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Majority scoring with backward 
elimination in PLS for high 
dimensional spectrum data
Freeh N. Alenezi

Variable selection is crucial issue for high dimensional data modeling, where sample size is smaller 
compared to number of variables. Recently, majority scoring of filter measures in PLS (MS-PLS) is 
introduced for variable selection in high dimensional data. Filter measures are not greedy for optimal 
performance, hence we have proposed majority scoring with backward elimination in PLS (MSBE-
PLS). In MSBE-PLS we have considered variable importance on projection (VIP) and selectivity ratio 
(SR). In each iteration of backward elimination in PLS variables are considered influential if they 
were selected by both filter indicator. The proposed method is implemented for corn’s and diesel’s 
content prediction. The corn contents include protein, oil, starch and moisture while diesel contents 
include boiling point at 50% recovery, cetane number, density, freezing temperature of the fuel, total 
aromatics, and viscosity. The proposed method outperforms in terms of RMSE when compared with 
reference methods. In addition to validating the spectrum models, data properties are also examined 
for explaining prediction behaviors. Moreover, MSBE-PLS select the moderate number of influential 
variables, hence it presents the parsimonious model for predicting contents based on spectrum data.

For modeling high dimensional data partial least squares (PLS)1 has proven itself as potential candidate in diverse 
areas2. PLS is an iterative way of model fitting, where in each iteration PLS components describe the relation 
between corn’s contents marked as response y and spectrum data marked as explanatory variables X . Since PLS is 
not a method for variable selection, hence several modifications are proposed in PLS for variable selection3. The 
presence of noise variable in high-dimensional spectrum data is quite common, which may affect the prediction 
capabilities of the model. Although the basic PLS was not designed for variable selection, several developments 
are made in PLS which accomplish the variable section for improved prediction. Among several developments in 
PLS the Hotelling T2 based PLS i.e. T2-PLS and truncation on PLS loading weights i.e. Trunc-PLS are considered 
as potential. The importance of variables in PLS is defined by PLS loading weights. For instance Liland et al.4 in 
Trunc-PLS assumes the normality of loading weights where a set of variables departed from the mean of load-
ing weight’s distribution are considered as noise variables and are discarded from the final fitted model. T2-PLS5 
can be considered as the multivariate extension of Trunc-PLS, where PLS loading weight matrix having loading 
weights from first components to optimum components is monitored with Hotelling T2.

Recently, Freeh and Mehmood6 has introduced the majority scoring based algorithm for variable selection 
in PLS (MS-PLS). In MS-PLS several filter measures are considered at same time where variables were scored 
through considered filter measures. The set of variables which were scored higher compared to threshold were 
marked as influential and rest were marked as non-influential variables. Mehmood et al.3,7 has compared filter and 
wrapper PLS methods for variable selection in PLS, indicating filter measures are faster while wrapper algorithm 
are computationally expensive but are more greedy for model performance. Backward elimination procedure 
is a potential wrapper variable selection method. The current article proposed the implementation of majority 
scoring in backward elimination, where two variable selection measures are used, variable importance on projec-
tion (VIP)8 and selectivity ratio (SR)9. In each iteration of backward elimination in PLS variables are considered 
influential if they were selected by both filter indicator. As a case study, the proposed method is implemented for 
modeling corn contents and diesel contents where samples were characterized by spectrum. The performance of 
proposed method i.e. MSBE-PLS are compared with reference methods i.e. T2-PLS and Trunc-PLS. In addition 
to validating the spectrum models, data properties are also examined for explaining corn content’s prediction.

In this paper, “Data set and spectrometers” presents spectroscopic data. “Methods” presents methodology 
including the PLS based models, parameter estimation, calibration, validation, and statistical analysis. “Results 
and discussion” presents the results and discussions.
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Data set and spectrometers
We have considered the following two data sets.

