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A novel BMP‑2–loaded 
hydroxyapatite/beta‑tricalcium 
phosphate microsphere/hydrogel 
composite for bone regeneration
Daisuke Tateiwa1, Shinichi Nakagawa1, Hiroyuki Tsukazaki1, Rintaro Okada2, Joe Kodama3, 
Junichi Kushioka1, Zeynep Bal1, Yuichiro Ukon1, Hiromasa Hirai1 & Takashi Kaito1*

Although bone morphogenetic protein (BMP) has potent osteoinductivity, the potential adverse 
events attributed to its burst release prevent its widespread clinical application. Therefore, there is 
a strong need for BMP delivery systems that maximize osteoinductivity while preventing adverse 
effects. We evaluated the bone-regenerating potential of NOVOSIS putty (NP), a novel composite 
combining hydroxyapatite, beta-tricalcium phosphate microsphere/poloxamer 407-based hydrogel, 
and recombinant human (rh) BMP-2. In vitro assessment of release kinetics by enzyme-linked 
immunosorbent assay demonstrated sustained release of rhBMP-2 from NP and burst release 
from collagen sponge (CS), and in vivo assessment of release kinetics by longitudinal tracking of 
fluorescently labeled rhBMP-2 showed a longer biological half-life of rhBMP-2 with NP than with CS. 
Furthermore, osteogenic gene expression in MC3T3-E1 cells was significantly higher after co-culture 
with NP than after co-culture with CS, suggesting that the sustained release of rhBMP-2 from NP 
effectively contributed to the differentiation of osteoblasts. In a rat spinal fusion model, the volume 
and quality of newly formed bone was higher in the NP group than in the CS group. Use of NP results 
in efficient bone regeneration through sustained release of rhBMP-2 and improves the quality of BMP-
induced bone.

Bone morphogenetic proteins (BMPs) play important roles in osteogenesis and bone metabolism1–3. Among the 
BMP subtypes, BMP-2 has the most potent osteoinductive capacity, and the US Food and Drug Administration 
has approved the use of recombinant human BMP-2 (rhBMP-2) with absorbable collagen sponges (CSs) for 
anterior lumbar interbody fusion4. Clinical trials of absorbable CSs with milligram-order supraphysiological 
doses of rhBMP-2 for anterior lumbar interbody fusion showed better bone fusion rates than those achieved with 
standard iliac crest bone grafting5,6. However, high-dose rhBMP-2 is associated with adverse effects, including 
inflammation, soft tissue edema, seroma, and unintended ectopic bone formation, which prevent its widespread 
clinical application7,8.

To mitigate these adverse effects, carriers have been developed that provide sustained release of BMP-
2; in addition, these carriers have other desirable properties, including easy handling7–10, good mechanical 
strength11–13, and spatial control of new bone formation11,14. The previously studied BMP carriers can be cat-
egorized into natural polymers (e.g., collagen, alginate, and gelatin), synthetic polymers (e.g., polyglycolic acid, 
poly-lactic-co-glycolic acid, and polylactic acid-polyethylene glycol), ceramics (e.g., hydroxyapatite [HA], 
beta-tricalcium phosphate [β-TCP], and biphasic calcium phosphate), and ceramic/polymer composites7,15–17. 
Recently, ceramic/polymer composites, which have the benefits of both materials, have attracted particular 
attention as BMP delivery systems7,16.

We developed a novel ceramic/polymer composite (NOVOSIS putty [NP]) by combining HA granules, a 
β-TCP microsphere/poloxamer 407-based hydrogel (β-TCP/hydrogel), and rhBMP-2. The HA granules provide 
mechanical strength, and the β-TCP/hydrogel ensures the sustained release of rhBMP-2 and also provides excel-
lent handling18–20. Furthermore, we expected that using two types of ceramics with different levels of biodegrada-
bility would have an additive effect on osteogenesis21,22. During the bone formation period, the low-biodegradable 
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HA granules can maintain scaffold volume by preventing soft tissue invasion21,23, whereas the β-TCP/hydrogel 
is gradually resorbed and efficiently replaced by new bone20,21.

In the present study, we investigated the in vitro and in vivo release kinetics of rhBMP-2 from NP and CS and 
the effects of rhBMP-2 on MC3T3-E1 cells (pre-osteoblasts). Furthermore, we used the rat spinal fusion model 
to compare the in vivo efficacy of NP and CS as BMP delivery systems.

