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Stability of MRI radiomic features 
according to various imaging 
parameters in fast scanned 
T2‑FLAIR for acute ischemic stroke 
patients
Leehi Joo 1, Seung Chai Jung 1,4*, Hyunna Lee 2,4*, Seo Young Park 3, Minjae Kim 1, 
Ji Eun Park 1 & Keum Mi Choi1

From May 2015 to June 2016, data on 296 patients undergoing 1.5‑Tesla MRI for symptoms of acute 
ischemic stroke were retrospectively collected. Conventional, echo‑planar imaging (EPI) and echo train 
length (ETL)‑T2‑FLAIR were simultaneously obtained in 118 patients (first group), and conventional, 
ETL‑, and repetition time (TR)‑T2‑FLAIR were simultaneously obtained in 178 patients (second group). 
A total of 595 radiomics features were extracted from one region‑of‑interest (ROI) reflecting the acute 
and chronic ischemic hyperintensity, and concordance correlation coefficients (CCC) of the radiomics 
features were calculated between the fast scanned and conventional T2‑FLAIR for paired patients (1st 
group and 2nd group). Stabilities of the radiomics features were compared with the proportions of 
features with a CCC higher than 0.85, which were considered to be stable in the fast scanned T2‑FLAIR. 
EPI‑T2‑FLAIR showed higher proportions of stable features than ETL‑T2‑FLAIR, and TR‑T2‑FLAIR 
also showed higher proportions of stable features than ETL‑T2‑FLAIR, both in acute and chronic 
ischemic hyperintensities of whole‑ and intersection masks (p < .002). Radiomics features in fast 
scanned T2‑FLAIR showed variable stabilities according to the sequences compared with conventional 
T2‑FLAIR. Therefore, radiomics features may be used cautiously in applications for feature analysis as 
their stability and robustness can be variable. 

The paradigm is shifting from qualitative visual assessment of medical imaging to quantitative data analysis with 
the development of high-throughput mining of low- to high dimensional data. Radiomic features are considered 
to be an important alternative for interpretation and analysis of medical images and to predict lesion character-
istics with numerous features, from first-order to high-order  features1–4.

However, radiomic features can have limitations in their reproducibility or stability. The stability of radiomic 
features is still challenging with a lack of standardization during image acquisition, reconstruction, segmenta-
tion and analyses even though standardized image processing and feature computation have allowed radiomic 
features to be  stable4. Among the various types of medical imaging, magnetic resonance imaging (MRI) has a 
variety of imaging acquisition methods and combinations of complicated parameters even in the same imaging 
sequences, which makes it difficult to apply radiomic features to MRI.

Fast scanned techniques are essential in the acquisition of MRI because of the major limitation of MRI, the 
need for a long scan time, particularly in emergency situations such as after a suspected cerebral acute ischemic 
 stroke5. Fast scanned images have been realized by using echo-planar imaging (EPI), parallel imaging, echo 
train length (ETL) and recently introduced advanced techniques such as compressed sensing and simultaneous 
multi-slice acquisition, and so  on6–13. The various techniques have resulted in a very complicated combination 
of imaging parameters, which can hamper the acquisition of stable radiomic features.

OPEN

1Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College 
of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul 138-736, Republic of Korea. 2Bigdata Research Center, 
Asan Institute for Life Science, Asan Medical Center, 88 Olympic-ro 43-Gil, Songpa-Gu, Seoul 15505, Republic of 
Korea. 3Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of 
Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul 138-736, Korea. 4These authors contributed equally: Seung 
Chai Jung and Hyunna Lee. *email: dynamics79@gmail.com; hyunnalee@gmail.com

http://orcid.org/0000-0002-5527-0476
http://orcid.org/0000-0001-5559-7973
http://orcid.org/0000-0003-1669-3086
http://orcid.org/0000-0002-2702-1536
http://orcid.org/0000-0002-5382-9360
http://orcid.org/0000-0002-4419-4682
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-96621-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17143  | https://doi.org/10.1038/s41598-021-96621-z

www.nature.com/scientificreports/

T2-Fluid attenuated inversion recovery (FLAIR) is very commonly used and essential sequence for the evalu-
ation of cerebral acute ischemic stroke  patients9–11,14–20. Therefore, T2-FLAIR is an important candidate for the 
application of radiomic features. However, there have been attempts to reduce the scan time of T2-FLAIR for 
a long time, which resulted in various parameters of T2-FLAIR. The EPI, parallel imaging, and ETL have been 
widely  used6,9–12. Nevertheless, the stability of the radiomic features have been poorly investigated.

