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Simulation study on the effects 
of cancellous bone structure 
in the skull on ultrasonic wave 
propagation
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The transcranial Doppler method (TCD) enables the measurement of cerebral blood flow velocity 
and detection of emboli by applying an ultrasound probe to the temporal bone window, or the 
orbital or greater occipital foramina. TCD is widely used for evaluation of cerebral vasospasm after 
subarachnoid hemorrhage, early detection of patients with arterial stenosis, and the assessment 
of brain death. However, measurements often become difficult in older women. Among various 
factors contributing to this problem, we focused on the effect of the diploe in the skull bone on the 
penetration of ultrasound into the brain. In particular, the effect of the cancellous bone structure in 
the diploe was investigated. Using a 2D digital bone model, wave propagation through the skull bone 
was investigated using the finite-difference time-domain (FDTD) method. We fabricated digital bone 
models with similar structure but different BV/TV (bone volume/total volume) values in the diploe. 
At a BV/TV of approximately 50–60% (similar to that of older women), the minimum ultrasound 
amplitude was observed as a result of scattering and multiple reflections in the cancellous diploe. 
These results suggest that structural changes such as osteoporosis may be one factor hampering TCD 
measurements.

The vertebrate skull has a complicated structure, consisting mainly of the following three layers: the outer cortical 
bone, the diploe (cancellous bone), and the inner cortical bone. The heterogeneous and anisotropic characteristics 
of these layers facilitate complex ultrasound propagation; however, recent advances in transcranial ultrasound 
transmission have provided new noninvasive therapeutic and diagnostic techniques for brain diseases1,2.

Some ultrasonic studies have assumed isotropic plate models, which do not accurately represent the actual 
structural and material characteristics of the skull3,4. For ultrasound irradiation to the skull with its complex 
characteristics, it is important to achieve precise control. Therefore, the heterogeneity and the structure of the 
skull has been investigated using computed tomographic (CT) data in relation to ultrasonic wave propagation5,6.

Among many diagnostic techniques for brain diseases, the transcranial Doppler (TCD) method is an approach 
that involves the application of an ultrasonic probe to the temporal bone window or the orbital or greater occipital 
foramina to evaluate cerebral blood flow velocity and detect emboli. This approach was first reported by Aaslid 
et al. in 19827. Since then, the TCD method has been widely used in clinical practice for the evaluation of cerebral 
vasospasms after subarachnoid hemorrhage, early detection of thrombus in patients with arterial stenosis or left 
ventricular assistive heart8, and determination of brain death9. TCD usually uses focused and pulsed ultrasonic 
waves with a frequency of approximately 2 MHz10,11. TCD measurements can also be performed through the 
temporal acoustic window (TAW) to observe the arteries of the circle of Willis12. However, as Marinoni et al. 
reported, an inadequate TAW is a considerable problem for clinical use of TCD13, especially for older patients 
with cerebrovascular diseases14, although the use of an echo contrast agent improves the condition15. Halsey 
also observed a higher prevalence of inadequate TAWs in older subjects and in females16, while Hashimoto et al. 
reported that TCD measurements were often difficult in older Japanese women17. The rates of inadequate TAWs 
range from 9.8 to 29%16–19. Lin et al. also noted that the failure rate when using the temporal bone window for 
transcranial color-coded sonography was high in older women in Taiwan20. The European Federation of Neu-
rological Societies (EFNS) task force guideline on neuroimaging in acute stroke states that TCD was hampered 
by the 10% to 15% rate of inadequate TAW most commonly seen in Blacks, Asians, and older female patients21. 
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Similar results were found in Brazil22, and Doppler signals cannot be acquired in up to 38% of Amerindians 
because of an inadequate TAW​23. The problem of acoustic windows is thus considered to be one of the major 
technical limits in TCD ultrasonography.

