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A novel D2D–MEC method 
for enhanced computation 
capability in cellular networks
Xiangyan Liu1*, Jianhong Zheng1, Meng Zhang1, Yang Li2, Rui Wang1,3 & Yun He1

Device-to-device (D2D) communications and mobile edge computing (MEC) used to resolve traffic 
overload problems is a trend in the cellular network. By jointly considering the computation capability 
and the maximum delay, resource-constrained terminals offload parts of their computation-intensive 
tasks to one nearby device via a D2D connection or an edge server deployed at a base station via a 
cellular connection. In this paper, a novel method of cellular D2D–MEC system is proposed, which 
enables task offloading and resource allocation meanwhile improving the execution efficiency of each 
device with a low latency. We consider the partial offloading strategy and divide the task into local and 
remote computing, both of which can be executed in parallel through different computational modes. 
Instead of allocating system resources from a macroscopic view, we innovatively study both the 
task offloading strategy and the computing efficiency of each device from a microscopic perspective. 
By taking both task offloading policy and computation resource allocation into consideration, the 
optimization problem is formulated as that of maximized computing efficiency. As the formulated 
problem is a mixed-integer non-linear problem, we thus propose a two-phase heuristic algorithm 
by jointly considering helper selection and computation resources allocation. In the first phase, we 
obtain the suboptimal helper selection policy. In the second phase, the MEC computation resources 
allocation strategy is achieved. The proposed low complexity dichotomy algorithm (LCDA) is used to 
match the subtask-helper pair. The simulation results demonstrate the superiority of the proposed 
D2D-enhanced MEC system over some traditional D2D–MEC algorithms.

In recent years, innovative applications such as artificial intelligence, face recognition and interactive games 
promote the access of large-scale devices1. The fundamentally new 5G key physical layer technologies such as 
multi-input multi-output (MIMO), non-orthogonal multiple-access (NOMA) and full-duplex (FD) transmis-
sion for radio access networks further increase the network capacity as well as the number of accessible devices2. 
According to the latest forecast report provided by Cisco, by 2023, the number of terminals connected to the 
world will reach nearly 30 billion3. The surge of emerging applications accelerates the improvement of compu-
tation and network capacity compared to traditional wireless networks. The European Telecommunications 
Standard Institute (ETSI) took the lead in putting forward the concept of Mobile Edge Computing (MEC) in 
2014, which then published the white paper of MEC technology4. Through MEC, the shortcomings of traditional 
mobile cloud computing can be effectively overcome, cloud computing capabilities can be expanded from cen-
tralized clouds to the edge of a networks, and the processing capabilities can be enhanced, providing rich and 
low-latency computing for ultra-dense networks (UDN), and meanwhile avoiding the problem of long latency 
and overload of the core networks5,6.

However, compared with cloud servers, edge servers have relatively limited computing resources7. In future 
scenarios of Massive Machine Type Communications(MMTC) or Internet of Things (IoT), when tasks are 
executed through MEC servers with limited computing resources for a large number of mobile users at the 
same time, the servers may become overloaded, which will reduce the performance of the wireless system. 
Collaborative computing among users is an effective way to extend the execution capability of MEC. Device-
to-Device (D2D) communication is widely concerned because it can share channel resources with cellular 
networks and achieve a higher spectrum utilization as well as resource scheduling8. On the other hand, the 

OPEN

1School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, 
Chongqing  400065, China. 2Cyberspace Security Research Institute of China Electronics Technology Group, 
Chengdu  610041, China. 3Department of Electronic communication Engineering, Yuxi Normal University, 
Yunnan 653100, China. *email: xiangyan.leo@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-96284-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16918  | https://doi.org/10.1038/s41598-021-96284-w

www.nature.com/scientificreports/

computation-intensive tasks have higher requirements for highly reliable accesses and low-delay processing, 
and computation resources can be further expanded through joint communication between D2D communica-
tion and MEC9.

Offloading strategy speeds up the computing process and prolongs the battery life of terminal equipment10. 
How to efficiently realize task offloading and resource allocation is a hot issue in the current research on D2D-
enhanced MEC system. Devices needs to make offloading decisions according to the tasks requirements and 
decide whether the tasks should be executed locally or offloaded to a third-party device nearby via D2D con-
nection or an edge server deployed in a base station via cellular connection11–13. The information-centric IoT 
is considered in the works in14, in which the partial offloading model is considered and the task is divided into 
multiple subtasks. The computing resources of the BS are used to manage the control information to find subtask-
helper pairs for the devices with several precedence-constrained subtasks14. Unlike14, a system model is proposed 
in Research15 for cooperative mobile edge computing, in which a device social graph model is developed to 
capture the social relationship among devices. The task dependency graph is closely related to the social graph, 
which facilitates flexible choices of task execution approaches15. Game-theoretic models for device-enhanced 
MEC offloading with a large number of UEs have been investigated in Study16. More specifically, the problem 
of offloading decision-making among users has been formulated as a sequential game, which achieves the Nash 
equilibrium16.

