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Assessing the role of initial 
conditions in the local structural 
identifiability of large dynamic 
models
Dominique Joubert*, J. D. Stigter & Jaap Molenaar

Structural identifiability is a binary property that determines whether or not unique parameter 
values can, in principle, be estimated from error-free input–output data. The many papers that have 
been written on this topic collectively stress the importance of this a priori analysis in the model 
development process. The story however, often ends with a structurally unidentifiable model. 
This may leave a model developer with no plan of action on how to address this potential issue. 
We continue this model exploration journey by identifying one of the possible sources of a model’s 
unidentifiability: problematic initial conditions. It is well-known that certain initial values may result 
in the loss of local structural identifiability. Nevertheless, literature on this topic has been limited 
to the analysis of small toy models. Here, we present a systematic approach to detect problematic 
initial conditions of real-world systems biology models, that are usually not small. A model’s 
identifiability can often be reinstated by changing the value of such problematic initial conditions. 
This provides modellers an option to resolve the “unidentifiable model” problem. Additionally, a good 
understanding of which initial values should rather be avoided can be very useful during experimental 
design. We show how our approach works in practice by applying it to five models. First, two small 
benchmark models are studied to get the reader acquainted with the method. The first one shows the 
effect of a zero-valued problematic initial condition. The second one illustrates that the approach also 
yields correct results in the presence of input signals and that problematic initial conditions need not 
be zero-values. For the remaining three examples, we set out to identify key initial values which may 
result in the structural unidentifiability. The third and fourth examples involve a systems biology Epo 
receptor model and a JAK/STAT model, respectively. In the final Pharmacokinetics model, of which its 
global structural identifiability has only recently been confirmed, we indicate that there are still sets of 
initial values for which this property does not hold.

We have grown to appreciate the importance of model accuracy as societies increasingly depend on model pre-
dictions to answer difficult questions, such as which measures should be taken to fight the Covid-19 pandemic. 
Clearly, mathematical models are powerful tools. They often contain unknown parameters which need to be 
estimated from experimental data since they are not measurable. Model developers often run into practical dif-
ficulties whilst estimating the values of such parameters. These range from significant computational memory 
requirements to insufficient funding to perform required  experiments1. Here we highlight model identifiability, 
one of the primary challenges encountered during in parameter estimation. We focus on the role initial condi-
tions play in a model’s local structural identifiability.

Parameter identifiability assesses whether it is possible to infer unique parameter values from gathered input-
output data. It can be divided into two main categories with structural or a priori identifiability the prerequisite 
for practical identifiability. Structural identifiability is based on a model’s structure and is a binary property and 
so supposes that experimental measurements are error free. In contrast, practical identifiability characterises 
the ability to estimate parameters from observed data containing measurement errors and so takes both data 
quality and availability into  account2.

Developing dynamic models using ordinary differential equations requires the formulation of differential 
(and possibly accompanying algebraic equations) and calls for the definition of measurable outputs and initial 
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conditions. A model’s structural identifiability can be affected by these chosen initial  values3–5. It may therefore 
be impossible to uniquely estimate certain parameters if a system that evolves from a “problematic set of initial 
conditions”. In 2001 Denis-Vidal and co-authors alluded to this by stressing the importance of an appropriate 
choice of initial  values3. This was confirmed by Saccomani et al.4 who studied the role initial conditions play 
in the identifiability of controlled models. They commented that “it happens frequently in global identifiability 
analyses that the property only holds generically, i.e. except for a ‘thin’ set of initial conditions. In these situ-
ations the system is (incorrectly but forgivably) declared to be (global) identifiable”4. Finally, Villaverde and 
Banga remarked that both the symbolic differential algebra and differential geometry methods, which are often 
used to assess a model’s identifiability, do not recognise the loss of local structural identifiability for very specific 
initial  values5. Furthermore, they list a number of methods that can detect these problematic initial conditions, 
including their own differential geometry based approach. These methods  include5:

• Exact Arithmetic Rank method (EAR)—This method works for rational systems was introduced in 2012 
by Karlsson et al.6. It allows for the definition of specific initial values and uses these in efficient numerical 
calculations.

• DAISY—This method also analyses rational systems exclusively and uses the differential algebra  method7.
• STRIKE-GOLDD—This method adopts a differential geometry approach to analyse a model’s local structural 

identifiability and so entails the symbolical calculation of successive Lie  derivatives8.

It should be mentioned that some methods do not always yield correct results for certain special cases. In 
the “Discussion” we mention such a case explicitly. The method we present in this paper has a higher degree of 
reliability since it combines 2 analyses, one numerical and one symbolic. It is also not restricted to rational or 
relatively small models. As extensively described in the “Methods” section, our approach is based on the identifi-
ability algorithm presented by Stigter and  Molenaar9. The method starts with a numerical analysis of the rank 
of the so-called sensitivity matrix and is available as a downloadable  application10. This initial step pinpoints 
potentially unidentifiable parameters and initial conditions. In the second step a symbolic analysis is performed 
to check whether these parameters and initial conditions are indeed causing identifiability problems. Since this 
analysis only involves a restricted number of parameters and initial conditions, the computational demand which 
is often found to be the curse of a symbolic analysis of the full model, is significantly reduced. The numerical 
results from the first step can attractively be summarised in a so-called “identifiability signature”11. This signature 
contains a graphical presentation of the singular values resulting from a Singular Value Decomposition (SVD) 
of the sensitivity matrix. Structural unidentifiability is indicated by a clear gap in the displayed singular values. 
Furthermore, the signature shows the components of the singular vectors corresponding to the close-to-zero 
singular values. The nonzero components of these vectors reveal which parameters and initial conditions are 
expected to be unidentifiable.

