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Body size dependent 
dispersal influences 
stability in heterogeneous 
metacommunities
Kurt E. Anderson1* & Ashkaan K. Fahimipour2,3

Body size affects key biological processes across the tree of life, with particular importance for food 
web dynamics and stability. Traits influencing movement capabilities depend strongly on body size, 
yet the effects of allometrically-structured dispersal on food web stability are less well understood 
than other demographic processes. Here we study the stability properties of spatially-arranged model 
food webs in which larger bodied species occupy higher trophic positions, while species’ body sizes 
also determine the rates at which they traverse spatial networks of heterogeneous habitat patches. 
Our analysis shows an apparent stabilizing effect of positive dispersal rate scaling with body size 
compared to negative scaling relationships or uniform dispersal. However, as the global coupling 
strength among patches increases, the benefits of positive body size-dispersal scaling disappear. A 
permutational analysis shows that breaking allometric dispersal hierarchies while preserving dispersal 
rate distributions rarely alters qualitative aspects of metacommunity stability. Taken together, 
these results suggest that the oft-predicted stabilizing effects of large mobile predators may, for 
some dimensions of ecological stability, be attributed to increased patch coupling per se, and not 
necessarily coupling by top trophic levels in particular.

What allows large, complex ecosystems to be stable? May’s analysis of randomly arranged communities of self-
limiting populations challenged previous ecological thinking on this issue, showing that greater species richness 
and interaction connectivity tended to destabilize random communities rather than stabilize  them1,2. This and 
subsequent theory set the stage for decades of work analyzing the complicated relationship between diversity and 
dynamics that continues  today3–7. In contrast to randomly-assembled communities, an emerging focus in modern 
biodiversity theory is on the non-random structural features of ecological systems that impart  stability4,8,9. For 
communities organized around feeding relationships (i.e., food webs), two types of structure receiving extensive 
attention are allometric hierarchies, where larger species mostly eat smaller ones and populations experience 
other demographic rates dependent on body  size5,10,11; and dispersal among spatially discrete  habitats12–18.

Body size-based food web topologies and allometric scaling of population demographic rates have been 
extensively examined and have both shown to be stabilizing for models of trophic  interactions5,6,10,19,20. Simple 
mass-based hierarchical feeding rules—where species high in the feeding hierarchy are interpreted as larger-
bodied consumers—can successfully reproduce realistic food web  topologies4,5,11,21–24 that are more likely to 
be dynamically stable than random network  configurations19,20. Likewise, allometric scaling of species’ demo-
graphic rates such as handling times, conversion efficiencies, and biomass turnover, are predicted to stabilize 
food  webs5,10,25–31. This is particularly the case when the ratio of body masses between resources and consumers 
is large and consistent with values observed in natural  webs5,10,32,33; but  see34.

While the role of body size in nonspatial food web dynamics has been the focus of many theoretical and 
empirical studies, its influence on population dispersal rates in real ecosystems is still not well  understood18. 
At larger scales, dispersal generates structure by linking spatially distinct food webs through the movement of 
individuals. The role of dispersal in population dynamics and community composition is a central focus in ecol-
ogy, with early work emphasizing the colonization of islands by mainland  species35,36 and the “rescue” of small 
populations in sink  habitats37. Colonization–extinction dynamics in spatially subdivided habitats, originally 
examined in a population  context38,39, extended these results and have been shown to promote higher regional 
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food web diversity than can be supported in isolated well-mixed  systems18. Dispersal can also stabilize species 
interactions locally by mimicking density-dependence in per capita growth  rates40–43. More recent work has linked 
metacommunity dynamics to May’s original examination of species richness and connectance, showing that dis-
persal among spatially distinct subpopulations can be strongly  stabilizing44,45. Complexity-stability relationships 
in these cases are relaxed or even reversed relative to results seen in linear stability analyses of random matrices.

Much like trophic interaction rates, many traits that shape animal locomotion and movement speed, and 
hence potentially influence dispersal, vary with body  size46–49. Spatial patterns of resource use, home ranges, and 
geographic range size also exhibit strong allometric  relationships27,50–54. While locomotion and space use do not 
necessarily equate to dispersal, these patterns do in turn create the potential for body size to influence spatial 
coupling of habitat  patches55 and hence local food  webs19,56,57. While many studies emphasize faster movements 
of large consumers, suggesting positive body size dispersal relationships, large-bodied species many face greater 
dispersal limitation in some  habitats58–60, suggesting a range of potential relationships between body size and dis-
persal across ecosystems. The patterns and full effects of dispersal variation among species in food webs have so 
far been difficult to systematize, suggesting a need for general theory that can be used to guide work in this  area18.