Corn data.  The corn Near-infrared spectra samples were obtained from http://​softw​are.​eigen​vector.​com/​
Data/​Corn/​index.​html. The corn data includes 80 samples which were measured on NIR spectrometer called 
Mp5, which is primary instrument FOSS NIRsystems 5000. The spectrum obtained covers the wavelength range 
( 1100 to 2498 nm) at 2 nm intervals having 700 channels per wavelength. This constitute the 700 columns of 
explanatory matrix. This results in explanatory matrix X(80×700) . From each corn sample different contents like 
protein, oil, starch and moisture were measured. These contents construct the response variables ymoisture(80×1) , 
yoil(80×1),yprotein(80×1) and ystarch(80×1).

Diesel data.  The diesel Near-infrared spectra sampels were obtained from http://​www.​eigen​vector.​com/​
data/​SWRI/​index.​html. The diesel data includes 784 samples. The spectrum covers the wavelength range ( 1100 
to 2698 nm) at 4 nm intervals having 401 channels per wavelength. This constitute the 401 columns of explana-
tory matrix. This results in explanatory matrix X(784×401) . From each diesel sample physical properties like boil-
ing point at 50% recovery, cetane number, density, freezing temperature of the fuel, total aromatics, and viscos-
ity were measured. These contents construct the response variables yboiling(784×1) , ycetane(784×1) , ydensity(784×1)

,yfreezing(784×1),yaromatics(784×1) and yviscosity(784×1).

Methods
Partial least squares (PLS).  In PLS the centered spectrum explanatory matrix X0 = X − 1x̄′ and 
response y0 = y − 1ȳ are used10. PLS is an iterative procedure, so it has K components. For all PLS components 
k = 1, 2, . . . ,K the loading weights, score vector, loadings and deflated data are computed as 

1.	 Defining the loading weights by 

 which reflects the covariance of Xk−1 with yk−1 . Normalizing the loading weights 

2.	 Computing the score vector tk by 

3.	 Computing the X-loading pk through regressing Xk−1 on the score vector: 

	   Similarly computing the Y-loading qk through 

4.	 Deflating Xk−1 and yk−1 by subtracting the involvement of tk : 

5.	 If k < K go back to 1.

From each component computed loading weights, score vector, loadings and deflated data is stored in respec-
tive matrices/vectors W , T , P and q . Although PLS is suitable candidate for validation, but in presence of noise 
variables the validation performance may decrease. The validation performance can be improved by removing 
the noise variables from PLS. We have considered majority scoring backward elimination in PLS (MSBE-PLS), 
majority scoring in PLS (MSBE-PLS), Hotelling T2 based variable selections in PLS ( T2-PLS) and truncation for 
variable selection in PLS ( Trun-PLS for modeling corn data. The computational structure of these methods is 
presented Figs. 1 and 2. The algorithm of these methods is described below.

Truncation for variable selection in PLS (Trunc‑PLS).  In standard PLS, loading weights reflects the 
importance of variables11–13. Variables with small absolute loading weights are considered as noise and should 
be removed from the model. Considering the importance of PLS loading weights, Liland et al.4 assume the PLS 
loading weight w assumed to follow the normal distribution, where variables located at the tail of normal distri-
bution should be discarded from the model. The procedures follows by: 

1.	 Sorting the PLS loading weights as ws

2.	 Computing the confidence interval about the median of ws as f (ws ,αTrunc).

wk = Xk−1
′yk−1

wk ← wk/||wk||

tk = Xk−1wk

pk = Xk−1
′ tk

tk ′tk

qk = yk−1
′ tk

tk ′tk

Xk = Xk−1 − tkpk
′

yk = yk−1 − tkqk

http://software.eigenvector.com/Data/Corn/index.html
http://software.eigenvector.com/Data/Corn/index.html
http://www.eigenvector.com/data/SWRI/index.html
http://www.eigenvector.com/data/SWRI/index.html
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3.	 Classifying the outliers as influential variables and inlier as non influential variable.
4.	 Truncating the non influential variables.