Results
In vitro release kinetics of rhBMP‑2.  The amounts of rhBMP-2 released from CS and NP were evalu-
ated by enzyme-linked immunosorbent assay (ELISA) (Fig. 1a). Until day 24, the total amounts of rhBMP-2 
released from CS and NP were 3.14 μg and 0.90 μg, respectively, which were 78.4% and 22.5%, respectively, of 
the initially loaded dose (4 μg). From days 1 to 7, significantly more rhBMP-2 was released from CS than from 
NP; CS released most of the rhBMP-2 on day 1, whereas NP released it more gradually. The amounts of rhBMP-2 
released from days 7 to 14 and from days 14 to 24 were significantly higher from NP than from CS (Fig. 1b).

In vivo release kinetics of fluorescently labeled rhBMP‑2.  In vivo imaging of fluorescently labeled 
rhBMP-2 depicted the in vivo release kinetics of rhBMP-2 (Fig. 2a–d). The fluorescent signal at each measure-
ment was normalized to the initial measurement, and an exponential decay curve was created (Fig. 2e). The bio-
logical half-life of rhBMP-2 was 3.8 h in CS and 6.2 h in NP (Fig. 2f), suggesting that NP enables better sustained 
release of rhBMP-2 in vivo than CS.

In vitro co‑culture experiments.  Cytotoxicity evaluation with cell counting kit‑8 (CCK‑8).  The cytotox-
icity of NP and CS was evaluated by investigating the proliferation of MC3T3-E1 cells under co-culture with NP 

Figure 1.   In vitro release kinetics of recombinant human bone morphogenetic protein 2 (rhBMP-2). (a) 
Release kinetics of rhBMP-2 from NOVOSIS putty (NP) and collagen sponge (CS) for up to 24 days (12 h 
and 1, 2, 4, 7, 14, and 24 days). NP showed less initial release of rhBMP-2 and sustained release. (b) From 
days 1 to 7, CS released significantly more rhBMP-2 than NP did (CS = 3082 ng, NP = 807.3 ng; data represent 
mean ± S.D., each n = 3; ***p = 0.0001 by Student’s t test), but NP released significantly more on days 7–14 
(CS = 26.7 ng, NP = 99.1 ng; data represent mean ± S.D., each n = 3; **p = 0.0093 by Student’s t test) and days 
14–24 (CS = 26.4 ng, NP = 39.6 ng; data represent mean ± S.D., each n = 3; *p = 0.0299 by Student’s t test).
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or CS not containing rhBMP-2 (Fig. 3a). After 12, 36, and 72 h of co-culture, we found no statistically significant 
difference in cell proliferation between the control (chamber only), CS, and NP (Fig. 3b). 

Alkaline phosphatase (ALP) staining and activity.  Co-culture of MC3T3-E1 cells with CS or NP containing 
1 μg of rhBMP-2 to evaluate ALP staining and activity showed no significant difference on day 1, but both stain-
ing and activity were significantly higher with NP than with CS on days 7 and 14 (Fig. 3c). The co-culture was 
performed for 14 days because most of the rhBMP-2 was released from the composites within 14 days in ELISA 
experiments.

Real‑time polymerase chain reaction (PCR) assay of osteogenic genes.  The expression levels of runt-related tran-
scription factor 2 (Runx2), osterix (Osx), and osteocalcin (Ocn) were significantly higher with NP than with CS 
on both days 7 and 14 (Fig. 3d), suggesting that the sustained release of rhBMP-2 from NP effectively contributes 
to the differentiation of osteogenic cells.

Immunocytochemical analysis.  Protein expression analysis by immunocytochemical analysis confirmed the 
superior effects of NP on differentiation of osteogenic cells in MC3T3-E1 cells: After 7 days of co-culture, expres-
sion of Runx2 (green), an early differentiation marker of osteoblasts, was considerably more enhanced with NP 
than with CS (Fig. 3e); after 14 days of co-culture, expression of Ocn (red), a late differentiation marker, was also 
considerably more enhanced with NP than with CS.