While less explored than local dynamics, existing theoretical evidence does suggest an important role for 
body size-dispersal scaling in ecosystem dynamics. Some mathematical models indicate that the coupling of 
distinct food webs by consumer movement can be stabilizing when those webs represent different energy chan-
nels or environmental  conditions14,19,57. In other models, greater mobility of consumers is a key requirement for 
 instability61–64. Yet other examples have identified dispersal-driven instabilities for communities in which primary 
producers traverse space more rapidly than other  species16 or have shown that differences between resource and 
consumer dispersal can lead to complex consumer persistence outcomes when consumer compete for a single 
 resource65. Overall, the effects of dispersal are complicated in ecological networks and a general understanding 
of how dispersal rules influence food web stability is  lacking16,18.

Here, we examine how body size scaling of species’ dispersal rates influences stability in model trophic 
metacommunities (Fig. 1). In particular, we ask whether body size-dependent variation in dispersal rates influ-
ences trophic metacommunity stability relative to rates that are either uniform or randomly varying among 
species. We assume that body size structures the underlying food web and additionally that dispersal rates fol-
low simple allometric scaling rules, similar to locomotive capabilities and space use patterns. Of course, actual 
movement and dispersal rates depend on complex behavioral  rules18, are influenced by environmental and social 
 information66–69, and are generally poorly understood at the scale of the food web. Our simplification serves as a 
theoretical point of reference for more complex treatments of dispersal variation in food webs.

We examine landscapes of discrete habitat patches that include variation in local abiotic conditions, generat-
ing spatial heterogeneity in rates of primary production and trophic interactions among species. Clearly, the 
stability of such heterogeneous metacommunities will depend on the proportion of patches in the landscape with 
locally favorable conditions for stability. We show how the body size scaling of species’ dispersal rates alters this 
relationship. Because general rules describing the dependence of dispersal on body size are lacking and likely 
vary among  ecosystems18, we consider both positive and negative relationships between dispersal rates and body 
sizes. Our results show strong effects of dispersal-body size scaling on metacommunity stability, largely due to 
increased connectivity among local webs with different stability properties.

Model formulation
We model trophic metacommunities as copies of food webs consisting of S species, embedded in a set of N 
patches. We chose to represent spatial networks as random geometric graphs, which provide a reasonable approx-
imation for real  networks18 of habitats and the dispersal connections between them (Fig. 1). This formulation best 
represents a scenario where the metacommunity spans an area with a single species pool of size S from which 
local food webs in each patch can be assembled.

Food web topologies were generated using the niche  model21, which recapitulates realistic yet variable feeding 
relationships with only two input parameters, species richness S and connectance C. Briefly, species are assigned 
a position on a 1-dimensional niche axis and feed on species over a range determined by C. The feeding range 
is centered below the species’ niche positions, creating a trophic hierarchy where each species i has trophic 

Figure 1.  Model metacommunities are composed of local food webs connected to one another by dispersal. (A) 
Each local web inhabits a habitat patch that is part of a spatial network, generated as a random geometric graph. 
Species in each web have a body size that is larger at higher trophic levels. Food webs have the same number of 
species and topology in all patches, but interaction rates and other ecological parameters vary among habitats 
mimicking spatial environmental heterogeneity. (B) Dispersal varies as either an increasing or decreasing 
function of body size.
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position Ti defined by the path length to any basal producer. The niche model creates food web topologies where 
large-bodied species generally eat smaller ones, although feeding on species with larger niche axis values is also 
 possible21.

Following5,7,10,11, we assigned body sizes assuming that the normalized mass Mi of each species i scales with 
their trophic position Ti , as Mi = RTi . For reported results, normalized producer body sizes are uniformly set 
to one while R = 42 . This value of R represents the average predator-prey body mass ratio reported  by32. While 
body size ratios may vary quite substantially from this value in real food webs, the stabilizing effects of changes 
in R are well-understood6,10; limited preliminary explorations suggest increases to R provide greater stability to 
local food webs in agreement with previous work.

Dynamics on the links defined by each niche model topology were represented as the set of ordinary dif-
ferential equations of the form

where Bki  is the biomass density of species i in patch k. The non-specified function G is the growth rate of primary 
producers, F is the rate of biomass accumulation due to feeding on other species, X is rate of biomass loss due 
to respiration and mortality, E is the rate of biomass loss due to consumption by species j, and D is the dispersal 
rate between patches. While the functional forms are not explicitly specified, the general form of Eq. (1) admits 
the calculation of a Jacobian matrix that quantifies how species in the metacommunity respond to perturbations 
from steady state and therefore metacommunity  stability70,71. Using the generalized modeling  method6,70, the 
derivatives of functions G, F, X, and E that constitute the non-dispersal elements of the Jacobian matrix can be 
recast in terms of scale, branching, and elasticity parameters (see “Methods”). The generalized model parameters 
have clear ecological interpretations: scale parameters set the time scale of biomass turnover, while branching 
and elasticity parameters set the relative contributions of different processes to biomass gains and losses and the 
form of non-linearities,  respectively6,70,71. The normalized turnover rate αi multiplies the branching and elasticity 
parameters in the Jacobian matrix. We assume this rate scales with mass as αi = M

−1/4
i  (Table 1), which creates 

an influence of body size on species interactions, biomass production, and metabolic losses consistent with 
previous work (see “Methods” for more details).