We hypothesized that radiomic features from fast scanned T2-FLAIR show variability relative to conventional 
T2-FLAIR. Therefore, the aim of our study was to investigate the stability of radiomic features from various fast 
scanned T2-FLAIR images in patients with acute ischemic stroke, and to compare the agreement of the radiomic 
features with conventional T2-FLAIR as a reference standard.

Results
Stability of radiomic features in fast scanned T2‑FLAIR compared with conventional 
T2‑FLAIR. The proportions of stable radiomic features in the first group were 13.8% (82/595) in EPI-T2-
FLAIR and 5.5% (33/595) in ETL-T2-FLAIR for acute ischemic hyperintensity and 15.6% (93/595) in EPI-T2-
FLAIR and 5.1% (30/595) in ETL-T2-FLAIR for chronic ischemic hyperintensity. Proportions of stable radiomic 
features in the second group were 16.8% (100/595) in TR-T2-FLAIR and 1.8% (11/595) in ETL-T2-FLAIR for 
acute ischemic hyperintensity and 13.0% (77/595) in TR-T2-FLAIR and 0.7% (4/595) in ETL-T2-FLAIR for 
chronic ischemic hyperintensity. EPI-T2-FLAIR and TR-T2-FLAIR showed significantly higher proportions of 
stable radiomic features than those of ETL-T2-FLAIR (p < 0.001). Proportions of stable radiomic features in 
the first group were 9.7% (58/595) in the EPI-T2-FLAIR intersection and 3.4% (20/595) in the ETL-T2-FLAIR 
intersection for acute ischemic hyperintensity and 18.0% (107/595) in the EPI-T2-FLAIR intersection and 11.6% 
(69/595) in the ETL-T2-FLAIR intersection for chronic ischemic hyperintensity. Proportions of stable radiomic 
features in the second group were 12.1% (72/595) in the TR-T2-FLAIR intersection and 3.9% (23/595) in the 
ETL-T2-FLAIR intersection for acute ischemic hyperintensity and 9.6% (57/595) in the TR-T2-FLAIR intersec-
tion and 1.2% (7/595) in the ETL-T2-FLAIR intersection for chronic ischemic hyperintensity. EPI-T2-FLAIR 
and TR-T2-FLAIR showed significantly higher proportions of stable radiomic features than those of ETL-T2-
FLAIR (p < 0.002). The detailed results are listed in Table 1.

Stable radiomic features in fast scanned T2‑FLAIR compared with conventional 
T2‑FLAIR. There were no stable radiomic features across acute and chronic ischemic hyperintensities in the 
first and second groups. Stable radiomic features across acute and chronic ischemic hyperintensities in the first 
group were 1.01% (1/99) in gray-level run-length matrix (GLRLM) and 2.22% (1/45) in neighboring gray tone 
difference matrix (NGTDM). Stable radiomic features across acute and chronic ischemic hyperintensities in the 
second group were 1.01% (1/99) in GLRLM. Stable radiomic features across acute ischemic hyperintensities in 
the first group were 2.17% (1/46) in the first order, 2.53% (5/198) in gray-level co-occurrence matrix (GLCM), 
4.04% (4/99) in GLRLM, 2.22% (1/45) in local binary pattern (LBP), 1.71% (2/117) in gray-level size zone matrix 

Table 1.  Reproducibility of radiomics features in fast scanned T2-FLAIR compared with original T2-FLAIR 
as a reference standard. EPI echo-planar imaging, ETL echo train length, TR repetition time, P p value, 
CCC  concordance correlation coefficients, AIH acute ischemic hyperintensity, CIH chronic ischemic 
hyperintensity. Parentheses indicate numbers of radiomics features in proportions of stable radiomics features 
or indicate 95% confidence intervals.

