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Radiomics feature stability 
of open‑source software evaluated 
on apparent diffusion coefficient 
maps in head and neck cancer
James C. Korte1,2*, Carlos Cardenas3, Nicholas Hardcastle1,4, Tomas Kron1,5, Jihong Wang3, 
Houda Bahig6, Baher Elgohari7,8, Rachel Ger9, Laurence Court3, Clifton D. Fuller7 & 
Sweet Ping Ng7,10,11

Radiomics is a promising technique for discovering image based biomarkers of therapy response 
in cancer. Reproducibility of radiomics features is a known issue that is addressed by the image 
biomarker standardisation initiative (IBSI), but it remains challenging to interpret previously published 
radiomics signatures. This study investigates the reproducibility of radiomics features calculated 
with two widely used radiomics software packages (IBEX, MaZda) in comparison to an IBSI compliant 
software package (PyRadiomics). Intensity histogram, shape and textural features were extracted 
from 334 diffusion weighted magnetic resonance images of 59 head and neck cancer (HNC) patients 
from the PREDICT‑HN observational radiotherapy study. Based on name and linear correlation, 
PyRadiomics shares 83 features with IBEX and 49 features with MaZda, a sub‑set of well correlated 
features are considered reproducible (IBEX: 15 features, MaZda: 18 features). We explore the impact 
of including non‑reproducible radiomics features in a HNC radiotherapy response model. It is possible 
to classify equivalent patient groups using radiomic features from either software, but only when 
restricting the model to reliable features using a correlation threshold method. This is relevant for 
clinical biomarker validation trials as it provides a framework to assess the reproducibility of reported 
radiomic signatures from existing trials.

Extracting textural features from medical images provides additional  information1 to capture changes in tumour 
heterogeneity that may complement existing shape based  metrics2.  Radiomics3,4 is the high-throughput extraction 
of image features from standard-of-care medical images, with the hypothesis that macroscopic image features 
offer insight into disease process at a molecular  level5. Radiomics analysis has been widely adopted in oncology 
research, showing potential to identify magnetic resonance image (MRI) based biomarkers for clinical outcomes 
in head and neck cancers (HNC)6. The evolution of radiomics features during treatment, commonly referred to 
as delta-radiomics, may offer more information than a single time point to identify biomarkers during radio-
therapy or chemotherapy and has been explored in HNC with CT  imaging7–10, positron emission tomography 
(PET)  imaging11 and more recently in MRI  studies12–16.

A review of head and neck cancer  studies6 details the investigation of MRI radiomics features for applications 
such as image segmentation, histopathological classification and prognostic or predictive biomarkers. Previous 
HNC studies explore a range of MRI sequences, from anatomical imaging such as T1 weighted, T2 weighted and 
short tau inversion recovery (STIR) to functional imaging such as diffusion weighted (DW-MRI) and dynamic 
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contrast enhanced imaging (DCE-MRI). This study focuses on radiomics features calculated on apparent diffu-
sion coefficient (ADC) maps derived from DW-MRI images. The apparent diffusion coefficient has been corre-
lated to cellularity in many tumour  types17 and has been linked to cell proliferation in head and neck squamous 
cell  carcinoma18. During radiotherapy, early changes in ADC have been linked to treatment response outcomes 
for multiple tumour types, making it a potential candidate for biological image-guided adaptive radiotherapy 
on MRI guided radiotherapy  systems19.

Developing a radiomics model is often considered as a series of discrete tasks each with its own  challenges5, 
with the variability of each task known to impact model  performance20–22. In MRI studies, these effects have 
been investigated with regard to image  acquisition23–27, region of interest  segmentation23,28–30, image pre-pro-
cessing28,29,31,32, feature  extraction33–35 and feature reduction combined with classifier  training13,36,37. To address 
the known variability issues of features extracted with different  software33–35 the image biomarker standardisa-
tion initiative (IBSI)38 has proposed a set of feature extraction guidelines. In head and neck cancer, MRI studies 
have reported feature extraction with software such as  MazDa24,39–41,  IBEX42 and in-house solutions based on 
 MATLAB37,42–49, none of which adhear to the IBSI guidelines.