One possible reason for inadequate TAWs may be the morphological changes in the skull that accompany 
aging. Tsivgoulis et al. noted that an inadequate TAW was related to the thickness and porosity of the tempo-
ral bone, which attenuates ultrasound energy transmission24. Kwon et al. also reported that the thickness and 
inhomogeneity of the temporal bone, as well as factors related to age, sex, and hypercholesterolemia, were 
strongly correlated with TAW failure25. Kaito reported that the thickness of the skull increases in Japanese older 
individuals26. Interestingly, the total thickness of the skull increases with age, especially in older women; how-
ever, the density of the bone decreases27. This results in decreased thickness of the outer and inner layers, with 
a consequent increase in the thickness of the diploe (cancellous bone)28. It is well known that the bone volume 
fraction in the cancellous bone decreases with the progression of osteoporosis in older adults29–32. An excessive 
decrease in the bone volume fraction may result in strong ultrasound scattering and considerable attenuation 
of the observed ultrasonic waves. However, to the best of our knowledge, there has been no discussion in the 
literature about how cancellous bone structure changes caused by osteoporosis affect the TCD method.

In this study, we focused on the effects of the cancellous bone structure on ultrasonic wave propagation by 
analyzing the propagation phenomenon in skull models. The cancellous structure is anisotropic and complex. 
As can be seen in the CT images5, clear trabecular alignment in the thickness direction can be seen. In addition 
to this alignment, Murashima et al. reported a strong trabecular alignment in an anteroposterior direction in 
swine skulls33; this may also exist in the human skull and may influence ultrasonic wave propagation. Of course, 
bone material properties may also change as a result of age and lifestyle diseases in older adults34,35. Therefore, 
we have only focused in this study on the structural changes in the diploe caused by age. For this purpose, 2D 
digital partial skull models of the area near the temporal window were created. The bone volume / total volume 
(BV/TV) values of the models were different, but the structure was similar. These models are useful for checking 
the effects of BV/TV without structural changes. Finite-difference time-domain (FDTD) simulation was applied 
to these digital models to assess ultrasonic wave propagation in the thickness direction, which provides similar 
conditions to the TCD method.

Model and method
2D digital temporal bone model.  A temporal skull bone section was created from a polygon model of 
the head of a healthy adult36. Figure 1a shows the position of the left temporal bone. Figure 1b shows a cross-
sectional view of the thinnest region of the skull targeted by the TCD measurement. The internal structure of 
the cancellous bone consists of a network arrangement filled with bone marrow. An important parameter of the 
cancellous bone is BV/TV, which represents the ratio of the actual bone volume to the total volume of the sample.

In this study, five types of models were fabricated as shown in Fig. 2. In the empty model, the diploe was filled 
with water to mimic bone marrow. In the uniform model, the diploe was filled with bone (BV/TV = 100%). In 
sample A, the trabecular bone was aligned nearly parallel to the cortical bone layer, and the diploe was filled with 
water. The trabecular bone was created from a CT image of the actual cancellous bone in an equine femur, where 
the trabeculae almost align along the outer and inner surfaces of the bone. The trabeculae showed a high degree 
of anisotropy (DA; 2.5)37. In sample B, the trabeculae were mostly aligned perpendicular to the cortical layer. This 
was created from a CT image of the cancellous bone of a swine skull. Samples A and B were fabricated to check 
the anisotropic character of the cancellous part of the bone. Sample C was fabricated from a reference CT image 
of a human skull5. Figure 2 shows examples of bone samples with BV/TV values of 50–60%, which is similar 
to the BV/TV of an older adult human skull38. Using a bone model derived from X-ray CT images, Nagatani 
et al. fabricated various BV/TV models by changing the thickness of the trabeculae with an image processing 

Figure 1.   Position of the selected part of the skull and a cross-section view of the thinnest part of the left 
temporal bone.
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technique39. Making use of the CT images shown by grayscale (0–255), various BV/TV models were also cre-
ated in this study by choosing several different grayscale thresholds. However, control of the grayscale did not 
have a strong influence on the alignment direction of the trabeculae. Figure 3 shows model samples in the case 
of sample C. Total BV/TV and the partial (cancellous section) BV/TV values of all models are shown in Table 1.

Figure 2.   Five bone models. (a) Empty model, (b) uniform model, (c) parallel equine model (sample A), (d) 
swine model (sample B) and (e) human model (sample C). Approximate length of the models is 65 mm.

Figure 3.   Three bone models of sample C with different BV/TV. (a) 50%, (b) 60% and (c) 70%.

Table 1.   BV/TV values of bone models.