Both device access and delay requirement should be considered in offloading decisions because they are 
important factors affecting the quality of experience (QoE) of users17,18. The variability of mobile device capabili-
ties and user preferences is leveraged in Reference19, formulating the system utility metric as a measure of QoE 
based on task completion time and energy consumption of a mobile device19. In20, a task model is considered to 
minimize the latency of local users, who have multiple independent computation tasks that can be executed in 
parallel but can not be further partitioned. The tasks can be offloaded to helpers and the results can be down-
loaded from them over prescheduled time slots enabled by the proposed TDMA-based communications20. A 
system is put forward in the works in21 from the perspective of holism. Four levels of heterogeneous cloud units 
with various hardware capabilities are employed in the system, including the D2D communication units and 
the edge cloud units21, through which a higher efficiency is achieved in terms of offloading, congestion, cover-
age and latency.

As the delay and energy consumption are affected by the offloading schemes of mobile users, the 
D2D–MEC systems have been investigated in recent works from the perspective of total computation latency 
minimization20,22, total energy consumption minimization23–33 and the tradeoff between the two objectives16,34–38. 
A time division multiple access (TDMA) transmission protocol is proposed in22 for minimizing the total com-
putation latency of mobile devices with multi-helpers22. Like22, it is supposed in Reference23 that each device can 
be offloaded to multi-helpers, jointly considering helper selection, communication and computation resources 
allocation23. Kai et al. used Initial Task Allocation (ITA) algorithm to maximize the number of executed tasks, 
and the problem of global energy minimization was tackled while maintaining the maximum number of executed 
tasks25. To enable the minimization of energy consumption, an adaptive offloading scheme is proposed in the 
work of28, and the helper controls the offloading process based on a predicted helpers’ CPU-idling profile that 
specifies the amount of computation resource available for co-computing28. An optimization problem is formu-
lated in30 to minimize the time-average energy consumption of task execution of all mobile devices, taking into 
consideration the incentive constraints resulted from the prevention of over-exploiting and free-riding behav-
iors. A Lyapunov optimization method based on online task offloading is derived accordingly30. The Lyapunov 
optimization technology framework is also leveraged in Reference31 to solve the problem of stochastic optimi-
zation, which is formulated as a problem of continuous arrival task offloading of mobile devices31. A two-step 
algorithm has been proposed in Study32, and delay-sensitive tasks are processed in the first step, while tasks of 
users with energy restrictions are processed in the second step. The proper offloading destination is found by the 
MEC server through the maximum matching with the minimum cost graph algorithm32. Except for traditional 
methods, a Q-learning algorithm and a deep Q-network algorithm are applied in27, meanwhile the long-term 
energy consumption in continuous time is minimized via reinforcement learning in33.

To maximize a weighted sum of reductions in task completion time and energy consumption, a MEC-enabled 
multi-cell wireless network is considered in34 to assist mobile users in executing computation-intensive tasks34. 
A latency and energy consumption minimization scenario is proposed in Work37 for a system with one BS. The 
formulated problem is transformed into a sub-problem of computation offloading and that of resource alloca-
tion, which are respectively solved through the Kuhn-Munkres algorithm and the Lagrangian dual method37. A 
dynamic social-motivated computation offloading method has been proposed in Study38, through which the task 
computation latency and energy consumption are jointly minimized. A Lyapunov optimization-based method 
and a drift-plus-penalty algorithm are used to solve this problem38.

A framework consisting of MEC and cache-enabled D2D communication is enabled in39 to enhance comput-
ing offloading and caching capabilities39. Like in39, the task caching in the context of a device-enhanced MEC 
system has been examined in Study40. Sun W et al.41 propose a Stackelberg game-based incentive mechanism to 
encourage other devices to help a device finish the computing tasks, then through a graph-based algorithm, the 
optimal task assignment solution is found to improve the task processing efficiency41. A basic three-node MEC 
system with two UEs is considered in the works in42, whereby one UE needs computation resources and the other 
is the helper/relay42. Moreover, one AP node is attached to one MEC server. A four-slot protocol is proposed 
to enable energy-efficient device-enhanced MEC. Besides, federated learning is involved in D2D-assisted MEC 
networks to lower the communication cost43. The benefits of internet service providers(ISPs) are maximized in 
Reference44. Finally, we provide a comparison of the pros and cons in the recent research in Table 1.

The problems formulated from the macro perspective are mainly solved in the aforementioned studies, i.e., 
the total task completion time, energy consumption or system capacity. However, the computing efficiency of 
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independent devices in the D2D–MEC system has not been considered. Besides, a binary offloading strategy is 
considered in most studies to execute tasks in the system. In the studies of partial offloading, either the high-
performance helpers with a few tasks are ignored or the computing resources of devices and the edge server 
are neglected. Inspired by this, we integrate D2D communication with the MEC system and propose a novel 
D2D–MEC method. To facilitate our analysis, we make the following reasonable assumptions throughout this 
paper. 