Radiomic analysis generates hundreds of features, making feature reduction a crucial step to prevent overfit-
ting when developing a radiomics model. Validation  studies50,51 select a small set of features based on previously 
reported radiomic signatures. The IBSI guidelines should mitigate known feature reproducibility  issues33–35 in 
future studies, but feature uncertainty remains a problem when interpreting previously reported radiomic sig-
natures. This study investigates the correlation between features generated with open-source radiomic software 
packages  (IBEX52 and  MaZda53) used in many published studies against an open-source tool  (PyRadiomics54) 
which follows the IBSI guidelines. We then explore the impact of non-reproducible radiomics features on a HNC 
radiotherapy response model using through therapy ADC radiomics features. Our comparison focuses on DW-
MRI of head and neck cancer but provides general confidence on which previously reported radiomics features 
can be reproduced with software that adheres to the IBSI guidelines.

Results
Variation in radiomic features. Radiomics features were extracted from 334 apparent diffusion coef-
ficient maps from the prospective PREDICT-HN  study59(Fig. 1) with PyRadiomics, IBEX and MaZda. A total 
of 314 features were extracted per ADC map (PyRadiomics: 125, IBEX: 110, MaZda: 79) including intensity 
histogram, shape and texture features. Based on name similarity, equation similarity and linear correlation, we 
identified that PyRadiomics and IBEX have 83 shared features and PyRadiomics and MaZda have 49 shared 
features. The linear correlation of PyRadiomics and IBEX features (Fig. 2) and PyRadiomics and MaZda features 
(Supplementary Figure 2) shows high correlation between intensity histogram features with a range of correla-
tion between features in the shape and texture classes. A summary of correlation between features shared with 
PyRadiomics (Fig. 3) shows that on average IBEX extracts more highly correlated shape features, with MaZda 
extracting more highly correlated first order, GLCM and GLRM features. Features with a high Pearson’s coef-
ficient ( r > 0.901 ) were considered reproducible between software packages. IBEX had 15 reproducible features 

Figure 1.  Apparent diffusion coefficient (ADC) maps of a head and neck cancer patient throughout 
radiotherapy from the PREDICT-HN prospective clinical trial. (a) ADC maps are displayed with (top row) the 
gross tumour volume (GTV) highlighted in colour and (middle row) cropped to the GTV to focus on the region 
of interest for the radiomic analysis. Change in (b) the ADC histogram within the GTV is from baseline (TP0), 
weekly throughout radiotherapy (TP1–TP6) and post-radiotherapy (TP7) with the histogram colour matched to 
the GTV contour colour.
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(intensity histogram: 5, shape: 4, GLCM(1): 4, GLCM(4): 1, NGTDM: 1) and MaZda had 18 reproducible fea-
tures (intensity histogram: 5, shape: 2, GLCM(1): 3, GLCM(4): 3, GLCM(7): 2, GLRLM: 3). For full detail of the 
feature names and correlations see Supplementary Tables 2, 3 and 4.

The PyRadiomics feature set was composed of 18 intensity histogram, 14 shape, 24 GLCM (at three neigh-
bourhoods), 16 GLRLM and 5 NGTDM features. The IBEX feature set had (shared/total) 7/13 intensity histo-
gram, 6/18 shape, 18/21 GLCM (at three neighbourhoods), 11/11 GLRLM and 5/5 NGTDM features. The MaZda 
feature set had (shared/total) 6/14 intensity histogram, 6/22 shape, 10/12 GLCM (at three neighbourhoods) and 
7/7 GLRLM features. Shared features that had dissimilar names included shape features (Flatness, Roundness), 
(Volume, Area), (VoxelVolume, VoxelSize), (SurfaceArea, Perimeter), (SurfaceVolumeRatio, SurfaceAreaDen-
sity), (FerretDiameter, Maximum3DDiameter), GLCM features (SumSquares, Variance), (InverseDifference, 

Figure 2.  Linear correlation of apparent diffusion coefficient (ADC) radiomics features between IBEX and 
PyRadiomics software. Correlation matrices are grouped by feature class such as (a) intensity histogram (b) 
shape (c) NGTDM (d–f) GLCM and (g) GLRLM with colour representing the Pearson correlation coefficient 
(r). An ideal correlation matrix would have diagonal elements of highly correlated features (r = 1.0, dark purple) 
between software packages. A list of shared features between software packages is in Supplementary Tables 2–4.
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Homogeneity1), (InverseDifferenceMoment, Homogeneity2), (JointEnergy, AngularSecondMoment), (Clus-
terTendancy, JointEnergy) and one GLRLM feature (RunPercentage, Fraction).