Whole

First group Second group

EPI ETL P TR ETL P

Proportions of stable radiomics features (CCC > 0.85)

AIH 13.8% (82/595) 5.5% (33/595)  < .001 16.8% (100/595) 1.8% (11/595)  < .001

CIH 15.6% (93/595) 5.0% (30/595)  < .001 12.9% (77/595) 0.7% (4/595)  < .001

Overall 16.0% (95/595) 8.1% (48/595)  < .001 22.9% (136/595) 2.0% (12/595)  < .001

Median CCC 

AIH 0.60 (0.13–0.80) 0.58 (0.23–0.75) .557 0.66 (0.32–0.81) 0.43 (0.16–0.66)  < .001

CIH 0.37 (0.06–0.76) 0.47 (0.16–0.68) .011 0.44 (0.23–0.67) 0.30 (0.12–0.45)  < .001

Overall 0.62 (0.14–0.82) 0.57 (0.22–0.76) .607 0.68 (0.32–0.84) 0.47 (0.18–0.67)  < .001

Intersection

First group Second group

EPI ETL P TR ETL P

Proportions of stable radiomics features (CCC > 0.85)

AIH 9.7% (58/595) 3.4% (20/595)  < 0.001 12.1% (72/595) 3.9% (23/595)  < 0.001

CIH 18.0% (107/595) 11.6% (69/595) 0.002 9.6% (57/595) 1.2% (7/595)  < 0.001

Overall 8.7% (52/595) 2.5% (15/595)  < 0.001 13.3% (79/595) 3.4% (20/595)  < 0.001

Median CCC 

AIH 0.45 (0.10–0.69) 0. 46 (0.15–0.64)  < 0.001 0.56 (0.27–0.73) 0.52 (0.25–0.69)  < 0.001

CIH 0.41 (0.09–0.75) 0.55 (0.28–0.73)  < 0.001 0.46 (0.24–0.63) 0.32 (0.12–0.48)  < 0.001

Overall 0.49 (0.13–0.75) 0.52 (0.21–0.68) 0.348 0.61 (0.31–0.78) 0.55 (0.23–0.73)  < 0.001
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(GLSZM), and 6.67% (3/45) in NGTDM. Stable radiomic features across chronic ischemic hyperintensities in 
the first group were 4.44% (2/45) in the second order, 2.02% (4/198) in GLCM, 6.06% (6/99) in GLRLM, 4.27% 
(5/117) in GLSZM, and 4.44% (2/45) in NGTDM. Stable radiomic features across acute ischemic hyperintensi-
ties in the second group were 2.17% (1/46) in the first order, 2.02% (4/198) in GLCM, 2.02% (2/99) in GLRLM, 
2.22% (1/45) in LBP, 0.85% (1/117) in GLSZM, and 4.44% (2/45) in NGTDM. Stable radiomic features across 
chronic ischemic hyperintensities in the second group were 1.01% (1/99) in GLRLM, 2.22% (1/45) in LBP, and 
2.22% (1/45) in NGTDM.

There were no stable radiomic features across acute and chronic ischemic hyperintensities using intersection 
ROIs in the first group. Stable radiomic features across acute and chronic ischemic hyperintensities in the second 
group were 1.01% (1/99) in GLRLM and 2.22% (1/45) in LBP. Stable radiomic features across acute ischemic 
hyperintensities in the first group were 4.35% (2/46) in the first order, 2.22% (1/45) in the second order, 1.01% 
(2/198) in GLCM, 4.04% (4/99) in GLRLM, 2.22% (1/45) in LBP, and 1.71% (2/117) in GLSZM. Stable radiomic 
features across chronic ischemic hyperintensities in the first group were 2.22% (1/45) in the second order, 2.53% 
(5/198) in GLCM, 6.06% (6/99) in GLRLM, 5.13% (6/117) in GLSZM, and 4.44% (2/45) in NGTDM. Stable 
radiomic features across acute ischemic hyperintensities in the second group were 6.52% (3/46) in the first order, 
3.03% (6/198) in GLCM, 5.05% (5/99) in GLRLM, 2.22% (1/45) in LBP, 2.56% (3/117) in GLSZM, and 4.44% 
(2/45) in NGTDM. Stable radiomic features across chronic ischemic hyperintensities in the second group were 
1.01% (1/99) in GLRLM and 4.44% (2/45) in LBP. All of the details mentioned above are shown in Figs. 1, 2 and 3.