The range of generalized model parameter values studied here map to most commonly encountered functional 
forms (e.g., Lotka–Volterra-like population growth and Holling type II and III functional responses) that link 
interaction rates with species’ densities in conventional models, and follow ecologically-based arguments from 
prior work. For explicit connections between generalized model terms and more traditional ecological models, 
we refer the readers  to6,70,71 (Table 1).

Trophic metacommunities were constructed as follows. First, a spatial structure of N = 10 habitat patches was 
randomly generated as a geometric graph on the interval [0, 1] with a neighborhood radius of 0.32 (see “Meth-
ods”). Each patch k in the spatial network contains a copy of the same S species niche  model21 web. Heterogeneity 
in factors that influence primary production and trophic interactions were modeled as random variation among 
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Table 1.  Parameter definitions and ranges used to compute metacommunity steady states.

Parameter Description Range or Value

Scale

αi Normalized turnover rate of species i M
−1/4
i

Branching

ρk
i

Fraction of biomass gains from predation, for species i in patch k 0 or 1

σ k
i

Fraction of biomass loss from predation, for species i in patch k [0, 1]

βk
ij

Fraction of species i’s loss from consumption by j in patch k [0, 1]

χk
ij

Fraction of species j’s gains from consumption of i in patch k [0, 1]

Elasticity

φk
i

Nutrient availability for producer i in patch k [0, 1]

ψk
i

Sensitivity of i’s predation rate to its own density in patch k [0.5, 1]

�
k
ji

Sensitivity of j’s foraging preferences to prey densities in patch k [1]

γ k
i

Sensitivity of i’s predation rate to total prey density in patch k [0.5, 1.5]

µk
i

Sensitivity of species i’s mortality to its own density in patch k [1, 1.5]

Niche model

S Species richness [10, 30]

C Food web connectance [0.12, 0.24]

Dispersal

d Global coupling strength [10−4 , 1]

z Exponent of allometric dispersal rate [−0.75, 0.75]
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patches in branching and elasticity  parameters6,70,71. Values of these spatially variable parameters were drawn 
independently from uniform distributions defined by ecologically meaningful ranges, shown in (Table 1). In the 
example of the producer nutrient availability parameter φ (Fig. 1), ten values of φk

i  for each producer species i 
are randomly drawn from [0, 1] and then assigned to each patch k for a given metacommunity. This process is 
repeated for each branching and elasticity parameter for each species from the ranges defined in (Table 1); scale 
parameters were assumed to be spatially homogeneous.

For simplicity, we assume that there is no dependence of per capita dispersal rates on patch identity or on 
interspecific densities (i.e. no cross-diffusion). We further assume that dispersal is a linear function of local 
intraspecific density and allow for dispersal rates to vary among species,

Each species i in a particular metacommunity scenario is assigned a species-specific dispersal rate δi that is 
dependent on its body size. We chose a power law relationship between body mass and dispersal rate, as this 
general form captures many allometric scaling relationships related to locomotive capabilities and spatial habitat 
 use27,46,48,72. Specifically,

where d is the global link strength of the spatial network and z is the body size scaling exponent for dispersal. 
Producers have a body size equal to one such that for producers, δi = d . When z is positive, species with higher 
trophic positions and thus larger body sizes traverse the spatial network at a higher rate. This scenario poten-
tially reflects terrestrial and pelagic food webs where larger animals have greater mobility and hence dispersal 
 potential14. In other systems, z may be  negative16,18,48, giving species in lower trophic levels the fastest dispersal 
rates with lower rates for larger bodied species. Because z modifies body mass according to a power law and 
the producer body size is scaled to one, the maximum attainable dispersal rate a large-bodied organism can 
achieve with positive scaling is larger than a small-bodied organism can achieve with negative scaling for the 
same distribution of body sizes.

We examined metacommunity stability using linear stability analysis. This procedure was applied in clas-
sic work on community stability by May and  others1,2 and has since been expanded to incorporate spatial 
 processes17,44. Linear stability is assessed by examining the eigenvalues of the Jacobian matrix of the trophic 
metacommunity, J . Each local food web has a corresponding local Jacobian Jk that is derived from Eq. (1); these 
local Jacobians are collected and numerically arranged as blocks on the diagonal of the SN × SN matrix P . The 
local food web information is then used to calculate the metacommunity Jacobian J using the  equation12,16,17

where ⊗ is the Kronecker product; the N × N matrix L is the Laplacian of the corresponding spatial network; 
and D is an S × S Jacobian-like diagonal matrix containing species-specific dispersal rates calculated from Eq. 
(2). Eigenvalues of local food web Jacobians Jk and the metacommunity Jacobian J were computed numerically; 
stability occurs when the real parts of all eigenvalues are negative. Additional details regarding this method of 
analysis are found in refs.12,16,17,73 and in the “Methods”.