An advantage of structural identifiability is that it can be assessed before the experimental phase. Since the 
method presented in this paper allows for the efficient identification of problematic initial conditions, the values 
of these may be altered before any expenses on wasteful experiments are incurred. So, it may play an essential 
role in the design-of-experiment stage that should precede any experimental endeavour.

Results
The discussion of problematic initial conditions has in the past been limited to small toy models. To show the 
effectiveness and power of the present approach, we apply the method to 5 models. These examples have been 
carefully chosen to demonstrate different aspects of the approach. First, 2 small benchmark models are studied 
to get the reader acquainted with the method. The first one shows the effect of a zero-valued problematic initial 
condition. The second illustrates that the approach also yields correct results in the presence of input signals and 
that problematic initial values need not be zero-values. The third example comprises a realistic systems biology 
model describing Epo receptor dynamics. For this Epo model we show that it is possible - thanks to the efficiency 
of the approach - to identify the precise (zero-valued) initial conditions that result in model unidentifiability. The 
fourth example is an analysis of the well-known JAK/STAT model, for which the cause of its unidentifiability 
was not yet published in the literature. In the last example, of which its global structural identifiability has only 
recently been confirmed, we indicate that there are still sets of initial values for which this property does not hold.

Example 1 Small benchmark model ( M1).
In example 1 we analyse a small academic model published by Denis-Vidal et al.3. This example illustrates 

the potential role initial values play in the structural identifiability of uncontrolled models. The model contains 
two state equations:

The first state is measured directly, so the output is y = x1 . The three system parameters are assumed unknown 
and therefore the parameter vector is θ = [p1, p2, p3] . In Fig. 1 we present the identifiability signature of this 
model resulting from the numerical analysis; see “Methods” section for details. It shows a clear gap between the 
second and third singular values, which indicates that the model is structurally unidentifiable given the set of 

(1)
dx1

dt
= p1x

2
1 + p2x1x2, x1(0) = x10 �= 0,

(2)
dx2

dt
= p3x

2
1 + x1x2, x2(0) = 0.
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initial conditions in Eqs. (1) and (2). Our result is in line with the analysis by Denis-Vidal et al. which shows that 
parameters p2 and p3 are structurally  unidentifiable3. At the bottom of Fig. 1 the components of the singular vec-
tor corresponding to the close-to-zero singular value of the sensitivity matrix are given. The nonzero components 
correspond to parameters p2 and p3 respectively; this indicates that these parameters are indeed unidentifiable. 
The second step in our method is to check these numerical suggestions symbolically. The parameter set to be 
analysed is now reduced to θunid = {p2, p3} (obtained from Fig. 1). The Jacobi matrix needed in this second step 
(see the “Methods” section), is given in Eq. (3) as a 4× 2 matrix, with each column related to a parameter in 
θunid . It is computed by calculating partial derivatives of successive Lie derivatives, defined in Eqs. (56) and (57).

The null-space of the matrix in Eq. (3) is N
(

dG
dθunid

(x(0), θ)
)

= {−
p2
p3
, 1} . Entries of the base-vector of this 

nontrivial null-space are the coefficients of the partial differential equation that describes the linear dependence 
between the 2 columns of this Jacobi matrix. This partial differential equation for some function φ(p2, p3) reads 
as

A possible solution to Eq. (4) is φ = p2p3 . One option for reinstating this model’s identifiability is to reduce the 
number of parameters from 3 ( p1, p2, p3 ) to 2 ( p1,φ ). By introducing the scaled variable x̃2 ≡ x2/p3 , we obtain 
the following reparameterised, identifiable model:

In view of the topic of this paper, we set out to find an alternative option for reinstating this model’s identifi-
ability by investigating the role of the initial conditions. It is easy to confirm that the model’s unidentifiability 
can also be turned into identifiability simply by setting x2(0)  = 0 . The Jacobi matrix computed for the scenario 
where x2(0)  = 0 is given in Eq. (7). Similar to Eq. (3), its 2 columns are related to system parameters p2 and p3 
respectively. In contrast with the matrix in Eq. (3), the matrix in Eq. (7) has rank 2, so the linear dependence 
between its 2 columns is destroyed by setting x2(0)  = 0.

(3)
dG

dθunid
(x(0), θ) =







0 0

0 0

p3 p2
(1+ 6p1)p3 (1+ 6p1)p2






.

(4)−
p2

p3

∂φ

∂p2
+

∂φ

∂p3
= 0.

(5)
dx1

dt
= p1x

2
1 + φx1x̃2, x1(0) = x10 �= 0,

(6)
dx̃2

dt
= x21 + x1x̃2, x̃2(0) = 0.
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Figure 1.  Identifiability signature of Example 1: small benchmark model ( M1 ). (Top) Singular values: For 
x2(0) = 0 and y = x1 , the rank deficiency of the sensitivity matrix is indicated by a distinct gap between the 
second and third singular values. This suggests that this model is structurally unidentifiable and that there is a 
single set of totally correlated parameters. (Bottom) Elements of the singular vector related to the zero valued 
singular value. The nonzero components indicate that parameters p2 and p3 are structurally unidentifiable.
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Example 2 Benchmark model with input signal ( M2)
We now turn our attention to a benchmark model that has an input signal and was previously analysed by 

Saccomani et al.4. Here we analyse the local structural identifiability of the 4 unknown system parameters and 
so θ = [p0, p1, p2, p3] . This example shows that problematic initial conditions are not necessarily zero values.