The confidence interval around the median of ws is dependent over the parameter αTrunc , which need to tune for 
fitting the model. Its higher value indicates lower variables are influential.

Hotelling T2 based variable selections in PLS T2‑PLS.  T2-PLS is derived from loading weight matrix 
W . Here Hotelling T2 extracted by W which is assumed to follow the F distribution. The Hotelling T2 measure 
falls within a certain range are marked as non informative variable that is wavenumber5. The algorithm follows. 

1.	 Extract PLS loading weights matrix W
2.	 Translate the PLS loading weights matrix W ′ into Hotelling T2

3.	 Extract the threshold for grouping wavenumbers as influential and non influential variables by 

4.	 Eliminate the non influential variable which fall below the above threshold.

In T2-PLS wavenumber selection is defined by the upper limits C(p,A∗)F(A∗ ,p−A∗ ,αT2 )
 which is dependent over 

αT2 and is required to tune. Its higher value indicates lower variables are influential.

Majority scoring in PLS (MS‑PLS).  Considering more than one filter measure at a time may results in 
more consistent variable selection, in this context, recently, Freeh and Mehmood6 has introduced the majority 
scoring based algorithm for variable selection in PLS (MS-PLS). Here we have considered variable importance 
on projection (VIP)8 and selectivity ratio (SR)9 which are defined as

T2 = p(W̄i −
¯̄W)′S−1

W (W̄i −
¯̄W)

Upperlimit = C(p,A∗)F(A∗ ,p−A∗ ,αT2 )

Figure 1.   The computational structure of Trunc-PLS and T2-PLS is presented in upper and lower panel 
respectively.
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For selectivity ratio (S) target projection also called target rotation is used. Target projection is the post pro-
jection of explanatory spectrum data on the response that is the antibacterial activity of ILS, where spectrum 
explanatory matrix is decomposed into the residual part and latent part as

where tTP = XwTP , wTP = β̂PLS/||β̂PLS|| and pTP = X ′tTP/(tTP
′tTP) . The selectivity ratio (S) from TP defined as

VIPj =

√

√

√

√p

C
∑

c=1

[(q2c t
′
ctc)(wcj/�wc�)2]/

C
∑

c=1

(q2c t
′
ctc).

X = X̂TP + ETP = tTPp
′
TP + ETP

Weights

Scores

Laodings

Defla�on

Y X

VIP

SR

Score Matrix

Average Score

Average Score

Variables (Wavenumbers)

Influen�al variables

b)   MS-PLS

y, 0 = ,

PLS

AS(1), AS(2),…, AS(M), AS(M+1), … , AS(pg)

M VIP values above cutoff ‘u’

+1

Stop, if M=0

wk

tk

pk, qk

Zk, yk

Eliminate N=[fM] variables  from 
Stop, if no 
variable 
le� in 

VIP

SR

Score Matrix

Average Score

a)  MSBE-PLS

Figure 2.   The computational structure of MS-PLS and MSBE-PLS is presented in upper and lower panel 
respectively.
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where Vexp,j is the explained variance through TP and Vres,j is the residual variance of spectrum j . The proposed 
procedure is presented in a flow chart in Fig. 2 and is described as 

1.	 Fit the PLS regression model.
2.	 Compute the filter measures VIP and SR against all PLS components.
3.	 Construct the score matrix S whose column presents the variable and rows presents the filter measures. The 

(ithrow, jthcolumn) entry of S matrix presents the influence of ith filter measure over jth variable.
4.	 Compute the average score ( ψ ∈ [0, 1] ) for each jth variable. ( ψ → 1 ) indicates respective variable is influ-

ential.
5.	 convert ψ into label vector lψ as 

	   Here pt is percentile. Its higher level is expected to result in influential variable selection. For optimal 
performance, it is required to tune.

Majority scoring with backward elimination in PLS (MSBE‑PLS).  Majority scoring with backward 
elimination in PLS (MSBE-PLS) required the same filter measure as taken in MSBE for variable importance for 
variable selection. Let Z0 = X then the procedure follows. 