Body size scaling could increase stability in metacommunities owing to simple increases in overall dispersal, 
rather than because of particular relationships between body size, trophic position and dispersal rate. To test this 
possibility, we compared our suite of model metacommunities with different dispersal rules to those with random 
variation in dispersal rates. For each metacommunity and each dispersal scenario, we computed Jacobians with 
100 random permutations of species’ dispersal rates (i.e., the diagonal entries of D, see Eq. (3)) and compared 
stability properties in these randomized metacommunities to their corresponding intact systems.

Results
Linear stability of both local food webs and metacommunities varied dramatically over the multitude of food 
webs examined, depending on species richness, food web connectance, branching,  elasticity6, and dispersal 
parameters. The baseline dispersal rate d and body size scaling exponent z in particular influenced metacom-
munity stability. Figure 2 presents the aggregated results of all numerical analyses organized by local food web 
and metacommunity stability. The proportion of stable local food webs gives the proportion of webs in a meta-
community that would be stable in the absence of any dispersal. The proportion of stable metacommunities gives 
the probability that a corresponding trophic metacommunity will be stable when those patches are then linked 
by dispersal. The proportion of stable local food webs has the intuitive effect of positively increasing the chance 
that the metacommunity they constitute will also be stable; a metacommunity composed entirely of locally stable 
food webs is always stable. However, the strength of this positive relationship relies critically on the rules that 
determine dispersal rates across trophic levels.

Metacommunities are most likely to be stable when larger-bodied species disperse through spatial networks 
of habitat patches faster than smaller-bodied ones (that is, for z > 0 , Fig. 2). Thus, having more patches with 
conditions that promote stability and experiencing higher overall spatial coupling both stabilize metacommu-
nities. For a given proportion of stable local food webs and for all but the strongest global coupling (i.e. large 
d), metacommunities with a positive relationship between body size and dispersal rate are most likely to stable, 
while those with negative scaling are least likely to be stable.

The stabilizing effects of positive body size-dispersal scaling are most pronounced when the global link 
strength among habitat patches d is relatively low. When d = 1 , metacommunity stability with size-dependent 
dispersal is nearly indistinguishable from the case of uniform dispersal. As overall large levels of dispersal provide 
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a substantial stabilizing effect, positive body size-dispersal scaling therefore appears to be beneficial for stability 
because large consumers increase spatial connectivity above the baseline rate set by primary producers (i.e. it is 
guaranteed that δi ≥ d ). With negative scaling, these same consumers have lower dispersal rates than produc-
ers (i.e. δi ≤ d ), lowering the overall spatial coupling between metacommunity patches and reducing stability.

Correlations between key model parameters (see Methods) and metacommunity stability are shown in Fig. 3, 
confirming the importance of dispersal rules. Of all model parameters examined, the baseline dispersal rate d and 
the body size scaling parameter z have by far the strongest stabilizing effects. In contrast, species richness S and 
food web connectance C have the greatest de-stabilizing effects, largely through their well-documented effects on 
local food  webs2,3,6. No other parameter showed a notable correlation with stability, either positive or negative.

The results in Fig. 2 show how body size scaling of dispersal can stabilize metacommunities by increasing 
coupling among patches. In Fig. 4, we compare stability of metacommunities with body size-dispersal scaling to 
those where the same set of dispersal rates are randomly re-assigned to species (permuted metacommunities). 
With these comparisons we ask whether, for a given global link strength d, it is coupling by large-bodied species 
specifically or simply greater coupling overall that drives stability. The 1:1 line in Fig. 4 shows where the leading 
eigenvalue �1 of a metacommunity is the same as median leading eigenvalues of the corresponding permuted 
metacommunities. Most eigenvalue comparisons fall near this line across the entire range of dispersal scaling 
exponents z and global link strengths d (Fig. S1). Figure 5 presents these results categorized by their qualitative 
effects on stability. The sign of the leading eigenvalues for the metacommunities with permuted dispersal are 
typically the same as the intact ones, indicating that the median effect of shuffling dispersal rates among species 
is rarely a qualitative change in stability. In fact, there is no combination of body size scaling z and dispersal 
coupling d where a qualitative change in stability occurs in more than 25% of metacommunities (Fig. 5, Fig. S2). 
Yet despite the frequent preservation of qualitative dynamics, re-arranging the species-specific dispersal rates in 
the permutation analysis, which effectively alters which species’ have the fastest and slowest movement among 
patches, does change alter the magnitudes of �1 (Fig. 4; Figs. S1 and S2) and therefore the rates at which metacom-
munities return to, or depart from, steady states following perturbation. We conjecture that dispersal hierarchies 
may be important for the transient dynamics of ecosystems, and suggest that an understanding of how dispersal 
rules impact different dimensions of ecological stability will be an important goal for future work.