Given the measured output y = x1 , Saccomani et  al. show that when x2(0) = p1/p3 , p3 is struc-
turally unidentifiable. Our numerical results shown in Fig.  2, corroborate this result. Figure  2 shows 
entries of the last column of the V  matrix which related to the singular value beyond the gap. Its nonzero 
entry shows that parameter p3 is not identifiable. To verify this numerical result symbolically, one 
begins by computing a set of Fliess series coefficients using Eq. (59) defined in the “Methods” section, 
G(x(0), θ) = {x1(0),−p2x1(0)− p3x2(0),−p0p2,−p0p

2
2 + p0p3(−p1 + p3x2(0))} . Next, one substitutes the initial 

condition x2(0) = p1/p3 into this series, and calculates partial derivatives of G with respect to the unidentifiable 
parameter. For illustration, we compute the Jacobi matrix in this example with respect to all 4 system param-
eters. The columns are related to the parameters p0, p1, p2 , and p3 , respectively. Here we show the 5× 4 matrix,

The last column of Eq. (10) contains only zeros and accordingly system parameter p3 is not structurally identifi-
able. The nontrivial null-space of the Jacobi matrix is N

(

dG
dθ (θ)

)

= {0, 0, 0, 1} . Our method confirms that this 
model’s identifiability is reinstated when x2(0)  = p1/p3 . For example, if we would choose as initial condition 
x2(0) = p2/p3 , we would obtain the Jacobi matrix in Eq. (11), which has rank 4. Accordingly, we conclude that 
for this choice all 4 system parameters are locally identifiable.

(7)
dG

dθunid
(x(0), θ) =





0 0

x1(0)x2(0) 0

x1(0)(p3x1(0)
2 + x2(0)(x1(0)+ 3p1x1(0)+ 2p2x5(0))) p2x1(0)

2



 .

(8)
dx1

dt
= −p0u− p2x1 − p3x2, x1(0) = x10,

(9)
dx2

dt
= p3x1x2 − p1x1, x2(0) =

p1

p3
.

(10)
dG

dθ
(x(0), θ) =











0 0 0 0

0 − 1 − 1 0

−p2 0 − p0 0

−p22 0 − 2p0p2 0

−p32 0 − 3p0p
2
2 0
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Figure 2.  Identifiability signature of the benchmark model with input ( M2 ). (Top) Singular values: When 
state x1 is measured and x2(0) = p1/p3 , the clear gap between the third and fourth singular values suggests 
rank deficiency of the sensitivity matrix. (Bottom) Entries in the last column of the right singular matrix: The 
nonzero entry corresponding to p3 indicates that parameter p3 is structurally unidentifiable.
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Example 3 Erythropoietin (Epo) and Epo receptor (EpoR) interaction and trafficking ( M3)
We now analyse a real-world systems biology model. In erythroid progenitor cells, which give rise to eryth-

rocytes (commonly known as red blood cells), the dynamic properties of the Epo receptors determine how 
signals in the concentration of the ligand Epo are processed at the receptor level. This ultimately indicates how 
downstream signalling cascades such as the JAK2-STAT5 pathway are activated, which in turn leads to cellular 
responses such as differentiation and proliferation of  erythrocytes12. The structural unidentifiability of this six 
state model which describes Erythropoietin (Epo) and Epo receptor (EpoR) interaction and trafficking was 
previously  confirmed12. Given that four of the six initial conditions are zero, the aim here is to see whether 
changing these values from an experimental design perspective could address this model’s unidentifiability. The 
six model equations  are12,13,

The measured output defined by Raue et al.12 contains one additional unknown scaling parameter, scale:

The initial values of [Epo] and [EpoR] are assumed to be unknown and so θ contains these and the 8 system 
parameters: θ = [kon, kD , kex , kt , ke , kdi , kde , scale, [Epo](0), [EpoR](0)] . The initial conditions of all the remaining 
model states are zero:

The structural and practical identifiability of this model was assessed in a 2010 paper by calculating the pro-
file likelihood related to each of its 10 unknown  parameters12. Five structurally unidentifiable parameters were 
identified. Their identifiability was reinstated by assuming the value of [Epo](0) to be  known12.

An alternative way to reinstate the model’s structural identifiability is the addition of one or more sensors to 
the model’s measured output . Which sensors might be added can efficiently be solved by determining a model’s 
minimal sensor set, the minimal set of sensors that needs to be measured to ensure model  identifiability14. 
In this example, the identifiability can be reinstated by adding either state [dEpo_i] or [dEpo_e] to its meas-
ured output. In other words, measuring either y = {scale.([Epo] + [dEpo_e]), scale.[Epo_EpoR], [dEpo_i]} or 
y = {scale.([Epo] + [dEpo_e]), scale.[Epo_EpoR], [dEpo_e]} would ensure model identifiability. The physical 
limitations associated with this experimental implementation are not considered here.