1.	 Fit the cross validated PLS model on y by Zg having pg number of variables.
2.	 From fitted model extract the VIP and SR
3.	 Find the average score and sort them in ascending order.
4.	 Against the threshold u on average scores, if there are M variables below the threshold than N = ⌈fM⌉ vari-

ables need to removed from the model, where f ∈ �0, 1].
5.	 In case more than one variable left in the model than move the step 1 else stop the iteration.

The f  defines the fraction of removed variables, closer to 0 will remove very few variables and vice versa. We have 
fixed f = 0.1 means in each iteration very few variables will be removed. In MSBE-PLS the threshold u needs to 
tune for model fitting. See the computational structure of MSBE-PLS in Fig. 2.

Model fitting.  Model fitting requires parameter tuning. For all three considered PLS based methods, num-
ber of PLS components is common parameter to tune. In addition to this Trunc-PLS has αTrunc , T2 − PLS has 
αT2 and MSBE-PLS has u . These additional parameters defines the variable selection in respective PLS models. 
For optimal estimation, a range of possible values of these parameters is considered in validation procedure 
described in upcoming subsection.

Validation and robustness of model performance.  For evaluating the model prediction capability 
and reliable estimation of parameters double cross-validation procedure is adapted. The spectrum data X and 
response y is divided into test (25%) and training 75% . The training data is used for model fitting. The prediction 
capability, which is usually measured by RMSE is defined as

where n sample of respective split of data (test/training), yi is the response which can be any of the corn or diesel 
content and ŷi is respective predicted response from the model. The model with lest RMSE on training and test 
data set is called well calibrated and well validated model respectively. Since model fitting requires the parameter 
tuning, hence the 10-fold cross validation is used on training data. The parameter threshold which gives the best 
RMSE in 10 fold cross validation is considered as the optimum.

The data is divided into training and test randomly, hence it quite possible for given split the models may over 
or under perform. In order to have robust model performance estimation Monte Carlo simulation with 100 runs 
was used. In each Monte Carlo simulation run, the above procedure of validation is conducted14.

Data properties.  In addition, data properties are also examined for explaining corn and diesel content’s 
prediction. For this purpose, eigenvalue structure of sample covariance spectrum matrix and the covariance 
between principle components and the contents4,15. Irrelevant components having large eigenvalues are expected 
to have worst prediction.

Results and discussion
From corn samples four protein, oil, starch and moisture are measured, from diesel boiling point at 50% recovery, 
cetane number, density, freezing temperature of the fuel, total aromatics, and viscosity are measured. Hence each 
response is modeled separately with respective spectrum .

Sj = Vexp,j/Vres,j

lψ i,j =

{

1, if ψj ≥ pt
0, otherwise

RMSPE =

√

∑n
i=1(yi − ŷi)2

n
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The data properties related to corn and diesel spectrum and their contents are presented in Fig. 3. Upper 
panel presents, corn spectrum has strong between-variable dependencies. Very few latent components seem to 
explain most of data variation. Together with the sharp drop of eigenvalues, we notice distinct behavior of spectral 
covariances between the principal component and corn contents. On the average, moisture and oil show large 
covariances over the relevant components and small covariances over the irrelevant components, hence one 
should expect better prediction. Protein shows moderate covariances over the relevant components and small 
covariances over the irrelevant components, hence one should expect moderate prediction. Starch show small 
covariances over the relevant and irrelevant components, hence one should expect relatively low prediction. 
Similar trends are observed with diesel contents as presented in lower panel of Fig. 3.

Since we have considered four PLS based models including Trunc-PLS, T2-PLS, Ms-PLS and MSBE-PLS. For 
evaluating and comparison Monte Carlo simulation is implemented with N = 100 . In each run, the spectrum 
data X and contents y are divided into test (25%) and training 75% . Training data is used to fit the PLS based 
model, where 10 fold cross validation is implemented for tuning the model parameters like number of compo-
nents, αTrunc , αT2 and u . From each Monte Carlo run optimal tuning parameters, calibration RMSE , validated 
RMSE and number of selected wavenumbers are recorded for each of the fitted model.