Figure 2.  The relationship between local and metacommunity stability as influenced by dispersal. The baseline 
dispersal rate d and the body size scaling coefficient z determine the species-specific dispersal rate δi = dM

z
i
 , 

where Mi is the mass of species i. All species have the same dispersal rate d when z = 0. When z is positive, larger 
bodied species have faster dispersal rates, whereas when z is negative, it is smaller bodied species that have 
faster dispersal rates. Other parameters vary across all simulations as indicated by Table 1. Error bars denote ± 2 
S.E.M., and are too small to see.

Figure 3.  The effects of key parameters on metacommunity stability. Stability is as defined in Fig. 2 and 
parameters are defined in Table 1. Correlations given are coefficients from the best-fitting generalized linear 
model ±2 SEM. Positive correlations indicate that larger values of a parameter correspond to a higher 
probability that a randomly-assembled metacommunity will be stable.
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Discussion
Our model reveals an apparent stabilizing effect of positive body size scaling of dispersal in heterogeneous 
metacommunities (Fig. 2), consistent with some conceptual and mathematical  theories17,19,74. We found that 
increased connectivity, manifested either through larger values of global patch coupling d or stronger positive 
body size-dispersal scaling z, generates conditions in which fewer stable patches are required for the metacom-
munity they comprise to be stable (Fig. 2). When dispersal scaling z was positive, the largest bodied species 
also had the highest dispersal rate, which was larger than the baseline dispersal rates of primary producers, d. 
In the permutational analysis, that largest value was randomly re-assigned to another species, yet stability did 
not typically change. Thus, by comparing metacommunities with allometric dispersal to those whose dispersal 
rates were random permutations of the original values (Figs. 4 and 5), we found evidence that increased overall 
connectivity, and not predator movement per se, was responsible for metacommunity stability.

There are many potential explanations for why random dispersal maintains roughly the same degree of 
metacommunity stability as positive body size scaling. The stabilizing effects of dispersal in randomly assem-
bled metacommunities have been shown to operate when dispersal is both homogeneous and variable among 
 species44. We conjecture that, for the non-random food webs we examine here, the existence of stabilizing struc-
tural motifs could be enhanced by dispersal. Consumers play key roles in the stabilizing effects of food webs 
 compartments75, including linking separate energy  channels19,76 and forming long interaction  loops77. Higher 
dispersal by these consumers, even if they are not top predators, could substantially enhance metacommunity 
stability by connecting stabilizing subscommunities across habitats. Additionally, patterns of dispersal where 
low level consumers have the greatest dispersal connectivity have been shown to confer stability in some tri-
trophic  metacommunities64. Finally, differential dispersal among species at similar trophic levels could generate 
competition-colonization and fecundity-dispersal trade-offs (reviewed  in78), which may enhance stability in 
simple metacommunities.

How the above mechanisms operate in more complex spatial food webs remains an open question, and 
identifying the body size and trophic determinants of dispersal remains a central challenge in spatial ecology. 

Figure 4.  The effect of dispersal variation on metacommunity stability for spatial link strength d = 0.1 . The 
metacommunity is stable when the real part of the leading eigenvalue of the metacommunity Jacobian �1 < 0 . 
Allometric dispersal is defined Eq. (3). Permuted dispersal refers to the metacommunity where the allometric 
dispersal rates for all species were randomly reassigned to new species. Each data point represents a unique 
metacommunity with allometric dispersal compared to 100 counterparts with dispersal rates randomly 
rearranged among species, and are shown with 1:1 lines. Points that lie above the 1:1 line represent cases where 
the median value of �1 for the permuted dispersal metacommunities are greater than the corresponding original 
metacommunity, indicating that the permuted metacommunities are typically less stable. Points that lie below 
the 1:1 line represent cases where the permuted metacommunities are typically more stable. Grey regions mark 
portions of the plot representing qualitative changes in stability where the real part of the leading eigenvalue �1 
of the original metacommunity has a different sign than the median value of the eigenvalues of the comparable 
metacommunities with permuted dispersal.