To understand the role this model’s initial conditions play in its unidentifiability, we analyse the model for 
the conditions stipulated in Eq. (20), with both [Epo](0),  [EpoR](0) assumed to be nonzero. The resulting iden-
tifiability signature is given in Fig. 3. The results indicate that θunid = {kon, kD , scale, [Epo](0), [EpoR](0)} are 

(11)

dG

dθ
(x(0), θ) =

































0 0 0 0

0 − 2 0 0

−p2 p0 0 0

−p22 + (p2 − p1)p3 − 2p0p2 + p0p3 − p0p3 p0(p2 − p1)

p2(p2 − p1)p3 + (p2 − p1)p
2
3

+p2[−p22 + (p2 − p1)p3]

−p0p
2
2 + p0p2p3

+2p0(p2 − p1)p3 + p0p
2
3

+p2(−2p0p2 + p0p3)

− 2p0p2p3 − p0p
2
3

2p0p2(p2 − p1)

+2p0(p2 − p1)p3

































.

(12)
d[Epo]

dt
= −kon[Epo][EpoR] + konkD[Epo_EpoR] + kex[Epo_EpoR_i],

(13)
d[EpoR]

dt
= −kon[Epo][EpoR] + konkD[Epo_EpoR] + kt [EpoR(0)] − kt [EpoR] + kex[Epo_EpoR_i],

(14)
d[Epo_EpoR]

dt
= kon[Epo][EpoR] − konkD[Epo_EpoR] − ke[Epo_EpoR],

(15)
d[Epo_EpoR_i]

dt
= ke[Epo_EpoR] − kex[Epo_EpoR_i] − kdi[Epo_EpoR_i] − kde[Epo_EpoR_i],

(16)
d[dEpo_i]

dt
= kdi[Epo_EpoR_i],

(17)
d[dEpo_e]

dt
= kde[Epo_EpoR_i].

(18)y1 = scale([Epo] + [dEpo_e]),

(19)y2 = scale[Epo_EpoR].

(20)x(0) = [[Epo](0), [EpoR](0), 0, 0, 0, 0].
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unidentifiable. This result is symbolically verified by the base-vector spanning the nontrivial null-space: 
N

(

dG

dθunid
(θ)

)

=
{

− kon
[EpoR](0) ,

kD
[EpoR](0) ,−

scale
[EpoR](0) ,

[Epo](0)
[EpoR](0) , 1

}

.
We suspect that certain of the zero initial conditions reduce the dynamic information required to estimate 

accurate parameter values. To asses whether or not certain initial conditions contribute to the unidentifiability 
of the five parameters, we apply our numerical analysis of the model, each time selecting different combinations 
of nonzero initial values. The numerous iterations required in this analysis are made possible by the computa-
tional efficiency of the  algorithm9. Assuming that the two unknown initial values, [Epo](0) and [EpoR](0) can 
also be zero, we find that the model’s identifiability can indeed be reinstated by setting certain initial conditions 
at nonzero values. The results in Table 1 reveal that there are three plausible experimental setups which would 
restore model identifiability. Scenarios 1 and 2 require that only a single initial condition holds a nonzero value. 
The first scenario is associated with the measured sensor in (19). In the third, a set of three specific nonzero initial 
conditions is defined. The Jacobi matrices for these three these scenarios can be computed similarly as done in 
Examples 1 and 2, given in Eqs. (7) and (11), respectively.

Example 4 JAK/STAT model ( M4).
Here, we consider the well-known unidentifiable JAK/STAT  model15,16. No literature has been published 

investigating the source of its unidentifiability and we address this question here by investigating the role of its 
initial conditions defined  as15

The 14 model equations  are15

(21)x(0) = [x1(0), . . . , x14(0)] = [1.3, x2(0), 0, 0, 0, 2.8, 0, 165, 0, 0, 0.34, 0, 0, 0].

(22)ẋ1 = −θ1u1c1x1 − θ5x1 + θ6x2,

(23)ẋ2 = θ5x1 − θ6x2,

1 2 3 4 5 6 7 8 9 10
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Figure 3.  Identifiability signature of the Erythropoietin (Epo) and Epo receptor (EpoR) model ( M3 ). (Top) 
Singular values: When output y = {y1, y2} is measured, and for the values defined in Eq. (20), with both [Epo]
(0),  [EpoR](0) nonzero. The clear gap between the spectrum of singular values suggests that the model is 
not structurally identifiable. (Bottom) Entries in the last column of the V  matrix related to the singular value 
beyond the gap: Nonzero entries indicate that parameters kon , kD , scale, [Epo](0) and [EpoR](0) are structurally 
unidentifiable and apparently totally correlated.

Table 1.  List of plausible nonzero initial value combinations that ensure the structural identifiability of the 
Erythropoietin (Epo) and Epo receptor (EpoR) model ( M3).