Discussion
This study showed a consistent tendency of higher proportions of reliable features in EPI-T2-FLAIR and TR-
T2-FLAIR than ETL-T2-FLAIR in both acute and chronic ischemic hyperintensities and for both whole- and 
intersection-ROI mask. Therefore, various image acquisitions of T2-FLAIR resulted in unstable radiomic features, 
which may lead to different radiomic features’ outcomes, such as prediction modeling.

MRI is a useful and sometimes essential imaging modality to identify the infarct core on DWI, and additional 
useful information can be obtained from various images such as T2-FLAIR or gradient echo (GRE) images, and 
also allow acquisition of vessel information without the need for contrast media during the evaluation of cerebral 
acute ischemic stroke patients; however, MRI has a lesser availability and a longer scan time compared to  CT5,21–25. 
Therefore, there have been many attempts to reduce the scan time of MRI in cerebral acute ischemic stroke 
situations, which has resulted in various MRI sequences and parameters being applied in clinical  practice6,9–12.

Previous studies on fast-scanned T2-FLAIR in acute ischemic stroke showed a consistent superior reliability 
when compared with that of conventional  images6,9–11. However, those studies only showed repeatability or reli-
ability in qualitative scoring systems or simple quantitative comparisons, such as signal intensity. In contrast, 
our study based on radiomic features showed a lower reliability than that of conventional images even though 
the data was originated from the same registry in the previous  study6.

The diversity in the image acquisition makes it difficult to apply radiomic features to MRI for cerebral acute 
ischemic stroke. Imaging acquisition, segmentation, and feature extraction can affect the stability of radiomic 
 features2. Ford et al. demonstrated that changes of imaging parameters could lead to variable radiomic features 
in a phantom  study26. Minjae et al. only showed that the change in acceleration factors on the same images can 
affect the stability of radiomic features, and two different under-sampling methods on the same images can show 
different radiomic features even under the same acceleration  factors27. Therefore, different imaging parameters 
even on the same FLAIR sequences may reduce the stability of radiomic features, as in this study. In addition, 
these obstacles may affect a few published studies on the predictive models developed using MRI radiomic 
features in cerebral acute ischemic  stroke28–30. The results from this study showed some stable radiomic features 
across variable acquisition of T2-FLAIRs and acute and chronic ischemic hyperintensities, but a substantial 
proportion showed variability. To our knowledge, there is no previous report on the stability of MRI radiomic 
features according to various imaging parameters in cerebral acute ischemic stroke. The segmentation can affect 
the stability of radiomic features. Manual segmentation, compared with semi- or automated segmentations, may 
lead to lower reproducibility in radiomic  features2. However, many previous studies on radiomic features or 
high dimensional quantitative analyses using artificial intelligence relied on manual segmentations. In addition, 
Haarburger et al. showed poor reproducibility of some radiomic features even under automated segmentation 
 methods31. The segmentation reproducibility can be influenced by the anatomic location and lesion  types27,32. 
In our study, there were some different results between whole and intersection ROI masks, which may be also 
owing to different sizes of ROI masks and thus different numbers of pixels. Feature extraction can also affect the 
stability of radiomic features. Li et al. demonstrated the poor stability of radiomic features (no features > 0.85 in 
concordance correlation coefficient [CCC]) across different extraction  combinations33.