Figure 5.  Eigenvalues �1 from Fig. 4 categorized by qualitative effects on stability. Categories Stability is gained 
and Stability is lost correspond to cases where the median effect of randomly reassigning species’ dispersal rates 
is a change in the sign of �1 . Stability is unaffected indicates no sign change.
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We assume a power-law scaling between dispersal and body size similar to relationships observed with other 
 traits27,79. While some examples are consistent with this  assumption14,55,80,81, some traits that could influence 
dispersal may show more complex patterns. For example, maximum speed may generally show a positive rela-
tionship with body size except for the largest  animals48, suggesting that some traits that influence dispersal may 
not be monotonically dependent on body  size49,72,81. Organisms may also utilize multiple dispersal modes (e.g. 
move both passively and  actively82,83) and exhibit other complex behaviors that could influence metacommunity 
 connectivity49,69,84,85. The results of our permutation analysis suggest that the exact allometric dependence may 
not be as important to metacommunity stability as the overall maximum level of dispersal (Figs. 4 and 5).

Our assumed allometric dispersal rates mirrors our assumption that body size influences trophic posi-
tion, with consumers being generally larger than their prey, such that higher-level consumers either disperse 
much more or much less than lower-level consumers and producers. Allometric food web structures have been 
employed frequently in modeling studies of food web  stability6,10,20,86,87. For simplicity, we fixed the predator-
prey body size ratio in our modeled food webs to the geometric mean value reported  in32 which tended to be 
observed most commonly among invertebrate and ectotherm vertebrate predators and in aquatic and marine 
environments. While predator-prey body size ratios may exhibit some predictable patterns, it is less clear how 
consistent these are across entire food webs. Recent syntheses suggest that more consistent patterns can be found 
in marine and freshwater webs, with weaker or absent patterns in terrestrial  systems34. Some data suggest body 
size ratios increase with increasing predator body  size32,88, which we anticipate would make the stabilizing effects 
of large body size ratios even stronger, although this relationship is variable across predatory type and study 
 methodology28,88. In the context of food web modeling, large body size ratios are important for stability because 
they alter trophic interaction  strengths10,86. Despite our assumption of fixed consumer-resource body size ratios, 
our generalized modeling approach was able to produce wide variation in interactions strengths across all food 
web sizes and connectivities. The consistent results we observed suggest that relaxing our assumed allometric 
food web structure would not qualitatively alter our conclusions. Gravel et al.44 additionally found that increas-
ing dispersal had strong stabilizing effects on metacommunities regardless of whether local communities were 
randomly assembled or possessed a hierarchical food web structure (but  see17). However, the interaction between 
food web structure, body size variation, and dispersal structure remains unresolved and a fertile area of inquiry.

Negative body size-dispersal scaling relationships lead to lower stability in our model by lowering dispersal 
coupling relative to situations where all species in the food web share the same dispersal rate. These results may 
be most likely relevant for systems where connectivity results from passive transport of smaller-bodied organ-
isms, for example wind-dispersed plants or freshwater zooplankton, flooding-dispersed pond invertebrates, and 
marine organisms with planktonic larvae. Passive dispersal can generate stochastic variation in  connectivity80, 
which may have complicated effects on stability. Yet it can also lead to increased connectivity by large numbers of 
 individuals59,89,90. Thus, while we show that negative scaling could potentially equate to low stability, the overall 
levels of dispersal may be very high in systems where lower trophic levels disperse at greater rates, similar to 
increasing d in our model, reducing the scaling effect and leading to higher stability.

Spatial variation in model parameters were central to how dispersal connectivity influenced stability in our 
model. The positive relationship between stability and the dispersal parameters d and z was consistent through-
out the parameter region we explored; additional numerical results not shown confirmed this relationship more 
broadly. This pattern contrasts with some other metacommunity models that exhibited a unimodal relationship 
between dispersal and  stability91–94. Unimodal dispersal-stability relationships occur when very high dispersal 
leads the system to behave as a single, well-mixed habitat. Species persistence and the variation-reducing effects 
of dispersal therefore no longer operate. Similar outcomes do not seem to occur in our model, at least at the 
parameter values examined, because rates of primary production and trophic interactions are forced to vary in 
space. A key effect of dispersal in the presence of such spatial variation is to reduce variation among interaction 
rates of the average, well-mixed food web, which actually increases  stability44,45.

Homogenous systems could exhibit very different dynamics. Dispersal-induced instabilities are frequent 
in homogeneous space trophic models (e.g.16,95), leading to spatially patterned steady-states or asynchronous 
oscillations even when local dynamics are stable. The presence of high-dispersing top predators in more complex 
food webs appears to generally stabilize spatially homogeneous  systems17, although faster consumer movement 
is also a necessary condition for spatially pattered steady states to arise in two- and three-species food  chains95,96. 
Dispersal-induced oscillatory instabilities in contrast are more likely when primary producers disperse much 
faster than primary and secondary consumers in simple food  chains64,95. Therefore, we might expect a gener-
ally stabilizing effect of positive body size scaling and a generally destabilizing effect from negative scaling with 
oscillatory instabilities. However, these predictions could be complicated in more complex ecological networks, 
where spatial dynamics can be additionally influenced by consumers sharing a common prey (e.g.97) or prey 
being consumed by a shared predator (e.g.95). Furthermore, pattern formation and asynchronous oscillations 
could impart “stability” in a different sense by lowering population variation at larger  scales64,98.