Sample A Sample B Sample C

BV/TV[%]
BV/TV[%]
Cancellous part BV/TV[%]

BV/TV[%]
Cancellous part BV/TV[%]

BV/TV[%]
Cancellous part

83 75 68 53 80 70

81 73 66 50 75 63

75 63 63 47 70 56

69 55 60 42 65 49

68 53 58 39 60 41

67 51 56 35 55 34

64 48 53 31 50 27

62 44 50 27 45 19

60 42 48 25 40 12

59 41 46 22 35 5

58 38 44 18 - -

56 36 - - - -

54 32 - - - -

52 30 - - - -
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FDTD simulation and conditions.  A simple elastic 2D FDTD simulation was performed to simulate 
longitudinal and shear wave propagation in the model40,41. Similar to previous studies by our group42,43, an in-
house FDTD source code was used. In this code, wave velocities in the bone matrices were fixed and absorption 
was not considered. One reason for this assumption was to focus on the effects of BV/TV and structure on the 
wave propagation, which may be strong in the cancellous bone in the diploe. In fact, Nagatani’s comparative 
study showed that the simulated results were similar to the experimental waves in the cancellous bone, although 
the absorption in the bone matrices was not considered44. Another reason for this assumption is the age and 
frequency dependence of the wave properties in bone. It is known that the wave velocities in new and mature 
bones are different at the bone matrix level34. Yasui et al. reported that the velocity decreases in diabetic bone, 
implying that the properties of bone change as a result of lifestyle-related disease35. The in vivo study of Talmant 
et al. showed a clear decrease in the first arriving signal (FAS) velocity in the cortical bone of older adults45. 
These velocity results may also imply changes of absorption in the bone matrix. These changes in wave properties 
should also be considered in the simulation; however, because precise measurement of wave properties in the 
bone matrices is difficult, we fixed the velocity values and focused on structural effects in this study.

These models were homogeneous with the bone mass density of 2000 kg/m346,47. There are several discussions 
on the wave properties in the skull48,49. We used the velocities of longitudinal wave (3000 m/s) and shear wave 
(1500 m/s), respectively, following the studies of Pinton et al.5. The estimated Poisson’s ratio was 0.33, which 
was a reasonable value for bone47. In the FDTD simulation, wave equations were computed numerically using 
the central difference method. The stress and particle velocity were both calculated alternately in the spatial and 
time domains, which is called “the leapfrog method.” Higdon’s second-order absorption boundary condition 
was implemented at the edges of the simulation area as an absorption layer50.

Figure 4 shows the simulation conditions used. A transmitter array (length = 20 mm) was placed outside the 
bone model and in front of the thinnest part of the bone. The transmitter was an array of 100 transducers that 
controlled the phase to focus the wave near the artery position (x = 0 mm). The radiated waveform from the 
transmitter was a single sinusoidal wave at 2 MHz with a Hann window. The bone model was placed 5 mm from 
the transmitter considering the thickness of the skin and the temporalis muscle. In this study, we considered 
that the temporalis muscle had isotropic elasticity, because ultrasound usually propagates perpendicular to the 
uniaxial alignment direction of the muscle. The propagating wave was observed at receivers on the x axis, which 
was 60 mm from the center of the transmitter array. This is the expected position of the middle cerebral artery 
or the posterior cerebral artery, which are usually measured from the TAW by TCD51.

The spatial and time resolutions in the simulations were 14 μm and 2.5 ns, respectively. These resolutions 
satisfied the Courant stability condition52. In this simulation, the bone model and transmitters were all immersed 
in water to mimic the surrounding soft tissues and bone marrow. The longitudinal wave velocity and density of 
water were 1500 m/s and 1000 kg/m3, respectively.

