shadow. Only the interacting particle |l�v is known to the attacker in this case. As a result, 
the attacker cannot get the share’s shadow from the coherent attack.

Collective attack. In a collective attack, an attacker communicates with each qudit by creating an individ-
ual ancillary particle and performing a measure all of the ancillary qudits at the same time to obtain the share’s 
shadow. Every qudit of participant Bobv , v = 1, 2, . . . , t is interacted with by an individual ancillary particle |w� 
created by the attacker. After communicating, the attacker obtains the particle |l�v and conducts a joint calcu-
lation procedure in the computational basis to reveal the share’s shadow. Since the particle |l�v does not hold 
any valuable data about the share’s shadow, the attacker cannot obtain any information about it from this joint 
calculation.

Performance analysis
Here, we analyze the performance of the proposed protocol and compare with that of the Song et al.’s9, and 
Mashhadi’s43 protocols in terms of the security and cost. The Song em et al.’s  protocol9 requires one QFT opera-
tion, t unitary operations, two hash operations, one IQFT operation, one measure operations, and transmit 
(t − 1) message particles. This protocol is not efficient because the IQFT cannot recover the original secret. The 
Mashhadi’s  protocol43 needs one QFT operation, t unitary operations, two hash operations, t number of IQFT 
operations, (t − 1) SUM operations, t measure operations, and transmit (t − 1) message particles with (t − 1) 
decoy particles. However, our protocol requires one QFT operation, t unitary operations, two hash operations, 
(t − 1) IQFT operation, (t − 1) measure operations, and transmit (t − 1) number of message particles. Moreover, 
the Mashhadi’s protocol uses the SUM operation, more number of IQFT operation, and transmission of (t − 1) 
decoy particles; whereas, our protocol uses CNOT gate, less number of IQFT operation, and no transmission 
of the decoy particles. Hence, it has high cost as compared to our protocol. In addition, the proposed protocol 
is more cost effective, efficient, and secure as compared to the Song et al.’s9, and Mashhadi’s43 protocols. Table 1 
shows the comparison of these protocols.

Conclusion
In this paper, we have discussed a new (t, n) threshold protocol for quantum secret sharing in which the recon-
structor can reconstruct the original secret efficiently. This protocol can execute the threshold number of partici-
pants without any trusted reconstructor participant. Further, the secret hash value and the secret are unknown to 
the reconstructor participant and he cannot execute the collision attack, but can correctly execute the proposed 
protocol. The proposed protocol can also resist the coherent and collective attacks.
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