Experimental scenario Number of nonzero initial values Nonzero initial value

1 1 [Epo_EpoR](0)

2 1 [Epo_EpoR_i](0)

3 3 [Epo](0), [EpoR](0), [Epo_e](0)
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The defined output contains additional parameters θ18, . . . , θ22

With x2(0) assumed unknown, the identifiability of 23 unknown parameters in total must be analysed. The 
numerical results corroborate that this model is indeed unidentifiable for the initial conditions defined in Eq. 
(21), where x2(0)  = 0 . This is apparent from the significant gap in the spectrum of singular values in Fig. 4. The 
two singular values beyond this gap suggest that the null-space contains two base-vectors and that there are two 
sets of totally correlated parameters. The unidentifiable parameters are the nonzero elements in the bottom of 
Fig. 4 and so the union of the elements in these sets is θunid = {θ11, θ15, θ17, θ21, θ22} . The 2 base-vectors spanning 
the nontrivial null-space: N

(

dG

dθunid
(θ)

)

= {0, 0,−θ17/θ22, 0, 1} and {−θ11/θ21,−θ15/θ21, 0, 1, 0} , give a clear 
indication as to which parameters are totally correlated. Using numerical results, the symbolic calculations 
associated with this example are significantly reduced since we only need to compute and analyse a Jacobi matrix 
with 5 columns instead of 23.

Systematically changing one or more of the zero values of the initial conditions in Eq. (21), we find that the 
identifiability is reinstated if we choose x10(0)  = 0 and x14(0)  = 0 , leaving the other conditions at zero values. 
In hindsight, this conclusion can be understood from the output equations, y5 = θ21x10 and y6 = θ22x14 , which 
contain the unidentifiable parameters θ21 and θ22 , respectively. Taking x10(0)  = 0 and x14(0)  = 0 will ensure 
that sufficient dynamics is observed to enable the accurate estimation of all unknown parameters. We remark 
that setting x10(0)  = 0 destroys the base-vector {0, 0,−θ17/θ22, 0, 1} and setting x14(0)  = 0 the base-vector 
{−θ11/θ21,−θ15/θ21, 0, 1, 0}.

(24)ẋ3 = θ1u1c1x1 − θ2x3x7,

(25)ẋ4 = θ2x3x7 − θ3x4,

(26)ẋ5 = θ3x4 − θ4x5,

(27)ẋ6 = −
θ7x3x6

(1+ θ13x13)
−

θ7x4x6

(1+ θ13x13)
+ θ8c2x7,

(28)ẋ7 =
θ7x3x6

(1+ θ13x13)
+

θ7x4x6

(1+ θ13x13)
− θ8c2x7,

(29)ẋ8 = −θ9x8x7 + c2θ10x9,

(30)ẋ9 = θ9x8x7 − c2θ10x9,

(31)ẋ10 = θ11x9,

(32)ẋ11 = −θ12c1u1x11,

(33)ẋ12 = θ12c1u1x11,

(34)ẋ13 =
θ14x10

(θ15 + x10)
− θ16x13,

(35)ẋ14 = θ17x9.

(36)y1 = x1 + x3 + x4,

(37)y2 = θ18(x3 + x4 + x5 + x12),

(38)y3 = θ19(x4 + x5),

(39)y4 = θ20x7,

(40)y5 = θ21x10,

(41)y6 = θ22x14,

(42)y7 = x13,

(43)y8 = x9.
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Example 5 Pharmacokinetics model ( M5).
Our final example contains only four model states and its global identifiability has been a topic of investigation 

since 2005. Unlike the previous four examples, this model is identifiable for the defined set of initial conditions. 
However, this does not imply that this holds for all initial conditions. Bellow we shall show that this model is an 
excellent example of the statement from Maria Saccomani, “It happens frequently in the global identifiability 
applications that the property holds only generically, i.e. except for a ‘thin’ set of initial conditions. In these 
situations the system is (incorrectly but forgivably) nevertheless declared to be (global) identifiable, excluding 
certain subsets of initial states”4.

We suspect that the model has sets of zero-valued problematic initial conditions that should be avoided dur-
ing experimental design. To identify these sets, we perform an iterative search for zero-valued initial conditions 
which might render the model unidentifiable. This search is not exhaustive in the sense that we would search for 
all problematic combinations of initial values, as our aim is to find “a thin set of values” for which this model’s 
global identifiability as recorded in the literature, does not hold.

The model which comprises 4 model equations describes the ligands of the macrophage mannose  receptor17

The first state is measured, so the model’s output is defined as y = x1 . State x1 represents the plasma enzyme 
concentration, x2 its concentration in compartment 2, x3 is the plasma concentration of the mannosylated poly-
mer that acts as a competitor of glucose oxidase for the mannose receptor of macrophages, and x4 is the concen-
tration of this competitor in the extra vascular fluid of the organs accessible to this macro  molecule18.

A 2005  publication17 on the topic of identifiability analysed this model using the differential algebra method. 
This method requires that functions f  and h , defined in the general descriptions Eqs. (49) and (51), be rational. 
This is clearly the case for the present model. The model was found to be globally identifiable. The analysis com-
prised two steps, where the unknown parameters were divided into two subsets {α1,α2,Vm, kc} and {β1,β2, ka} , 
respectively. In this analysis the initial conditions were not taken into account. In a 2010  publication19 the model 
was reported to be globally identifiable, but only under the assumption that parameter α2 was known. No results 
could be obtained for the case with α2 unknown. The model was once more included in a 2011  publication18 
which compared seven different identifiability analysis approaches. The local structural identifiability of six of 