For prediction models the both validated and calibrated RMSE should be small16. The comparison of vali-
dated and calibrated RMSE for corn and diesel content is presented in Fig. 4. Rep− PLS and Trunc-PLS show 
small validated and calibrated RMSE. Moreover T2-PLS has moderate validated and calibrated RMSE. Similarly, 
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Figure 3.   Data properties related to corn and diesel spectrum and their contents are extracted for 
understanding the prediction behavior. The eigenvalue (sorted in descending order) presents the covariance of 
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and each content.
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we found the same trend for other corn contents. Generally we can conclude T2-PLS has worst validated and 
calibrated RMSE and MSBE has outperformed the other methods.

For validation, the stability of the model is also an important factor to consider. In Fig. 5 the standard devia-
tions of accuracy for all fitted model is presented. MS-PLS, MSBE-PLS and Trunc-PLS has the best stability for 
corn moisture and oil content. MSBE-PLS and Trunc-PLS has better stability for corn protein contents. Similarly, 
the boiling point of diesel has best stability with MSBE-PLS and Trunc-PLS. The cetane number has good stability 
with all PLS methods. The diesel density has best stability with MSBE-PLS. The freezing temperature of the fuel 
has best stability with MSBE-PLS. The total aromatics has best stability with MSBE-PLS and Trunc-PLS. The 
viscosity has best stability with MSBE-PLS and MS-PLS.

After conducting the validated and calibrated RMSE comparison, and stability analysis. Analysis of variance 
(ANOVA) is conducted to study the effect of validation methods over the variations in validated RMSE. The 
ANOVA results for each corn characteristic protein, oil, starch and moisture are presented in Table 1. Among 
PLS models MSBE-PLS is taken as a reference model. It appears MSBE-PLS has significantly better prediction of 
corn’s moisture (p-value=0.018) and oil (p-value < 0.001 ) compared to Trunc-PLS, similarly MSBE-PLS has sig-
nificantly better prediction of all considered corn’s contents (p-value < 0.001 ) compared to T2-PLS. The ANOVA 
results for each diesel characteristic diesel boiling point at 50% recovery, cetane number, density, freezing tem-
perature of the fuel, total aromatics, and viscosity are presented in Table 2. It appears MSBE-PLS has significantly 
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Figure 5.   The standard deviations of validated RMSE for all fitted models of corn and diesel contents are 
presented.

Table 1.   The ANOVA results indicating the significant PLS model against each corn characteristic moisture, 
oil, protein, and starch are presented.

Factor Level

Moisture Oil Protein Starch

Estimate P-value Estimate P-value Estimate P-value Estimate P-value

Intercept 0.007 < 0.001 0.063 < 0.001 0.126 < 0.001 0.297 < 0.001

Model

MSBE − PLS Reference

MS − PLS 0.035 0.021 0.034 < 0.001 0.035 0.014 0.026 0.081

Trunc-PLS 0.007 0.018 0.004 < 0.001 0.006 0.139 -0.006 0.481

T
2-PLS 0.144 < 0.001 0.026 < 0.001 0.201 < 0.001 0.376 < 0.001
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better prediction of diesel’s content (p-value=0.018). The complexity of the model is usually defined by the 
number of PLS components. The distribution of number of components presenting the complexity of the model 
is presented in Fig. 6 for all fitted corn and diesel contents models. Trends are extracted based on the 100 Monte 
Carlo simulation. Results indicates, for corn’s moisture MSBE-PLS and Trunc-PLS consumes larger number of 
PLS components and are considered as complex model. For corn’s oil all methods consumes moderate number 
of PLS components. For corn’s protein MSBE-PLS and Trunc-PLS consumes larger number of PLS components 

Table 2.   The ANOVA results indicating the significant PLS model against each diesel characteristic boiling 
point at 50% recovery, cetane number, density, freezing temperature of the fuel, total aromatics, and viscosity 
are presented.