Variation in patient modelling. To investigate the impact of feature variability on patient modelling, 
36 patients with imaging at all eight time points were clustered into two patient groups using an unsupervised 
learning method. Radiomic features were calculated throughout radiotherapy on apparent diffusion maps coef-
ficient (ADC) maps, derived from diffusion weighted MRI. Hierarchal clustering based on all shared radiomics 
features (Fig. 4a, Supplementary Figure 1a) resulted in different patient groups, with six patients classified dif-
ferently between PyRadiomics and IBEX and fifteen patients classified differently between PyRadiomics and 
MaZda groups. When clustering with a reduced set of reproducible features we observed nearly identical patient 
groups, with one patient classified differently between PyRadiomics and IBEX radiomics features (Fig. 4b) and 
identical PyRadiomics and MaZda groups (Supplementary Figure 2b). The change in clustering similarity over 
a range of reproducibility thresholds (Fig. 5) highlights that as the reliability threshold increases the number 
of included radiomics features decreases, with a general trend of increasing clustering similarity for a thresh-
old above 0.90. To cluster identical patient groups in both software a more stringent reproducibility threshold 
( r > 0.965 ) was required and reduced the IBEX feature set to 7 features (intensity histogram: 3, GLCM(1): 4) 
and the MaZda feature set to 5 intensity histogram features.

Discussion
Existing studies of variability in radiomics feature  extraction33–35 explore a range of image modalities and feature 
extraction software. A study of mammograms and HNC computed tomography  images33 also extracted IBEX and 
MaZda features, but compared them against one another and with two in-house software packages. One feature 
extraction study of HNC patients was less comparable as it analysed PET  images35 and compared two in-house 
radiomics software packages. A study of HNC patients who had both CT and MRI  imaging34 also extracted 
PyRadiomics features but compared them to features extracted with  Moddicom55 and the radiomics extension 
to  CERR56. Whilst that  study34 also extracted features from MRI images of HNC patients, the features were from 
T2 weighted images, whereas our study is the first, to our knowledge, to investigate feature extraction stability 
on ADC maps from diffusion weighted MRI.

Figure 3.  Summary of linear correlation of apparent diffusion coefficient (ADC) radiomic features between 
PyRadiomics and (white) MaZda and (purple) IBEX software. The reproducibility threshold (red-dashed 
line) is defined as greater than a Pearson correlation coefficient of 0.901. This analysis identified a sub-
set of reproducible features between IBEX and PyRadiomics from intensity histogram (5/7), shape (4/6), 
GLCM (neighbourhood 1:4/18, 4:1/18, 7:0/18), GLRLM (0/11) and NGTDM (1/5) categories. The sub-set 
of reproducible features between MaZda and PyRadiomics is intensity histogram (5/6), shape (2/6), GLCM 
(neighbourhood 1:3/10, 3:4/10, 7:2/10), GLRLM (3/7).
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Figure 4.  Comparison of hierarchical clustering of patients with PyRadiomics and IBEX using (a) all shared features 
and (b) a sub-set of reproducible features ( r > 0.901 ). Unsupervised hierarchical clustering generates a (left) radiomic 
signature of change in apparent diffusion coefficient (ADC) features after one fraction of radiotherapy in 36 head and 
neck cancer patients and (right) the resulting patient groups. Clustering with (a) non-reproducible features creates 
a difference in the patient groups generated from PyRadiomics or IBEX features. Clustering with (b) a sub-set of 
reproducible features leads to almost identical patient groups generated from PyRadiomics or IBEX features.
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Our study observed a similar trend of feature extraction reproducibility to existing studies; intensity his-
togram features have high reproducibility across feature extraction software, with shape and textural features 
being more software package dependent. The study of mammograms and HNC CT  images33 demonstrated high 
intra-class correlation (ICC) of intensity histogram features and low ICC of GLCM features, though this was 
partially attributed to the use of default GLCM extraction settings for each software. The study of HNC patients 
with both CT and MRI  images34 showed that CT features had high Spearman correlation of intensity histogram, 
shape and GLCM features and lower ICC for GLRLM and grey-level size zone matrix (GLSZM) features. The T2 
weighted MRI features compared in that study had high Spearman correlation for intensity histogram and shape 
features between PyRadiomics and CERR and only shape features highly correlated between PyRadiomics and 
Moddicom; the lack of correlation with intensity histogram features was attributed to Moddicom performing an 
image intensity correction on the T2 weighted MRI. In our study NGTDM features were extracted with IBEX 
and had a mixture of well correlated (1/5) and uncorrelated (4/5) features, the previously mentioned PET  study35 
also extracted NGTDM features but only a percentage of grouped textural features above an ICC threshold was 
reported. The similarity of our findings with those previously reported may indicate that variability in radiomics 
features due to the extraction software can be considered independent of the imaging modality.