(44)
dx1

dt
= α1(x2 − x1)−

kavmx1

(kcka + kcx3 + kax1)
, x1(0) = x10,

(45)
dx2

dt
= α2(x1 − x2), x2(0) = 0,

(46)
dx3

dt
= β1(x4 − x3)−

kcvmx3

(kcka + kcx3 + kax1)
, x3(0) = x30,

(47)
dx4

dt
= β2(x3 − x4). x4(0) = 0.
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Figure 4.  Identifiability signature of the JAK/STAT model ( M4 ). (Top) The 2 singular values beyond the gap 
calculated whilst measuring Eqs. (36)–(43) and using the initial conditions defined in Eq. (21). These suggest 
model unidentifiability and that there are two sets of totally correlated parameters. (Bottom) Entries in the last 
two columns of matrix V  related to the 2 zero singular values. The nonzero elements indicate the union between 
two potential sets of totally correlated parameters, {θ11, θ15, θ17, θ21, θ22}.
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the seven system parameters α1, ka,Vm, kc ,β1 and β2 , could be confirmed with the Taylor series method. In a 
recent  publication20, the global identifiability result of Saccomani et al. was confirmed, this time also including 
the four initial conditions to the set of unknown parameters.

In our analysis we include α2 and all initial conditions as unknown parameters, so we take as vector of 
parameters to be estimated: θ = [α1,α2, ka,Vm, kc ,β1,β2, x1(0), x2(0), x3(0), x4(0)] . We proceed by perform-
ing an iterative search to identify problematic zero-valued initial conditions. Table 2 contains the initial value 
combinations for which we found the model to be not identifiable. These combinations may perhaps not be 
realistic in the context of this particular example. However, the emphasis here is to illustrate that the notion of 
global identifiability does not hold for this model. It also illustrates that the fast numerical method used in this 
paper allows for these kind of searches.

Figure 5 shows the change in the structure of the directed graph for the scenario where x3(0) = x4(0) = 0 
(left). For this case, the graph is divided into two strongly connected components with state x1 and x2 forming 
the first component and x3 and x4 the second. Notice that when x3(0)  = 0 , that there is an additional connection 
between the nodes related to states x1 and x3 (right). This reduces the model structure down to one single com-
ponent and therefore when x3(0)  = 0 , information can flow from the measured state x1 to the model equations 
pertaining to x3 and x4 . As apparent from this directed graph, the identifiability signature in Fig. 6 shows that 
parameters ka,β1 and β2 , of which the latter two are exclusively related to the differential equations of states x3 
and x4 , are not identifiable. This result is corroborated by the symbolically computed 5× 7 Jacobi matrix. in 
which each column is related to 1 of the 7 unknown system parameters, α1, ka,Vm, kc ,α2,β1,β2 . Since the col-
umns related to parameters ka,β1 and β2 contain only zero elements, we may immediately conclude that these 
parameters cannot be estimated. We symbolically calculated the base-vectors spanning the nontrivial null-space 
and found that N

(

dG
dθ (θ)

)

= {0, 1, 0, 0, 0, 0, 0} , {0, 0, 0, 0, 0, 1, 0} , and {0, 0, 0, 0, 0, 0, 1} . This tells us that there is 
no other totally correlated set of parameters. This is also in complete agreement with the identifiability signature 
in Fig. 6 which shows precisely 3 numerically zero-valued singular values. This result was obtained within 0.5 s 
on an Intel Core i7 processor with 8 GB RAM using the application described  in10. This is comparable with EAR 
when the initial conditions are not parametrised. For parametrised initial conditions, differences in computation 
times were observed in favour of the sensitivity-based application  from10.

Table 2.  Zero-valued initial condition combinations that result in the loss of structural identifiability of the 
Pharmacokinetics model ( M5).

Number of zero-valued initial conditions States involved

2 x1(0) = x2(0) = 0

2 x3(0) = x4(0) = 0

Figure 5.  Directed graph of the Pharmacokinetics model ( M5 ). (Left) For the scenario x3(0) = x4(0) = 0 . The 
model is divided into 2 strongly connected components. (Right) For the scenario x3(0)  = 0 and x4(0) = 0 . The 
additional connection between nodes x1 and x3 reduces the model down to a single component. The result is 
that a greater amount of information is transferred between the individual model states.
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Discussion
The results in this paper show the importance of including initial values in the identifiability analysis of any model. 
We showed how to identify problematic initial conditions that may result in loss of identifiability. The insight gained 
from this approach provides modellers with an extra tool to turn an unidentifiable model into a identifiable one, e.g., 
by avoiding initial values that may cause problems. This is especially useful during the design of the experiments. 
We also showed that thanks to the algorithm’s computational efficiency, one can detect these problematic values not 
only for small toy models but also for realistic system biology models that are usually fairly large.

Highlights include the identification of problematic initial conditions of the well-known JAK/STAT model 
comprising 14 model equations (Example 4) and the identification of problematic values that result in the loss of 
local identifiability of a Pharmacokinetics model, a model classified as globally identifiable in the past (Example 5).