Studies evaluating stable radiomic features in cerebral acute or chronic ischemic lesions based on multipa-
rameteric variances appear to be lacking, and the reproducibility of radiomic features in brain tumors, includ-
ing glioblastoma, has been reported and several features belonging to GLRLM were identified as reproducible 
 features33,34. GLRLM was also the most reproducible feature in cine balanced steady-state free procession and 
first-order, and GLCM had the most reproducible features on both T1 and T2 maps in the myocardial radiomic 
 features35. However, a phantom study for test–retest reproducibility reported that GLRLM was neither the most 
robust nor least robust feature class, while GLCM was one of the least robust feature classes across MRI sequences: 
FLAIR, T1-weighted, and T2-weighted  imaging36. Our study also showed that GLCM and GLRLM are com-
mon stable features in the numbers but some variability was seen in the proportions of stable radiomic features.

This study has several limitations. First, this study was designed as a retrospective study with a small popu-
lation in a single center. A study population cannot be free from selection bias, which may have affected the 
deviations in sex and age, and a specific MR machine was adopted. Therefore, further multi-center studies with 
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Figure 1.  Heat maps of radiomics features extracted from whole- and intersection ROI masks in the first and 
second groups. Features with CCC > 0.85 were regarded as stable. (a) Features from whole ROI masks in the first 
group. (b) Features from whole ROI masks in the second group. (c) Features from intersection ROI masks in the 
first group. (d) Features from intersection ROI masks in the second group. AIH acute ischemic hyperintensity, 
CIH chronic ischemic hyperintensity, CCC  concordance correlation coefficients, ROI region-of-interest, EPI 
echo-planar imaging, ETL echo train length, TR repetition time.
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a larger sample size are necessary. Second, we did not compare all of the T2-FLAIRs simultaneously because it 
is hard to obtain all of the T2-FLAIRs at the same time in a cerebral acute ischemic stroke situation. Third, this 
study presented only the stabilities of radiomic features in T2-FLAIRs of acute ischemic stroke and an evalua-
tion of the stability of identification or prediction models influencing the treatment options for stroke outcomes 
using radiomic features from variable T2-FLAIRs is necessary.

In conclusion, the fast-scanned T2-FLAIR showed small proportions of stable radiomic features and variable 
stability of radiomic features among those in terms of the agreements with conventional T2-FLAIR. Therefore, 
even if the images in the same sequence have different parameters, the radiomic features obtained from the 
images may be used with caution.

Methods
Study population. From May 2015 to June 2016, data on 296 patients undergoing MRI at a single tertiary 
hospital for symptoms of acute ischemic stroke were retrospectively collected. Among them, 118 patients under-
went echo-planar imaging (EPI)-T2-FLAIR and echo train length (ETL)-T2-FLAIR and 178 patients under-
went ETL-T2-FLAIR and repetition time (TR)-T2-FLAIR simultaneously. In total, 79 patients showed acute 
ischemic hyperintensity and 89 patients showed chronic ischemic hyperintensity on simultaneous acquisition 
of EPI- and ETL-T2-FLAIR, who were classified to the first group, and 112 patients showed acute ischemic 
hyperintensity and 127 patients showed chronic ischemic hyperintensity on simultaneous acquisition of ETL- 
and TR-T2-FLAIR, who were classified to the second group for comparable paired data analysis. The detailed 
demographics of the patients are presented in Table 2. The data on patients were collected from the fast stroke 
MRI registry in our  institute6. The institutional review board of Asan Medical Center approved the present study, 
and the requirement for informed consent was waived. The data was analyzed in compliance with the Interna-
tional Council for Harmonization of Technical Requirements for Registration of Pharmaceutical for Human 
Use: Guideline for Good Clinical Practice (ICH GCP).

Image acquisition. All T2-FLAIR was scanned on a 1.5-T scanner (Magnetom Avanto; Siemens Health-
ineers). The scan times were 128 s for conventional T2-FLAIR, 45 s for EPI-T2-FLAIR, 74 s for ETL-T2-FLAIR, 
and 79 s for TR-T2-FLAIR. The detailed scan parameters for the conventional and fast T2-FLAIR were as previ-
ously  reported6 and are listed in Table 3 and representative images are presented in Fig. 4.