Two radiomics feature reproducibility  studies34,35 have investigated the impact of feature extraction variabil-
ity on HNC model performance. The joint MRI and CT imaging  study34 performed hierarchical clustering of 
patients for each feature class separately (intensity histogram, GLCM, etc.) and observed consistent clustering 
of clinical variables (TN category, GTV volume) for radiomics feature classes with a high reproducibility. The 
PET  study35 demonstrated that models of local tumour control built on features from two different radiomics 
packages can stratify patients into very similar low or high risk recurrence groups, with the model features being 
highly correlated between the two software packages (ICC > 0.9). These studies and our results demonstrate that 
it is possible to generate equivalent radiomics models with different feature extraction software, but that care 
must be taken to ensure that features are highly correlated between the software packages. Additionally, our study 
extends this observation to patient classification based on radiomics features prior to treatment, at multiple time 
points during treatment and post-treatment.

A limitation of this and previous  studies33–35 is the ambiguity in matching features between different soft-
ware, firstly identifying shared features and secondly matching the feature extraction settings which often differ 
between software package. Name similarity does not guarantee equation similarity, for example the shape feature 
“SurfaceVolumeRatio” is calculated with a voxel based volume in IBEX and a mesh based volume in PyRadiomics. 
Equation similarity can be difficult to establish due to different notations, such as the formulation of the shape 
feature “SurfaceArea” between PyRadiomics and IBEX (Supplementary Table 6) which appear quite different but 
have a high correlation (0.998). We observed that equation similarity does not guarantee strong feature correla-
tion, even with well-matched extraction settings, for a number of IBEX GLCM features such as “AutoCorrelation”, 
“MaximumProbability” and “JointEnergy” (Supplementary Table 7). Alternatively, minor differences in equations 
with non-ideally matched extraction settings showed moderate correlation, such as MaZda GLCM features “Dif-
ferenceVariance” and “InverseDifferenceMoment” (Supplementary Table 7). The naming issue can be avoided 
in future for a sub-set of features that have a unique identifier as defined in the IBSI  guidelines38. To assist with 
consistent naming and feature extraction settings an ontology based radiomics workflow has been  proposed57.

It is challenging to match the feature extraction settings between PyRadiomics, IBEX and MaZda. We were 
unable to define a reduced intensity range in MaZda for GLCM and GLRLM features, which may have negatively 

Figure 5.   Impact of the reproducibility threshold on the number of (a) IBEX and (b) MaZda radiomics 
features used for clustering and the resulting clustering similarity. The number and composition of feature types 
is shown with the coloured area chart and shows a decrease in the number of features as the reproducibility 
threshold increases. The (black line) clustering similarity is relatively unchanged for a threshold up till 0.85 after 
which there is a general increase in accuracy for IBEX features. Two reliability thresholds are highlighted where 
(red dashed line) generates patient groups in IBEX with one patient classified differently and identical patient 
groups in MaZda and the (red dotted line) generates identical patient groups in both software.
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affected the feature correlation results, though we observed higher correlations in these feature classes from 
MaZda than with IBEX that had a matched intensity range and bin width. Similarly, we were unable to define 
identical directions for GLCM and GLRLM feature extraction across the software packages, averaging over differ-
ent directions may have negatively affected our feature correlation results. A newer version of MaZda (qmazda) 
was selected for this study as it supports batch feature extraction, from the software documentation it was 
inferred that there was minimal change to the feature extraction code from earlier MaZda versions. The region 
of interest was calculated with a Plastimatch derived label map for PyRadiomics and MaZda and was calculated 
directly from the DICOM structure file (RTSTRUCT) by IBEX, which may have introduced variability in the 
image region used for feature extraction. We explored radiomics features calculated on the original ADC map to 
avoid additional variability from image filtration (Wavelet, Laplacian or Gaussian, etc.) between software imple-
mentations. Image filtration reproducibility between software using MRI images may be worth investigating as 
differences in wavelet filtered features from PET images have been previously  reported35. Whilst our investigation 
of feature variability on patient modelling demonstrated general classification differences between software, it is 
challenging to quantify a clinical impact as the patient groups are not correlated with a clinical outcome. There 
is some evidence that unsupervised feature clustering is correlated with clinical outcomes in  HNC34.