Posterolateral spinal fusion model.  High‑resolution micro‑computed tomography (micro‑CT) analy‑
sis.  The final fusion rate at postoperative week 8 was 72.7% (n = 8/11) in the CS group and 81.8% (n = 9/11) in 
the NP group (p > 0.999 by Fisher’s exact test). Micro-CT images of the fused spine segments in the NP group 
showed that HA was incorporated into the new bone to form a spinal fusion mass between the L4 and L5 trans-
verse processes (Fig. 4a). The bone mineral density (BMD) of the fusion mass was significantly higher in the NP 
group than in the CS group (0.63 g/cm3 vs. 1.29 g/cm3, respectively; ***p < 0.001; Fig. 4b,c).

Manual palpation test.  Manually assessed spinal fusion rates did not statistically differ between the CS (n = 8/11, 
72.7%) and NP (n = 9/11, 81.8%) groups (p > 0.999, difference was not significant by Fisher’s exact test).

Histological analysis.  In the NP group, the fusion mass was filled with abundant new bone. Some of the β-TCP 
microspheres were resorbed and replaced by new bone, and unabsorbed HA was incorporated into the new bone 
(Fig. 5a–c). The finding that HA surfaces were covered with osteocalcin-positive, osteoblast-like cells suggests 

Figure 2.   In vivo release kinetics of fluorescently labeled recombinant human bone morphogenetic protein 
2 (rhBMP-2). In vivo imaging of fluorescently labeled rhBMP-2 released from collagen sponge (CS) and 
NOVOSIS putty (NP) (a–d): (a) 0 h, (b) 6 h, (c) 12 h, and (d) 18 h. The images were created by IVIS Living 
Image Software (version 4.2, Caliper Life Sciences, Inc.) (e) In vivo release kinetics based on fluorescence 
quantification at the implantation sites. (j) Biological half-life of rhBMP-2 (CS = 3.8 h, NP = 6.2 h).
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that the unabsorbed HA served as a scaffold for cell adhesion (Fig. 5g–k). In contrast, newly formed bone was 
scarce in the CS group, and fatty marrow occupied a large amount of space inside the fusion mass (Fig. 5d–f).

Quantification of the newly formed bone area in the fused spinal fusion masses.  The percentage of the new bone 
area in the region of interest (ROI) was significantly higher in the NP group (n = 9; 36%) than in the CS group 
(n = 8; 23%; **p < 0.01; Fig. 6a,b).

Discussion
This study demonstrated the sustained release of rhBMP-2 from NP both in vitro and in vivo. When implanted 
into a rat spinal fusion model, NP demonstrated better bone regeneration capacity than CS and higher bone 
volume and quality. The superior bone regeneration by NP was considered to be related to both the sustained 
release of rhBMP-2 and the higher quality of BMP-induced bone.

In this study, in vitro release kinetics demonstrated that NP attenuates the initial burst release of rhBMP-2 
and provides sustained release of rhBMP-2. This release kinetics is similar to that of another ß-TCP microsphere/
hydrogel composite18. Co-culture experiments showed that ALP activity and osteogenic gene expression levels 
were significantly higher with NP. The rapid release of rhBMP-2 from CS may be of insufficient duration to 
enhance osteogenic activity of co-cultured cells24,25, and the sustained release of rhBMP-2 from NP likely con-
tributes more effectively to osteogenic cell differentiation. The combination of ceramic and polymer carriers in 
NP is considered to contribute to its release characteristics. HA is a low-biodegradable material that has high 
affinity to rhBMP-2, allowing it to serve as a long-term carrier26,27. However, the high affinity of HA to rhBMP-2 
and the low biodegradability of HA mean that a single application releases only limited amounts of rhBMP-2 
and insufficiently induces bone formation26,27. To overcome this problem, we combined HA with β-TCP micro-
sphere/hydrogel, which has been shown to release rhBMP-2 in a sustained manner without an initial burst18–20. 
Poloxamer 407, which shows thermo-reversible gelation, forms a gel state at body temperature and promotes 
slow and sustained drug release28–30, resulting in excellent bone regeneration as a BMP carrier31. The β-TCP 
microspheres will also release rhBMP-2 slowly18,20. The biodegradable β-TCP/hydrogel can continuously release 
rhBMP-2; however, it may not be able to retain rhBMP-2 for long periods, depending on the rate of degradation. 
The combination of HA and β-TCP/hydrogel can compensate for the shortcomings of each material by utilizing 
the strengths of each, resulting in the sustained release of rhBMP-2.