x

10 mm

Bone
Transmitter array

0

Expected artery position

10-10

Figure 4.   Simulation conditions. The center of the transmitter array and observed positions were at x = 0. They 
are arranged parallel with distance of 60 mm. All parts are immersed in water to mimic the soft tissues.
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Results and discussion
Figure 5 shows the observed waves that propagated in (a) water only, (b) the empty model without the cancel-
lous section, and (c) the uniform model (BV/TV = 100%). Here, all amplitude values were normalized by the 
maximum amplitude of the wave that passed through the uniform model. In Fig. 5a, the highest amplitude was 
observed on the acoustic axis (x = 0 mm) and the axis-symmetric wave propagation was clearly found. The figure 
shows that the array transmitter successfully focused the ultrasound at the artery position (x = 0 mm). The arrival 
time around x = ± 10 mm was the shortest where very weak waves were observed. This is because the wave that 
was radiated from each end of the transmitter array reached these positions first. In Fig. 5b,c, the wave fronts 
arrived earlier because of the higher wave velocities in bone. In the empty model in Fig. 5b, small waves were 
found approximately 2.3 μs later that the initial wave front. This is the internal reflected wave at the cortical shell. 
In the uniform model seen in Fig. 5c, the second wave was observed after the focusing waves, which was the 
reflected wave in the bone sample. The delay time of the second wave (approximately 2 μs) is reasonable con-
sidering the bone thickness (approximately 3 mm) and the wave velocity (3000 m/s). Additionally, in the empty 
model, the wave was focused mostly near the artery; however, the maximum amplitude was not observed on the 
acoustic axis (x = 0) in the uniform model, showing only a very small shift. The symmetrical wave propagation 
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Figure 5.   Observed waves at different positions. Ultrasonic waves propagated through (a) water only, (b) 
the empty model and (c) the uniform model. Dashed line indicates the arrival time of the wave which passed 
through water only.
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changed as a result of the bone shape in the propagation path. This indicates that ultrasound focusing was clearly 
affected by the complex bone shape, which has a partial concave structure.

Next, observed waves that passed through samples A, B and C are shown in Fig. 6. The BV/TV values of these 
samples were 55–56%. Here, all amplitude values were normalized by the maximum amplitude of the wave that 
passed through the uniform model. It can be seen that the amplitudes of the waves became smaller as a result 
of multiple scattering of the waves in the cancellous structure. Complicated wave propagation can be seen in 
all figures, where the axis-symmetrical characters are being lost, especially in Fig. 6b. One interesting result in 
Fig. 6 is the arrival time of each wave. Although the BV/TV values were similar, the arrival times on the acoustic 
axis (x = 0 mm) were different because of the structure. In sample A, the wave arrived 0.5 μs faster than the wave 
propagated in water only. In sample C, the arrival time difference was approximately 0.7 μs. Sample B recorded 
the fastest arrival time (0.95 μs). These arrival times may have resulted from structural differences. In sample A, 
most trabeculae were aligned nearly parallel to the cortical bone layer, whereas in sample B, the thick trabeculae 
were aligned in the thickness direction in the thinnest area. Sample C had a mixed kind of structure. It is also 
interesting that large amplitudes were found at the arrival time of the water wave in sample B, signifying that 
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Figure 6.   Observed waves at different positions. Ultrasonic waves propagated through (a) sample A, (b) sample 
B and (c) sample C. BV/TV values of these samples were 55–56%. Dashed lines indicate the arrival time of the 
wave which passed through water only.
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most of the wave passed though the water among the trabeculae. It is known that the ultrasonic longitudinal 
waves in the MHz range often separate into fast and slow waves in cancellous bone; this is known as the two-
wave phenomenon32. This phenomenon was experimentally confirmed for the first time in bovine cancellous 
bone47, and then in human cancellous bone in femora53. Although the wave propagation direction was differ-
ent, Murashima et al. also reported the two-wave phenomenon in the diploe of a swine skull33. The partial BV/
TV of the cancellous part in sample B was 35% in Fig. 6b. Mizuno et al. showed a clear two-wave phenomenon 
in human cancellous bones with BV/TV values ranging from 15 to 35%53. In the two-wave phenomenon, the 
slow wave mostly propagates in the liquid part of the cancellous bone and the propagation speed is almost the 
same as that in liquid. Therefore, the comparatively large amplitude of the waves in sample B may indicate the 
existence of a slow wave.