Image analysis. The segmentations of acute- and chronic ischemic hyperintensities were conducted as 
described in a previous  report6. We defined acute ischemic hyperintensity as a T2-FLAIR high signal inten-
sity within acute infarcts on diffusion weighted images (DWI)15,17, and chronic ischemic hyperintensity as a 
hyperintensity outside of acute infarcts on DWI. The segmentation of region-of-interest (ROI) mask was done 

Figure 2.  Proportions of stable radiomic features extracted from whole- and intersection ROI masks on each 
fast scanned T2-FLAIR sequence in the first and second groups. (a,b) Proportions of stable radiomic features 
from whole ROI masks (a) and intersection ROI masks (b) according to each fast scanned T2-FLAIR. (c,d) 
Numbers of stable radiomic features from whole ROI masks (c) and intersection ROI masks (d) according to 
each fast scanned T2-FLAIR. AIH acute ischemic hyperintensity, CIH chronic ischemic hyperintensity, ROI 
region-of-interest, EPI echo-planar imaging, ETL echo train length, TR repetition time, GLCM gray-level 
co-occurrence matrix, GLRLM gray-level run-length matrix, LBP local binary pattern, GLSZM gray-level size 
zone matric, NGTDM  neighboring gray tone difference matrix.
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Figure 3.  Proportions of stable radiomic features throughout both fast scanned T2-FLAIR sequences extracted 
from whole- and intersection ROI masks in the first and second groups. (a,b) Proportions of stable radiomic 
features from whole ROI masks (a) and intersection ROI masks (b). (c,d) Numbers of stable radiomic features 
from whole ROI masks (c) and intersection ROI masks (d). AIH acute ischemic hyperintensity, CIH chronic 
ischemic hyperintensity, ROI region-of-interest, EPI echo-planar imaging, ETL echo train length, TR repetition 
time, GLCM gray-level co-occurrence matrix, GLRLM gray-level run-length matrix, LBP local binary pattern, 
GLSZM gray-level size zone matric, NGTDM neighboring gray tone difference matrix.

Table 2.  Demographics of the patients. a Numbers indicate mean ± standard deviation and the parentheses 
indicate the range. b Parentheses indicate the range. c Median (nterquartile range).

Acute ischemic lesion

P value

Chronic ischemic lesion

P valueEPI-ETL (n = 79) ETL-TR (n = 112) EPI-ETL (n = 89) ETL-TR (n = 127)

Age (years)a 67.9 ± 13.2 (38–92) 67.8 ± 13.4 (22–95) 0.95 69.4 ± 10.9 (38–92) 72.4 ± 9.4 (38–95) 0.01

Sex (M:F) 46:33 73:39 0.41 52:37 74:53 0.91

Body mass index (kg/
m2)a 23.9 ± 3.5 (16.4–32.1) 24.1 ± 3.4 (13.8–36.6) 0.76 23.3 ± 2.9 (15.1–32.1) 23.4 ± 3.4 (13.8–36.6) 0.86