NP also improves the quality of BMP-induced bone compared with CS. The amount of new bone at the spinal 
fusion mass was significantly larger in the NP group than in the CS group, where trabecular bone was scarce 
and abundant fatty marrow occupied the fusion mass. The burst release of high-dose BMP-2 from CS induces 
the formation of structurally abnormal bone with scant trabecular bone and abundant fatty bone marrow32; 
however, NP provides gradual release of rhBMP-2 rather than an initial burst release and leads to formation of 
a spinal fusion mass with more new bone and less fatty marrow compared with CS. Furthermore, histological 
analysis showed that the low-biodegradable HA secured a space for bone formation and served as a long-term 
scaffold for cell adhesion. In contrast, some of β-TCP/hydrogel was resorbed and efficiently replaced by new bone, 
resulting in the formation of a high-BMD spinal fusion mass with a mixture of unabsorbed HA and abundant 
new bone (Fig. 7a–c).

This study has several limitations. First, spinal fusion in a quadrupedal rodent model is different from that in 
humans in terms of biomechanics and biological response33–36. Hence, care should be taken when extrapolating 
the results of this study to humans. Second, the study did not investigate the effects of NP on rhBMP-2–related 
complications. Although the complications are difficult to reproduce in this rat spinal fusion model33,36, the sus-
tained release of rhBMP-2 from NP can be expected to attenuate the incidence of complications. Another study 
is currently underway in a rat coccygeal interbody fusion model to elucidate the effects of NP on the incidence 
of complications. Third, biomechanical testing of bone fusion was performed by a manual palpation test because 
of the size and anatomical complexity of the rat spine. Nevertheless, manual palpation is validated as a substitute 
method for biomechanical testing37.

In conclusion, NP showed better bone regeneration capacity than CS through sustained release of rhBMP-2 
and higher quality of BMP-induced bone.

Figure 3.   In vitro co-culture experiments. (a) Schematic presentation of the chamber co-culture of MC3T3-E1 
cells and carrier material. (b) Cytotoxicity testing of carrier materials by Cell Counting Kit-8 found no apparent 
cytotoxicity of collagen sponge (CS) or NOVOSIS putty (NP) (data represent mean ± S.D., each n = 3; no 
significant differences in one-way analysis of variance [ANOVA] followed by Bonferroni multiple comparison 
test). (c) Osteogenic differentiation of MC3T3-E1 cells with recombinant human bone morphogenetic protein 
2 (rhBMP-2)–loaded CS and NP. Representative alkaline phosphatase (ALP) staining images (days 1, 7, and 
14; left-hand panel) and quantification of ALP staining and activity (data represent mean ± S.D., each n = 3; 
*p < 0.05, **p < 0.01, ****p < 0.0001, and ns, not significant by one-way ANOVA followed by Bonferroni multiple 
comparison test; right-hand panel). (d) Expression levels of the osteogenic genes Runx2, Osx, and Ocn on 
days 7 and 14 (data represent mean ± S.D., each n = 3; **p < 0.01 and ***p < 0.001 by one-way ANOVA followed 
by Bonferroni multiple comparison test). (e) In the immunocytochemical analysis, the protein expressions of 
Runx2 (green; left-hand panels) and Ocn (red; right-hand panels) were more enhanced in the MC3T3-E1 cells 
co-cultured with NP than in those co-cultured with CS (images are shown for Runx2 on day 7 and Ocn on day 
14). DAPI, 4′,6-diamidino-2-phenylindole.
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Methods
Characterization of NP materials.  NP was provided by CGBio Co., Ltd (Seoul, Korea).

1.	 HA granules: Each granule was 3.0–6.0 mm in diameter, with approximately 70% porosity and 99% inter-
connectivity. The X-ray diffraction (XRD) pattern of the granules was consistent with the theoretical XRD 
pattern of HA specified by the Joint Committee on Powder Diffraction Standards (JCPDS) (Fig. 8a,c).

2.	 β-TCP microsphere/poloxamer 407-based hydrogel: Microspheres (45–75 μm diameter) were formed into 
globular shapes by spray drying, and a porous structure (68% porosity) was created by sintering at 1050 °C. 
The XRD pattern of the β-TCP microsphere was consistent with the theoretical XRD pattern of β-TCP 
specified by the JCPDS (Fig. 8b,c). Poloxamer 407, a biodegradable, non-toxic polymer, exhibits thermo-
reversible gelation, i.e., the aqueous solution is liquid at low temperature and forms a semisolid gel at body 
temperature28,29, so it promotes slow and sustained drug release28,30. Poloxamer 407 hydrogel and β-TCP 
microspheres were mixed at a 1:1 weight ratio.