Our definition of stability pertains to metacommunity behavior near equilibrium and is therefore limited 
in describing non-equilibrium dynamics. In this class of models, instabilities can indeed include trajectories 
that tend to zero (i.e., species extinctions), but other outcomes including non-equilibrium co-existence with 
synchronous or asynchronous oscillations are also  possible99–102. The relationship between species persistence 
and other non-equilibrium dynamics is not always clear, particularly when species interactions are nonlinear. 
In metacommunities, regional persistence can occur even in the presence of local  extinctions91,92,94. Unstable 
oscillations or even local extinctions may in fact drive spatially asynchronous dynamics that enhances regional 
 persistence64,92,94,98. In these cases, positive body size scaling could counteract such effects; just as coupling 
by large, mobile consumers stabilizes heterogeneous metacommunities in our model, predator movement 
could dampen the amplitude of asynchronous oscillations. Wide-ranging predators may also synchronize prey 
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 dynamics103–105. The rich non-equilibrium behavior possible in highly speciose food webs with nonlinearities, 
like we examine here, will likely require extensive investigation and generalizations may be  challenging18.

Consumers, especially large-bodied top predators, are being disproportionately lost from the world’s 
 ecosystems74,106,107. These losses have far-ranging implications for ecosystem structure and  stability6,17,74,106,108,109. 
A potential consequence of consumer extinction is loss of spatial coupling, which previous research and our 
results here suggest could lead to further regional  instability14,17,76, including increased variability and subsequent 
species losses. While positive body size scaling had the greatest stabilizing effect in our model, we also found 
through our permutation analysis that randomly shifting the highest dispersal rate from the largest predator to 
other species in the food web at other trophic positions yielded equivalent qualitative stability. Thus, our results 
suggest that the conservation value of connectivity may not be lost when top consumers are. Instead, identify-
ing alternative agents of connectivity and promoting their dispersal following top consumer loss may serve as 
a productive strategy. In practice, finding substitutes for large bodied consumers in some ecosystems may be 
difficult given the out-sized role in ecosystem coupling these species play. Yet, continued threats to top consumer 
persistence and the potential conservation value of dispersal among other species suggest the utility of planning 
for robust connectivity at the community rather than population  level110,111.

Methods
Steady states and stability of Eq. (1) were studied using the generalized modeling  method6,70. The method assumes 
all populations in the food web possess a steady state, allowing us to re-cast population densities and functions 
as normalized proportions of the steady state. Thus, for each population Bki  of i = 1, ..., S species across k = 1, ...,N 
patches there exists a steady state Bk∗i  that allows us to define the normalized densities bki =

Bki
Bk∗i

 . The normalized 
equations for the non-dispersal components of the metacommunity are therefore

The functions g, f, x, and e represent the functions G, F, X, and E from Eq. (1) normalized by their values 
evaluated at steady state; the newly introduced variables cBkj  and f̃Bkj (B

k
i ) represent the total amount of food avail-

able to species j and the contribution of species i to the food available to species j,  respectively71. Additional scale 
and branching parameters that arise from the normalization procedure set the rates and strength of interactions 
in the local food web. The normalized turnover rate αi scales the biomass flow rates for each species in the food 
web with mass, αi = M

−1/4
i  , while the branching parameters quantify the structure of these flows. Specific 

interpretations of the scale and branching parameters are given in Table 1 and provided in detail  in70.
Determining stability of Eq. (4) relies on establishing the Jacobian matrix for the local food web, Jk . The 

Jacobian is constructed from elements that describe the change in the dynamic equation for each species that 
occurs given a change in each component state variable and the functions of each state variable near steady state. 
The local food web Jacobian therefore is a square S × S matrix where diagonal entries Ji,i describe the effects of a 
change in species i on itself and the non-diagonal entries Jj,i describe the effects of species i on species j. Quan-
tifying the changes of functions of state variables near steady state is accomplished in the generalized modeling 
framework by defining the following exponent  parameters6,16,70,71,

These exponent parameters can be interpreted formally as  elasticities70,71. Furthermore, they recapitulate 
effects of relevant non-linearities on ecological dynamics commonly employed in standard ecological models 
such as the amount of saturation in the functional response ( γ k

i  ), the shape of the producer growth function ( φk
i  ), 

the presence of intraspecific consumer interference ( ψk
i  ), and the density-dependence of consumer mortality 

rates ( µk
i  ). The exponent parameter �kj,i can be interpreted as the adaptability of consumer preferences to different 

prey items; following previous  work6 we assume constant preferences for simplicity.
Niche model food web topologies that specify the structure of interactions in Eq. (5) were generated 

 following21. Each species i is assumed to exist on a niche axis between [0,1] and is assigned a niche value using 
a uniform distribution. The species then is assumed to consume all species over a range ri that is near or below 
the position of species i on the niche axis, generating a trophic hierarchy. The location of the range is assigned 
using a beta function with expected value 2C. We chose input values for species richness S as integers between 
10 and 30 inclusive, [10..30], and for connectance C as (0.12, 0.14, ..., 0.24). The latter range was chosen to 
encompass empirically observed connectance  values112. Only webs with a single connected component were 
retained for analysis.