Magnetic resonance imaging offers insight into disease related anatomical and functional changes and is 
ideal for radiomics analysis as multiple MRI sequences can provide complimentary  information58. This study 
reports the variability of radiomics features extracted from ADC maps, that are a relatively quantitative image, 
generating features not significantly influenced by scanner manufacturer or magnetic field  strength26; radiomics 
features extracted from T1 and T2 weighted images are less reproducible across scanner and not recommended 
at this point for multicentre  trials24. The increasing uptake of MRI for simulation and therapy in radiotherapy 
departments offers an unprecedented opportunity to characterise tumour response and personalise patient 
treatment. This study provides information on how feature extraction software can impact the reproducibility 
of a radiomics workflow, which we should endeavour to optimise in order to accelerate discovery through 
reproducible research and data sharing.

Conclusion
This work highlights feature and model reproducibility issues due to different radiomic analysis software. We 
propose a correlation threshold method to select reproducible features and demonstrate that the identified fea-
tures from both software generate an equivalent model. This is relevant for the selection of radiomic features in 
clinical biomarker validation trials as it provides a framework to assess the reproducibility of radiomic signatures 
from existing studies.

Table 1.  Patient characteristics.

Correlation cohort (n = 59) Cluster cohort (n = 36)

Sex

Male 50 32

Female 9 4

Age (median, range) 59 (41–81) 60 (41–81)

Primary site

Oropharynx 39 26

Larynx 7 2

Nasopharynx 9 4

Nasal cavity 1 1

Unknown primary 3 3

T stage

T0 3 3

T1 8 5

T2 20 12

T3 12 7

T4 16 9

N stage

N0 11 5

N1 9 5

N2 38 26

N3 1 0

Photon 42 24

Proton 17 12

Radiation dose (cGy, median, range) 6996 (6600–7000)

Number of fractions 33 (33–35)
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Material and methods
Study cohort. The imaging data used in this study was collected as part of the prospective PREDICT-HN 
 study59 (Fig. 1). The trial imaged 59 patients with head and neck squamous cell carcinoma who were treated with 
curative intent radiotherapy, patient details are summarised in Table 1. Trial participants were imaged prior to 
radiotherapy, weekly during radiotherapy (following fraction 5, 10, 15, 20, 25 and 30) and two to three months 
post-radiotherapy. Imaging data was acquired for all patients prior to radiotherapy (n = 59), with a lower number 
of images acquired during radiotherapy over the first three weeks (n = 40), at weeks four and five (n = 39), at week 
six (n = 38) and post-radiotherapy (n = 39).

Ethics approval and consent to participate. The PREDICT-HN  study59 was conducted in accordance with the 
Declaration of Helsinki and was approved by the Institutional Review Board at the University of Texas MD 
Anderson Cancer Center. The study is registered on clinicaltrials.gov with registration number NCT03491176, 
date of registration 09/04/2018 (retrospectively registered), date of enrolment of the first participant 30/05/2017. 
All study participants were 18 years and older, informed consent was obtained from all participants.

Imaging protocol. MRI imaging was performed on a Siemens 1.5 T Aera scanner to acquire both ana-
tomical and functional images. The gross tumour volume (GTV) was contoured on pre-treatment T2 weighted 
turbo-spin-echo (T2w-TSE) images (voxel size = 0.5  mm, FOV = 256 × 256  mm, axial slices = 12, slice thick-
ness = 2 mm, TE = 80 ms, TR = 4800 ms, FA = 90°, ETL = 15, pixel bandwidth = 300 Hz) by a radiation oncologist. 
Throughout treatment, the pre-treatment contours were rigidly registered to the through treatment images and 
manually adjusted to anatomical boundaries, then propagated onto the apparent diffusion coefficient (ADC) 
maps and visually verified. Diffusion weighted images (DWI) were acquired with the  BLADE60,61 sequence 
(voxel size = 2 mm, FOV = 256 × 256 mm, axial slices = 25, slice thickness = 4 mm, TE = 50 ms, TR = 5400 ms, 
FA = 90°, b = 0,800 s/mm2, ETL = 15, pixel bandwidth = 1220 Hz). Apparent diffusion coefficient maps were cal-
culated from the DWI images using the default mono-exponential model.