HA granules (6 g) were soaked in 1.2 mL of rhBMP-2 solution, crushed into small pieces and mixed with 9 g 
of β-TCP/hydrogel to form a homogeneous, putty-type composite (Fig. 8d,e) that was injectable and moldable 
and therefore easy to handle during surgery (Fig. 8f).

Figure 4.   High-resolution micro-computed tomography (micro-CT) analysis. (a) Representative images of 
high-resolution micro-CT analysis of the collagen sponge (CS) and NOVOSIS putty (NP) groups. Grayscale 
images were transformed into pseudo-color images by CT-Analyser (CTAn) software (version 1.17, https://​
www.​bruker-​micro​ct.​com). Cor, coronal view; Axi, axial view. (b) Region of interest (ROI) for bone mineral 
density (BMD) measurement. A 1 × 1 × 2-mm3 ROI passing through the center of the spinal fusion mass was 
placed cranial to the L4/L5 disc in the coronal plane and ventral to the posterior margin of the vertebral body 
in the axial plane. (c) The BMD of the new bone was significantly higher in the NP group than in the CS group 
(0.63 g/cm3 vs. 1.29 g/cm3, respectively; data represent mean ± S.D.; ***p = 0.0001 by Student’s t test).

https://www.bruker-microct.com
https://www.bruker-microct.com
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Figure 5.   Histological analysis of the NOVOSIS putty (NP) and collagen sponge (CS) groups. (a–c) In the 
NP group, hydroxyapatite (HA) and new bone intermingled to form the spinal fusion mass. Some of the 
beta-tricalcium phosphate (β-TCP) microspheres were resorbed. (d–f) In the CS group, fatty marrow was 
predominant inside the fusion mass. (g–k) HA served as a scaffold for cell adhesion. HA surfaces were covered 
with osteocalcin-positive osteoblast-like cells (k, black arrows). (a,b,d,e) H&E staining; (c,f) Goldner’s Masson 
trichrome staining; (g–i) safranin-O staining; and (i,k) immunohistochemistry for osteocalcin. NB new bone, 
HA hydroxyapatite.
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In vitro release kinetics of rhBMP‑2.  Three NP and 3 CS (CollaCote; Zimmer Dental, Carlsbad, CA, 
USA), each containing 4 μg rhBMP-2, were immersed in 1 mL of phosphate-buffered saline (PBS) and incubated 
at 37 °C under constant agitation. After centrifugation, the entire supernatant (1 mL) was collected and refilled 
with the same amount (1 mL) of PBS after 12 h and 1, 2, 4, 7, 14, and 24 days38. The amount of released rhBMP-2 
was quantified by ELISA38. The standard curve was based on the rhBMP-2 used in this study.

Figure 6.   Quantification of the new bone area in the fusion mass. (a) Comparison of new bone area inside the 
spinal fusion mass in histological sections. A 1 × 2-mm2 region of interest (ROI; cranial to the L4/L5 disc) was 
extracted from the newly formed fusion mass. The new bone area (red) was color coded with ImageJ software 
(version 1.52q, U. S. National Institutes of Health; https://​imagej.​nih.​gov/​ij/). (b) The percentage of new bone 
area in the ROI was significantly higher in the NOVOSIS putty (NP) group than in the collagen sponge (CS) 
group (23% vs. 36%; data represent mean ± S.D.; **p < 0.0086 by Student’s t test).

Figure 7.   Schematic showing the osteogenic process of NOVOSIS putty (NP) (a) Composite after implantation. 
(b) Recombinant human bone morphogenetic protein 2 (rhBMP-2) is slowly released, and some of the beta-
tricalcium phosphate (β-TCP) microspheres are absorbed and replaced by new bone. (c) The unabsorbed 
hydroxyapatite (HA) and abundant new bone are mixed to form a high-BMD spinal fusion mass.