Hypertensionb 54 (68.4) 70 (63.1) 0.5 64 (71.9) 92 (73.0) 0.95

DMb 28 (35.4) 29 (26.1) 0.21 33 (37.1) 43 (34.1) 0.73

Hyperlipidemiab 34 (43.0) 37 (33.6) 0.21 35 (39.3) 43 (34.7) 0.5

Smoking  historyb 32 (40.5) 43 (38.7) 0.89 36 (40.4) 84 (33.3)  < 0.01

History of  strokeb 17 (21.5) 24 (21.6)  < 0.01 25 (28.1) 46 (37.1) 0.27

Family history of 
 strokeb 19 (24.1) 33 (29.7) 0.51 20 (22.5) 30 (24) 0.97

History of coronary 
 diseaseb 26 (32.9) 42 (37.8) 0.62 30 (33.7) 45 (36) 0.91

Onset to imaging time 258 (113–683)c 223 (123 –700)c 0.65 261 (123.5–576)c 172 (117.5–306.5)c 0.10
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by one research assistant (K.M.C. with 5 years of experience in stroke imaging) using an in-house program 
for semiautomatic segmentation (based on ImageJ software; National Institutes of Health, Bethesda, MD). The 
intersection ROI mask between the respective ROI mask of the conventional and fast T2-FLAIR was obtained 
after the coregistration and then each intersection ROI mask was transferred into the respective conventional 
and fast T2-FLAIR images. The intersection ROI mask was used to compare the radiomic features from different 
T2-FLAIRs without ROI mask differences. A total of 14 kinds of ROI masks were obtained as follows: 3 ROIs 
from conventional-, EPI-, and ETL-T2-FLAIR in the first group; 2 intersection ROIs from conventional and 
EPI-T2-FLAIR, and 2 intersection ROIs from conventional and ETL-T2-FLAIR in the first group; 3 ROIs from 
conventional-, ETL-, and TR-T2-FLAIR in the second group; 2 intersection ROIs from conventional and ETL-
T2-FLAIR, and 2 intersection ROIs from conventional and TR-T2-FLAIR in the second group (Fig. 5). From 
the ROIs, 595 radiomics features were extracted and concordance correlation coefficients (CCC) for radiomic 
features were calculated between fast scanned and conventional T2-FLAIR in each group.

Radiomic features. Radiomic features were extracted with Matlab R2016a (The Mathworks, Natick, MA): 
first-order features, texture features, and wavelet-transformed  features37,38. The first-order features were acquired 
based on the histogram analyses of pixel values within the region-of-interest. The second-order features or tex-
ture features were as follows: gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), 
local binary pattern (LBP), gray-level size zone matric (GLSZM), and neighboring gray tone difference matrix 
(NGTDM). The wavelet transformations extracted additional features. The radiomic features extraction was 
done under the Imaging Biomarker Standardization  Initiative39. Finally, 595 radiomic features were extracted 
with 46 first-order features, 61 texture features (5 s order, 22 GLCM, 11 GLRLM, 5 LBP, 13 GLSZM, 5 NGTDM) 
and 488 wavelet features (× 8; 40 s order, 176 GLCM, 88 GLRLM, 40 LBP, 104 GLSZM, 40 NGTDM).

Statistical analysis. The stability of the radiomic features was evaluated using CCC between the features 
extracted from the conventional- and fast scanned T2-FLAIR based on Lin’s  definition40. The proportions of 
stable radiomic features were compared between EPI and ETL in the first group and between TR and ETL in the 
second group using McNemar’s test. Radiomic features with a CCC of higher than 0.85 were considered to be 
stable. All statistical analyses were performed using the MedCalc 15.6.1 software package (MedCalc Software) 
and R version R 3.3.3 (R Foundation for Statistical Computing; http:// www.R- proje ct. org, 2016).

Table 3.  T2-FLAIR protocols. EPI echo-planar imaging, ETL echo train length, TR repetition time, TE echo 
time, NEX number of excitations.

T2-FLAIR

Conventional EPI ETL TR

TR/TE 9000/109 9000/101 9000/102 5560/109

Inversion time 2500 2000 2500 1930

Flip angle 150 180 150 150

Matrix 256 × 218 128 × 128 192 × 192 256 × 256

Field of view 210 × 184 230 × 230 210 × 184 210 × 210

Number of slices 20 20 20 20

Slice thickness (mm) 5 5 5 5

Slice gap (mm) 2 2 2 2

ETL 21 128 (EPI) 32 21

Acceleration factor 2 2 2 2

NEX 1 2 1 1

Scan time 128 45 74 79

http://www.R-project.org
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Figure 4.  Acute and chronic ischemic hyperintensities on conventional T2-FLAIR and fast scanned T2-FLAIR 
with respect to DWI. (a) First group with conventional T2-FLAIR, EPI-T2-FLAIR, and ETL-T2-FLAIR. (b) 
Second group with conventional T2-FLAIR, ETL-T2-FLAIR and TR-T2-FLAIR. DWI diffusion-weighted image, 
FLAIR fluid attenuated inversion recovery, EPI echo-planar imaging, ETL echo train length, TR repetition time.
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Data availability
The datasets collected during and/or analyzed during the current study may be available from the corresponding 
author on reasonable request and in compliance with ethical standards under an approval of the local institu-
tional review board.
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