Feature extraction. Features were extracted from all the ADC maps (n = 334) using PyRadiomics (version 
2.1.0), IBEX (version 1.0 Beta) and MaZda (qmazda 19.02). All available intensity histogram (IHIST), shape, 
grey-level co-occurrence matrix  (GLCM62), grey-level run length matrix  (GLRLM63) and neighbourhood grey-
tone difference matrix  (NGTDM64) features were calculated on the original ADC map only; the reproducibility 
of image filtration prior to feature extraction was considered outside the scope of this study. The region of inter-
est for feature extraction was calculated directly from the DICOM radiotherapy contours (RTSTRUCT) with 
IBEX and an intermediate step to convert the DICOM contours to a binary label map with Plastimatch (version 
1.7.3)65 was required for PyRadiomics and MaZda. The feature extraction settings (Supplementary Table 1) were 
set as the default IBEX settings and matched as closely as possible between the three software packages, based 
on available documentation. ADC maps were discretised (256 bins, bin width = 16) prior to calculation of IHIST 
and NGTDM features and with a reduced data range (100 bins, bin width = 21) for GLCM and GLRLM features. 
GLCM features were calculated at a series of neighbourhoods (1, 4, 7), asymmetric features were calculated with 
PyRadiomics and IBEX, symmetric features were calculated with MaZda to compensate for a reduced range of 
direction angles. Symmetric NGTDM features were calculated with a neighbourhood of three. Texture features 
(GLCM, GLRLM, NGTDM) were calculated in the axial plane over the three dimensional region of interest,an 
example of this is the NGTDM matrices being constructed with a 2D neighbourhood rather than a 3D neigh-
bourhood. We calculated the average of all GLCM and GLRLM feature directions as PyRadiomics does not 
report or allow the specification of features for individual directions.

Variation in radiomic features. To determine the relationship between features generated with the estab-
lished radiomics software (IBEX/MaZda) and the IBSI compliant software (PyRadiomics) we performed a linear 
regression analysis on radiomics features extracted from ADC maps of all patients at all time points. A linear 
fit was calculated between PyRadiomics and IBEX or MaZda for every feature in a given feature class (IHIST, 
SHAPE, GLCM, GLRLM, NGTDM). Features with an invalid value (i.e. infinity due to division by zero) were 
excluded during the linear regression. A list of shared radiomics features was collated by identifying features 
extracted by both PyRadiomics and the alternative software package, and was based primarily on name and 
equation similarity. A small number of features that showed a high linear correlation but had dissimilar names, 
for example ‘SurfaceArea’ and ‘Perimeter’, were also included. The list of shared features, feature correlations and 
the number of images used per feature correlation can be found in Supplementary Tables 2, 3 and 4. Full details 
of the equation comparison are in Supplementary Tables 5–9.

Variation in patient modelling. To demonstrate the potential impact of incorporating non-reproduc-
ible features in a radiomics model we used unsupervised learning to identify two groups of patients, based on 
radiomic features at pre-treatment, throughout radiotherapy and post-radiotherapy. Separate radiomics mod-
els were generated based on PyRadiomics and IBEX/MaZda features, first using all features and then with the 
sub-set of reproducible features. Reproducible features were selected as those with a high Pearson’s correlation 
coefficient ( r > 0.901 ) as calculated for the analysis of variation in radiomics features, the correlation threshold 
was determined as per the sensitivity analysis described below. Features that contained an invalid number (i.e. 
infinity) for any patient in the modelling cohort were excluded. Patients (n = 36) with image data for all time 
points were grouped with  SciPy66,67 using Ward’s minimum variance clustering  method68 on scaled radiomics 
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features (z-score standardisation) with an automatic minimum clustering threshold to generate no more than 
two clusters.

To test the sensitivity of clustering to the selected correlation threshold, we performed the clustering over 
a range of thresholds ( r > 0.0 to r > 0.999 , with an increment of 0.001) and measured the clustering similar-
ity as the percentage of patients clustered by IBEX or MaZda into the same groups as PyRadiomics. We define 
clustering similarity as,

where APyRad and BPyRad are patient groups from clustering with PyRadiomics features, Ai and Bi are patient 
groups from clustering with either IBEX or MaZda features, set intersection is denoted with ∩ , set union is 
denoted with ∪ and the number of patients in a set is denoted with |A| . Due to the possibility that unsupervised 
clustering can return similar groups but in a different order, the similarity metric was calculated as,

Received: 22 March 2021; Accepted: 10 August 2021
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