https://imagej.nih.gov/ij/
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Figure 8.   The characterization of NOVOSIS putty materials. (a) Hydroxyapatite (HA) granules: scanning 
electron microscopy (SEM) images (on the left) and X-ray diffraction (XRD) patterns (on the right). (b) β-TCP 
microsphere/poloxamer 407-based hydrogel (β-TCP/hydrogel): SEM images and XRD patterns. (c) High-
resolution micro-computerized tomography images of HA (left) and β-TCP/hydrogel (right). (d) Schematic 
illustration of the in situ mixing process. (e) HA granules after soaking in rhBMP-2 solution (stained blue) and 
β-TCP/hydrogel are mixed in a syringe. (f) Composite is injectable and moldable.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16924  | https://doi.org/10.1038/s41598-021-96484-4

www.nature.com/scientificreports/

In vivo release kinetics of fluorescently labeled rhBMP‑2.  rhBMP-2 was fluorescently labeled with 
an amine-reactive (NHS ester) near-infrared fluorochrome (VivoTag-S 750), as described previously14. CS con-
taining 0.5  μg of labeled rhBMP-2 was implanted subcutaneously into the left lower leg of 6-week-old male 
C57BL/6J mice (n = 5), and NP containing 0.5 μg of labeled rhBMP-2 was implanted into the right lower leg of 
the same mice. Fluorescence imaging was performed with an in vivo imaging system (IVIS) after 0, 3, 6, 9, 12, 
15, 18, 21, and 24 h. Total fluorescent count and radiant efficiency were measured, and the fluorescence signal 
was normalized to values at 0 h14. Finally, imaging data were analyzed with IVIS Living Image Software (version 
4.0, Caliper Life Sciences, Inc., Waltham, MA, USA). The Animal Experimental Committee of Osaka University 
Graduate School of Medicine approved all animal studies (approval number: 30-076-003), which were per-
formed in accordance with ARRIVE guidelines and the National Institutes of Health Guide for the Care and Use 
of Laboratory Animals39.

In vitro co‑culture experiments.  Cell culture and co‑culture model.  MC3T3-E1 cells were cultured in 
growth medium containing α-modified Eagle’s medium, 10% FBS, and 1% antibiotic-antimitotic in a humidified 
atmosphere of 5% CO2 at 37 °C. Then, culture insert chambers (Falcon Cell Culture Inserts; pore size = 0.4 μm) 
containing CS or NP with or without rhBMP-2 were suspended above each well. A vacant chamber (chamber-
only) group was used as a control.

Cytotoxicity test.  The cytotoxicity of CS and NP not containing rhBMP-2 was evaluated with the CCK-8 assay. 
MC3T3-E1 cells were seeded in 24-well tissue culture plates (6.0 × 103 cells/well). After 12-h incubation to allow 
for cell attachment, the chambers containing CS or NP without rhBMP-2 were suspended above each well; cell 
proliferation was assessed after 12, 36, and 72 h of co-culture.

Osteogenic differentiation.  MC3T3-E1 cells were seeded in 24-well tissue culture plates (5.0 × 104 cells/well). 
After confirming 100% confluence, chambers with CS or NP containing 1 μg of rhBMP-2 were suspended above 
each well. The medium was replaced three times/week.

ALP staining and activity.  ALP staining and activity were evaluated after 1, 7, and 14 days of co-culture. Cul-
tured cells were fixed with 4% paraformaldehyde and overlaid with 5-bromo-4-chloro-3-indolyl-phosphate and 
nitro blue tetrazolium. ALP staining was quantified by gray values and ImageJ software (version 1.52q, U. S. 
National Institutes of Health, Bethesda, MD, USA). ALP activity was quantified with the LabAssay ALP kit 
(Wako Pure Chemical Industries, Ltd., Osaka, Japan) and standardized to whole-protein content measured with 
a bicinchoninic acid protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA).

Quantitative real‑time PCR.  Cultured cells were homogenized with zirconia beads and TRIzol Reagent. Total 
RNA was extracted with a Direct-zol RNA kit (Zymo Research, Tustin, CA, USA) and reverse transcribed to 
cDNA with ReverTra Ace qPCR RT Master Mix. Gene expressions of osteogenic genes (Runx2, Osx, and Ocn) 
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were quantified by real-time PCR with SYBR green 
master mix with a StepOnePlus Real-Time PCR System (see Supplementary Table 1 for primer sequences). Tar-
get gene expression levels were normalized to those of GAPDH, and fold changes were calculated relative to the 
control group by the 2−∆∆Ct method.