Spatial networks were generated as random geometric graphs (RGG). Networks of N patches were generated 
by first randomly assigning coordinates in 2 dimensional space to each patch drawn from a standard uniform dis-
tribution. patches were then connected if the Euclidean distance between their coordinates fell below a threshold 
n. Networks with unconnected patches were discarded. For results included here, we used N = 10 and n = 0.32.

(5)

dbki
dt

= αi[(1− ρk
i )gBki

(bki )+ ρk
i fBki

(cBki
, bki )− (1− σ k

i )xBki
(bki )

− σ k
i

∑

j

βk
ijeBkj B

k
i
(bk)]; cBkj

=
∑

i

χji f̃Bkj
(Bki ).

(6)

φk
i =

∂

∂bki
gBki

(bki )

∣

∣

∣

∣

x=x∗
, ψk

i =
∂

∂bki
fBki

(cBki
, bki )

∣

∣

∣

∣

x=x∗
, �

k
ji =

∂

∂bki
f̃Bkj

(Bki )

∣

∣

∣

∣

x=x∗
,

γ k
i =

∂

∂cBki

fBki
(cBki

, bki )

∣

∣

∣

∣

x=x∗
, µk

i =
∂

∂bki
xBki

(bki )

∣

∣

∣

∣

x=x∗
.
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The spatial structure of the RGG is encoded in the Laplacian matrix L . The Laplacian L is an N × N matrix 
where the diagonal entries Lk=l represent the number of dispersal connections (i.e. degree) of each patch k. The 
off-diagonal elements of L reflect dispersal connections between individual patches, where Lk  =l = −1 when 
patches k and l are connected and 0 otherwise. Linking the Laplacian to the dispersal matrix D yields the spatial 
structure of the dispersal network. The dispersal matrix is an S × S matrix with species-specific dispersal rates 
on the diagonal Di=j = δi and all other entries zero. Using L ⊗D , with ⊗ being the Kroenecker product, yields 
the SN × SN block matrix that describes the pattern of connections between all patches by all species.

Local food webs were embedded in the spatial structure of the metacommunity using Eq. (3). Each local 
web Jacobian Jk was numerically placed on the diagonal of the metacommunity food web matrix P. Because we 
assume environmental heterogeneity, the entries of each Jk in a given P vary, although the topologies remain 
fixed. Environmental heterogeneity is implemented as variation in branching and elasticity parameters; the value 
of each parameter for each species in a local web Jk was determined by drawing from uniform distributions in 
the appropriate range defined in Table 1.

We generated one hundred unique food web topologies for each combination of species richness S and con-
nectance C, yielding 7700 unique metacommunity topologies. We explored metacommunity dynamics over five 
values of dispersal coupling d and seven values of dispersal allometry z, yielding 192,500 unique metacommuni-
ties. For each unique metacommunity, we then compared its stability with that of 100 similar metacommunities 
whose dispersal rates are randomly re-assigned dispersal rates. For each permutation metacommunity, the dis-
persal rate of each species was randomly reassigned to a different a species with equal probability. The stability 
of the original metacommunity was compared with the median stability of its corresponding random dispersal 
metacommunities using the values and signs of the real part of the leading eigenvalues of the metacommunity 
Jacobians.

Associations between different parameters and metacommunity stability were quantified using generalized 
linear models (GLMs) with binomial errors and a logit link function, with an information criterion-based 
model selection scheme. Following White et al.113 we use GLMs as a framework for partitioning variance and 
correlations between important model parameters and metacommunity stability, and not for assessing statisti-
cal significance. We first fitted a global model comprising linear combinations of fixed effects for local food web 
species richness S, web connectance C, the strength of spatial network links d, the body size scaling exponent for 
allometric dispersal z, and the spatial variances and means of parameters describing consumer satiation, interac-
tion strengths, and nutrient availability to primary producers (Table 1). We then computed Akaike’s information 
criterion (AIC) for all submodels comprising different combinations of fixed effects in the global model, and 
selected the model with the lowest AIC score as the best fitting. This model included four terms: species richness 
S, web connectance C, global spatial network link strength d, and the exponent of allometric dispersal z (Fig. 3).

Code availability
Example  R114 code analyzing a small set of generalized model food webs is available at https:// github. com/ Ashka 
anF/ metac ommDe mo. Generalized model code was adopted  from115.
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