Figure 7 shows enlarged images near the water front (sample A). Clear non-axis-symmetric wave propagation 
and changes in the maximum amplitude positions can be seen. The maximum amplitudes changed because of 
the BV/TV values. Figure 8 summarizes the maximum amplitudes as a function of BV/TV. All samples (samples 
A, B, and C) showed minimum values in the range of BV/TV from 50 to 70%, and approximately 27–56% in 
the cancellous part (Table 1). In sample C, in which the pore size in the cancellous part seems comparatively 
small, the amplitude changes were dynamic, demonstrating the stronger effects of cancellous bone. These char-
acteristics are also clear in Fig. 9, which shows the maximum amplitudes and the sum of the squared signals at 
all measured positions. Here, the sum of the squared signal means the integrated values of the squared signal, 
which indicates changes in the total intensity of the ultrasound. Figures 5 and 6 show several late small waves 
that were observed after the initial waves. The small waves may have originated from scattering and multiple 
reflections. In the human bone model (sample C), the sum of the squared signal also became small in the range 
of BV/TV values from 50 to 70%. This implies that the energy passing through the bone decreases as a result of 
scattering and multiple reflections. In sample C, the small shift in the maximum amplitude positions can also be 
seen; however, the sum of the squared signal was strongest in the center. These values were small in the model 
with a BV/TV value of 55–70%, indicating that the amplitude and intensity minima exist in this range. For TCD 
measurements, we usually use pulse ultrasonic waves, where the maximum amplitude seems more important 
than the total intensity of the wave, which is in contrast to ultrasonic treatment modalities such as high intensity 
focused ultrasound (HIFU)54.

Larsson et al. reported that the BV/TV in cancellous bones decreased with age38. They showed that the BV/
TV in the skull bone of a 70-year-old woman was approximately 62%, whereas that of a 50-year-old woman was 
approximately 82%. Our results indicate that the decrease in BV/TV with age may prevent ultrasounds from 
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reaching the arteries. This may make it difficult to use TCD measurements for older women. In the skull, the 
main alignment of the trabeculae is considered to be in the direction of the thickness29. Despite structural dif-
ferences, all samples showed a clear decrease in the maximum amplitude at a BV/TV of approximately 50–55%; 
these values are reasonable to the values reported in older patients.

As the BV/TV values increased, the maximum amplitude position near the wave front gradually shifted from 
the acoustic axis (x = 0 mm), implying that it may be difficult to control wave focusing because of the characteris-
tics of the cancellous bone. This could be attributed to the slight tilt of the trabeculae in the thickness direction. 
Consequently, ultrasound may be refracted in the bone model. Yamashita et al. reported that the bone trabecular 
alignment affected the direction of ultrasound propagation55. Thus, the ultrasound did not focus strongly near 
the artery. Similar scattering phenomena and refraction of the waves may occur in an actual skull bone.

In addition to the effects of osteoporosis, Del Brutto et al. noted the existence of aberrant pneumatization, 
which would produce dramatic changes in the ultrasound transmission23. Figure 10 shows the comparative 
results of wave propagation in sample C with (a) and without (b) water in the diploe (cancellous part). For the 
simplicity of the simulation, the cancellous part was filled with vacuum because the acoustic impedance of air is 
negligible. The amplitudes dramatically decreased in the bone model without water. This may be an important 
problem with TCD measurements. Without water in the cancellous section, the wave which propagated only 
along the trabeculae, was very weak, and did not focus, depending on the structure.

This study demonstrates the possible effects of ultrasound scattering in the cancellous section of the diploe 
layer in the skull. Because older women tend to have a thicker diploe layer, the effects seem strong. To compen-
sate for these effects for TCD measurements and ultrasonic brain therapy, it is important to achieve appropriate 
ultrasound focusing with adjustment of the phase of radiated ultrasound considering the complex structure. 
One possible solution is time reversal processing56.

Because this study focused on the structural effects on ultrasonic wave propagation in the TAW, we did not 
consider absorption of ultrasound in the simulation. The material absorption will decrease the wave amplitude 
and intensity. Age-dependent ultrasonic wave properties (velocity and absorption) should be carefully considered 
in future studies. To understand the complicated wave propagation in the skull, precise 3D simulation is also 
necessary by comparing with real experimental studies of skull bones.

Conclusion
In this study, the effect on ultrasound propagation of structural changes in the skull bone was investigated by 
FDTD simulation. By changing the BV/TV in 2D human temporal bone models, we found a minimum value 
for the ultrasound amplitudes caused by scattering and reflection. Although three different bone models were 
used, ultrasound was strongly attenuated in the bone around samples with BV/TV values of 50–70%, which was 
similar to the BV/TV value of the diploe in the skull of older women. Structural changes in the skull may affect 
ultrasonic penetration into the brain and may be one factor that can explain the difficulty in measuring TCD 
in older adults. This study indicates that the effect of skull structure on ultrasound propagation is an important 
factor for future brain therapy and diagnosis.
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