Immunocytochemical analysis.  The osteogenic genes Runx2 and Ocn were stained. Cultured cells were fixed 
with 4% PFA, blocked with PBS containing 0.2% Triton X-100 and 5% BSA, incubated overnight at 4 °C with first 
antibodies against Runx2 (Abcam, Cambridge, UK; ab192256, 1:1000) and Ocn (Takara Bio Inc, Shiga, Japan; 
1:100) and then stained with Alexa Fluor Plus 488–conjugated goat anti-rabbit secondary antibody and Alexa 
Fluor 555–conjugated goat anti-rat secondary antibody (Invitrogen, Waltham, MA, US; A32731 and A21434, 
1:1000) for 1 h. Cell nuclei were stained with DAPI solution and mounted with Prolong Diamond Antifade 
Mountant, and fluorescence images were acquired with a BZ-X700 All-in-One Fluorescence Microscope.

Posterolateral spinal fusion model.  Twenty-two 8-week-old male Sprague Dawley rats underwent pos-
terolateral spinal fusion (see below) and were divided into a CS group (CS containing 1 μg of rhBMP-2, n = 11) 
and an NP group (NP containing 1 μg of rhBMP-2, n = 11). The number of animals required was calculated 
from the results of a preliminary experiment and our previous studies33,38. At postoperative week 8, rats were 
euthanized by anesthetic overdose, and treated spinal segments were harvested and evaluated by high-resolution 
micro-CT and histological analysis.

L4–L5 posterolateral spinal fusion.  A posterior midline incision was made on the skin and two para-
median incisions were made in the lumbar fascia 3 mm from the midline, exposing the L4 and L5 transverse 
processes33,38 (Supplementary Fig.  1a,b). The transverse processes were decorticated with a high-speed burr 
(Supplementary Fig. 1c). Blood oozed from the bone marrow (Supplementary Fig.  S1d), and CS or NP was 
implanted on each side of the vertebrae (Supplementary Fig. 1e).

Preparation of carrier material.  CS: A CS sheet was cut into a 5 × 10 mm2 rectangle; 1 μg of rhBMP-2 was 
dissolved in 100 μL of PBS and applied to the CS immediately before implantation.

NP: A 5 × 10 mm2 rectangle of NP containing 1 μg of rhBMP-2 was prepared.
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High‑resolution micro‑CT analysis.  At postoperative week 8, the explanted spine was scanned by high-
resolution micro-CT (SkyScan 1272). Spinal fusion was defined as the formation of bone with cortical continuity 
between L4 and L5 transverse processes on either the left or right33,38 (Supplementary Fig. 1f.). To evaluate the 
bone quality of successfully fused spinal fusion masses, we analyzed BMD, as follows: A 1 × 1 ×   mm3 rectangular 
ROI passing through the center of the spinal fusion mass was placed cranial to the L4/L5 disc in the coronal 
plane and ventral to the posterior margin of the vertebral body in the axial plane (Fig. 4b). BMD in the ROI was 
measured with CTAn software (Bruker Corporation, Billerica, MA, USA).

Manual palpation test.  Three independent examiners manually tested explanted spines, evaluated interseg-
mental motion and rated spines as fused or not. A failure of fusion was defined as any motion on either side 
between the facets or transverse processes33,38. Spinal segments were considered fused only if all three examiners 
agreed.

Histological analysis.  Dissected and formalin-fixed spinal segments were decalcified by K-CX solution, dehy-
drated with an ethanol series and embedded in paraffin wax. Next, 5-μm thick coronal sections were cut at the 
level of the anterior one-third of the vertebral body. H&E, safranin-O, and Goldner’s Masson trichrome staining 
and osteocalcin immunostaining (1:200, bs-4917R) were performed according to the manufacturers’ instruc-
tions.

Histological quantification of newly formed trabecular bone.  Newly formed trabecular bone 
inside the fused spinal fusion masses between L4 and L5 transverse processes was quantified by H&E histologi-
cal sections. A 1 × 2 mm2 ROI was placed cranial to L4/L5 at the spinal fusion area. Trabecular bone in the ROI 
was color coded and measured with ImageJ software (version 1.52q, U. S. National Institutes of Health)40, and 
the percentage of trabecular bone in the ROI was calculated.

Statistical analysis.  Two groups were compared by an unpaired Student’s t or Mann–Whitney U test; and 
3 groups, by one-way analysis of variance and Bonferroni multiple comparison. Fisher’s exact test was used to 
compare spinal fusion rates. Data were expressed as means ± S.D. and analyzed by GraphPad Prism 8.0. A p value 
less than 0.05 was considered statistically significant.

 Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding authors 
on reasonable request.
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