Model Level Boiling point Cetane Number Density Freezing temperature Total aromatics Viscosity

Model Estimate P-value Estimate P-value Estimate P-value Estimate P-value Estimate P-value Estimate P-value

Intercept 0.012 < 0.001 0.094 < 0.001 0.378 < 0.001 0.304 < 0.001 0.218 < 0.001 0.245 < 0.001

MSBE − PLS Reference

MS − PLS 0.147 0.034 0.025 < 0.001 0.087 0.021 0.036 0.029 0.247 < 0.001 0.654 < 0.001

Trunc-PLS 0.013 0.045 0.021 < 0.001 0.054 0.297 0.012 0.274 0.214 < 0.001 0.301 < 0.001

T
2-PLS 0.614 < 0.001 0.158 < 0.001 0.413 < 0.001 0.207 < 0.001 0.314 < 0.001 0.245 < 0.001
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Figure 6.   The distribution of number of components presenting the complexity of the model is presented for all 
fitted corn and diesel contents models. Trends are extracted based on the 100 Monte Carlo simulation.
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and are considered as complex model. For corn’s starch all consumes larger number of PLS components and are 
considered as complex model. Similarly for diesel contents modeling most of the PLS models are complex as 
they consumes larger number of components and T2-PLS which consumes moderate number of components.

For a well calibrated and validated model the number of selected variables is important to consider since it 
reflect how much information is considered noise and how much information is considered influential. Moreover 
the distribution of selected number of variables effects the prediction that RMSE. The distribution of number of 
selected variables together with standard error bars from 100 Monte Carlo simulation is presented for all of PLS 
methods in Fig. 7. The upper panel presents the distribution of selected variables in modeling the corn’s contents 
while lower panel presents the results for diesel contents. It appears, Trunc-PLS is using the maximum number of 
variables (wavelength) while T2-PLS utilizes the minimum number of variables. Since the prediction capabilities 
from Fig. 6 shows MSBE-PLS and Trunc-PLS have better prediction capability, hence the parsimonious corn’s 
moisture modeling can be achieved with MSBE-PLS. By parsimonious model we mean the better prediction with 
the least number of selected variables. The distribution of selected variables in modeling the corn’s oil indicates 
MSBE-PLS and Trunc-PLS are based on an almost equal number of variables, while T2-PLS is based on the least 
number of variables. The distribution of selected variables in modeling the corn’s protein indicates the MSBE-
PLS and Trunc-PLS are based on almost equal number of variables, while T2-PLS is based on the least number 
of variables. Figures 6 and 7 shows MSBE-PLS both can be used to model the corn’s protein irrespective of any 
spectrum being used. The behavior of MSBE-PLS is expected because of the architecture of the algorithm17. The 
distribution of selected variables in modeling the corn’s starch indicates MSBE-PLS and Trunc-PLS are based 
on an almost equal number of variables, while T2-PLS is again based on the least number of variables. Similar 
trend are observed while modeling the diesel contents.
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Figure 7.   The distribution of number of selected variables i.e. wavenumbers is presented for all fitted corn and 
diesel contents models. Trends are extracted based on the 100 Monte Carlo simulation.
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Conclusion
PLS based validated model is proposed for variable selection of spectrum data. The corn and diesel content are 
characterised based on eigenvalue and covariance between principal components and response. Results from 
Monte Carlo simulation reveals MSBE-PLS has both smallest validated and calibrated RMSE for all corn’s and 
diesel contents. On the average, all considered PLS based methods and all spectrometers has significantly dif-
ferent prediction (p-value=0.001). In terms of prediction MSBE-PLS and Trunc-PLS are better compared to T2

-PLS, while T2-PLS has small, MSBE-PLS has moderate and Trunc-PLS has large number influential variables. 
Hence, MSBE-PLS is the parsimonious model for predicting.
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