Here, we mainly used our method to identify problematic sets of zero-valued initial conditions. The com-
putational efficiency of the method allows for extensive searches in the space of initial conditions. However, 
nonzero initial conditions may also cause loss of identifiability and then the question that begs to be answered 
is “How does one go about identifying potential problematic sets of nonzero initial values?” This remains a 
challenging problem since in general the space of initial conditions is infinitely dimensional. The insight that 
the problematic sets form a thin subspace may be of help here. To find such manifolds one could think of first 
detecting one problematic point, after which the rest of the manifold could be traced via continuation. Another 
promising avenue to be pursued in the future is the investigation of systems in steady state. It is well-known that 
the estimation of certain parameters of such systems might be problematic, since the data do not contain enough 
informative dynamics for the accurate parameter estimation. Initial conditions that give rise to a steady state 
could thus rather be avoided. Given the size of modern systems biology models, any future research requires an 
algorithm that can quickly analyse identifiability. The approach followed in this paper provides such an algorithm.

As a final point, we wish to mention that caution should always be taken when analysing and giving judgement on a 
model’s structural identifiability. Given that this is a difficult property to analyse, for non-linear models in particular, no 
single method exists that can be applied to all models without fail. As an example, consider the following 1 state model:

For the defined output y = x1 , some of the methods mentioned in the introduction incorrectly classify parameter 
θ1 as unidentifiable, when in actual fact it is identifiable. By first applying our numerical step, one finds that the 
model is indeed identifiable and accordingly, no further analyses are required, eliminating the risk of obtaining 

dG

dθ
(x(0), θ)

=













0 0 0 0 0 0 0

−x1(0)+ x2(0) 0
−x1(0)

(kc+x1(0))
Vmx1(0)

(kc+x1(0))2
0 0 0

((2α1+α2)(kc+x1(0))
2(x1(0)−x2(0))+Vm(2kcx1(0)+x1(0)

2−kcx2(0)))
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Figure 6.  Identifiability signature of the pharmacokinetics model ( M5 ) for the experimental setup with 
x3(0) = x4(0) = 0 . (Top) The three singular values beyond the gap suggest that the sensitivity matrix is rank 
deficient and so the model is not identifiable. (Bottom) Entries in the last 3 columns of the V  matrix, related to 
the 3 zero valued singular values. The nonzero entries suggest that parameters {ka,β1,β2} are unidentifiable.
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incorrect results. This proves that using different methods in tandem will not only minimise computational times 
but will also improve computational correctness.

Methods
Model description. Ordinary differential equation models may be written in standard state-space  form21:

State variables are contained in vector x(t) with dimension n, system parameters in vector θ (dim(θ) = p ) and 
the measured model outputs in vector y(t) (dim(y) = m ). The initial values of states may be unknown and in 
such instances, the initial condition vector may be parameterised through some additional parameters that then 
become part of the identification problem. The resulting unknown parameter vector then has dim(θ)= p+ n22.

The state vector, x , evolves in time in Rn . Functions f i , i = 0, . . . , k , and h are assumed to be analytical and 
C∞ functions, so that their partial derivatives of any order exist and are  continuous23. Finally, a model’s input 
functions are contained in the vector u(t) ≡ {u1, . . . , uk}

22.

Local structural identifiability analysis. The identifiability detection method we propose combines 
both numerical and symbolic analyses. The methods starts with a numerical analysis of the rank of the so-
called sensitivity matrix. This initial step pinpoints potentially unidentifiable parameters and initial conditions. 
In a second step a symbolic analysis is performed to check whether these parameters and initial conditions are 
indeed causing identifiability problems. In this discussion we deal with both steps separately. Note that at its 
core both the factorisation of the sensitivity matrix via SVD and the computation of the null-space of the Jacobi 
matrix have the same task: i.e. identifying linear dependencies between the partial derivatives of the output 
sensors with respect to the unknown parameters. The difference being that the sensitivity matrix represents 
the functions via values at different points whilst the matrix generated using Lie derivatives uses values of the 
derivatives at one point.

Since the second, symbolic step of our method usually involves only the analysis of a restricted number of 
parameters and initial conditions, the computational demand which is often found to be the curse of a symbolic 
analysis of the full model, is significantly reduced. The numerical results obtained from the first step can attrac-
tively be summarised in a so-called “identifiability signature”. This signature contains of a graphical presentation 
of the singular values resulting from a Singular Value Decomposition (SVD) of the sensitivity matrix. Structural 
unidentifiability is indicated by a clear gap in the displayed singular values11. Furthermore, the signature repre-
sents the components of the singular vectors corresponding with the close-to-zero singular values. The nonzero 
components reveal which parameters and initial conditions are expected to be problematic.

Numerical analysis. The numerical step of our method uses the sensitivity matrix function ∂y/∂θ of the model 
output with respect to individual unknown model parameters. These sensitivities are calculated using the fol-
lowing 2  equations9:

One obtains ∂y/∂θ as a function of time by simultaneously integrating Eqs. (49) and (52) and substituting the 
solution into Eq. (53)24. By evaluating these sensitivities at discrete time points on an interval [t0, . . . , tN ] one 
constructs a sensitivity matrix, S . Matrix S has p+ n columns when all initial values of model states are also 
unknown, with each column related to a specific parameter or initial condition, θi , i = 1, . . . , p+ n . The sensi-
tivity matrix thus reads as:

(49)ẋ(t) = f 0(x(t), θ)+

k
∑

i=1

ui(t)f i(x(t), θ),

(50)x(0) = x0,

(51)y(t) = h(x(t), θ).

(52)
d

dt

(

∂x

∂θ

)

=
∂f 0
∂x

∂x

∂θ
+

∂f 0
∂θ

+

k
∑

i=1

(

∂f i
∂x

∂x

∂θ
+

∂f i
∂θ

)

ui ,

(53)
∂y

∂θ
=

∂h

∂x

∂x

∂θ
+

∂h

∂θ
.
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A full ranked matrix S is a sufficient condition for local structural  identifiability25,26. The rank deficiency of the 
sensitivity matrix can be attributed to two factors: (1) an output may be insensitive to a specific parameter and 
so all entries in the matrix column pertaining to this parameter are zero. Accordingly the parameter is not iden-
tifiable. This phenomenon is observed in Examples 2 and 5 in the “Results” section. (2) Alternatively, a model 
output may be sensitive to a particular parameter, but this sensitivity is related to the sensitivity of the output to 
one or more other  parameters24. The result is that certain columns of the sensitivity matrix are linearly dependent 
and so the parameters are totally correlated and not  identifiable27. This can be seen in Examples 2, 3 and 4 in the 
“Results” section. We determine the numerical rank of the sensitivity matrix by applying a Singular Value Decom-
position (SVD), in which the matrix S is written as a sum of equally sized matrices that decrease in  dominance11:

If all parameters and initial conditions are involved, there are p+ n singular values σi , arranged in descending 
order. The rank of S is given by the number of nonzero singular values. Therefore zero-valued singular values 
indicate the rank-deficiency of S28. Due to numerical errors, singular values are seldom exactly zero and accord-
ingly the following practical definition is used: zero-valued singular values are values that fall beyond a distinct 
gap in the spectrum of singular  values29. It is up to the user to define a reliable width for the gap. In our examples, 
we take 10 decades on the logarithmic scale as reliable gap width. The presence of close-to-zero singular values, 
which are located beyond such a gap, indicate that the model may be unidentifiable. The parameters and initial 
values that may be involved follow from the nonzero entries in the columns, vi , of the right singular matrix, 
that correspond with the close-to-zero singular values. The singular values and the unidentifiable parameters 
are graphically illustrated in an identifiability  signature11. We show the signatures of each of the models in the 5 
Examples in the Results section (cf. Fig. 1).

Symbolic calculations. The second step in our procedure is to verify the numerical results symbolically. This 
entails the symbolic calculation of the Jacobi matrix of a model. The computational demand often associated 
with computing this matrix is greatly reduced by using the preceding numerical  outcomes9. Available software 
packages that can be used include amongst others:  COMBOS30 and GenSSI2.031. We use Lie derivatives and 
accordingly, only compute derivatives of the Lie derivatives with respect to the parameters that are suggested to 
be unidentifiable from the numerical analysis. We indicate them by θunid . We use the rank condition for local 
structural identifiability presented by Tunali and  Tarn32.

The Jacobi matrix of a model with no control inputs ( u1, u2, . . . , uk = 0 ) can be computed using Lie deriva-
tives, where a Lie derivative is the directional derivative of the smooth function, h , in the direction of the drift 
vector field, f 024. Mathematically it is defined as

Successive Lie derivatives are calculated as

The symbolic algebra package Kwatny’s ProPac add-on for Mathematica can be used to calculate these Lie 
 derivatives22. In a generating series expansion, successive Lie derivatives of the output vector function h are 
calculated. Parameterising the unknown initial conditions and so regarding them as additional parameters, the 
Jacobi matrix may have up to p+ n columns, each related to an individual parameter. Finally, the Jacobi matrix 
is computed by calculating partial derivatives of the generating series coefficients with respect to the unknown 
parameters. The symbolic matrix associated with the analysis of all system parameters and initial conditions 
reads  as9,

(54)S(t0, . . . , tN , θ) =
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A sufficient condition for structural identifiability is that ∂G
∂θ

(θ) , defined in Eq. (58), has full rank p+ n9. A lower 
rank is equivalent to it having a nontrivial null-space33. The elements in such a nontrivial null-space reveal which 
parameters and initial conditions are involved in one or more correlated sets.

When evaluating models of the form defined in Eqs. (49)–(51) with u1, u2, . . . , uk  = 0 , individual input func-
tions must be incorporated into the symbolic  calculations21,34. An output is now expanded in a so-called Fliess 
 series32 with respect to time and input signals. The coefficients of such a series are h(x(0), θ) and

The notation fj0 , . . . , fjq represents all possible combinations of the vector fields {fj , j = 0, . . . , k}9,21. Further-
more, |0 specifies that this Jacobi matrix is evaluated in the point x(0) . It is clear that this procedure leads to a 
fast expanding number of terms if the values of k (the number of input signals) and p (the number of system 
parameters) increase. To give an impression of the Jacobi matrix associated with the full model in Eq. (52) for 
k = 1 , we restrict the number of parameters to 1, e.g. θ1 , and the number of initial values also to 1, e.g. x0 . In that 
very basic case, the Jacobi matrix reads  as9:

where j0, j1, . . . , jq ∈ [0, 1] . Usually, a null-space will emerge if this matrix has only few rows. However, in the 
process of adding additional rows, two things may happen: either the basis vectors of this null-space are destroyed 
at some stage, indicating that the system is identifiable, or this null-space will persist regardless of the number 
of rows added, indicating that the system is structurally unidentifiable.

Code availability
 MATLAB code is available at https:// sourc eforge. net/ proje cts/ struc tural- ident ifiab ility/ files/ with the user appli-
cation available upon request from the author hans.stigter@wur.nl.
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