1.	 All devices in the network are linked to and can communicate with the edge server. Besides, devices can 
communicate with each other. Once the devices complete their tasks within the time limit, the remaining 
computing resources can be used to continue helping other devices, which is similar to14. Only if the devices 
fail to complete the tasks on time will they offload the tasks to the helper or the edge server.

2.	 Each device has a computationally intensive and time-sensitive task that needs to be completed within a 
certain time, which can be segmented. As the works in41, the task can be executed locally, offloaded to one 
of the helper devices nearby or executed by offloading to the edge server. When a task arrives, each device 
will first predict whether the local computing resources are sufficient to complete it within a specified delay 
based on its computational capability. If so, the task can be executed locally. Otherwise, according to the 
proposed algorithm, the incomplete part will be offloaded to the helper device or the edge server.

Table 1.   The comparison of the related studies.

Ref. Purpose Year Advantages Shortcomings
5 Minimizing the response delay of requests. 2020 A multi-server system is taken into consideration Regardless of the allocation of bandwidth

10 Maximizing the supported links. 2020 Considering resource allocation and power control 
together HetNet is not considered

14 Minimizing the time and financial cost for the users 2019 Taking into consideration the precedence-constrained 
subtasks The BS does not participate in the computing process

15 Reduce the computation cost. 2018 Facilitate flexible choices of task execution approaches Extra resources are needed to maintain socially moti-
vated cooperation

16 Decrease the task execution delay and the energy 
consumption. 2018 The offloading scheme can meet a Nash equilibrium 

of the formulated game
Only one mobile user updates its offloading decision 
in each decision slot

19 Maximizing the system utility by the improvement 
in QoE. 2017 Improve the QoE of each mobile device Without considering the maximize time latency

20 Minimizing the computation delay of local users. 2018 A device can offload its tasks to several nearby end 
devices Only one user is considered.

21 Achieve higher efficiency 2018 A new four levels of heterogeneous cloud is proposed. The new heterogeneous cloud is hard to deploy

23 Minimizing the overall energy consumption 2020 The tasks of each device can be offloaded to multi-
helper The network control factor is not explicitly formulated

25 Maximizing the number of executed tasks. 2019 The number of access devices has improved Only one BS is taken into consideration

27 Minimizing the energy cost 2020 MEC with cache-enabled D2D communications is 
proposed The complexity of the algorithm is high

28 Minimizing the energy consumption. 2018 Applying computation prediction at edge devices The adaptive offloading of computation tasks is not 
practical

29 Minimizing the energy consumption of equipments. 2017 Deals with the D2D crowd task assignment problem The energy-efficiency of the D2D clusters is not 
considered.

30 Minimizing the energy consumption of mobilede-
vices 2016 Computation resources of mobile devices can be 

shared through devices
The network control factor is not explicitly formulated 
in the scheme

31 Minimizing the energy consumption for mobile 
devices 2019 Handle the continuous arrival tasks of mobile devices Communication overhead is neglected

32 Minimizing the energy consumption of the task 
execution 2020 The scheme is designed for devices with delay-sensi-

tive tasks or low energy The fairness among devices is not considered

33 Minimizing energy consumption 2020 The long-term energy consumption in continuous 
time is minimized Only idle users can be helpers

34 Maximizing reductions in task completion time and 
energy consumption 2019 Users can improve the efficiency of task execution The performance discrepancy between multi-server is 

not considered

37 Minimizing execution latency and energy consump-
tion 2018 The optimal tradeoff between execution latency and 

energy consumption
The task execution relationship between devices is not 
considered

38 Minimizing the task computation latency and the 
energy consumption 2019 Social-motivated computation is used in the D2D–

MEC system Did not specifically evaluate security metrics

40 Maximizing a utility defined based on delay and 
energy consumption 2019 Integrate caching into D2D-aided computing 

Networks Caching is conducted in an offline manner

41 Maximizing the computing profits of task publishers 2019 Utilizing the computing resources of idle devices to 
enhance computing capability Ignore the profits of the helper device

42 Improving energy efficiency in mobile computing 2018 A novel four-slot protocol is propose The simple evaluation topology included only two 
user equipment

43 Lowering the communication cost 2021 Federated Learning is involved in D2D-assisted MEC 
networks It’s hard to guarantee the robustness of the system

44 Maximizing the network management profit 2021 Maximize the benefits of ISPs. The fog node is not specified
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3.	 As the works in39, in the task execution process, the maximum time required by all devices is constant and 
equal, i.e., synchronous execution. Only when a task is completed and can the next be continued in execution 
simultaneously among devices. Asynchronous task processing deserves further investigation.

We adopt a partial offloading strategy and make full use of the computing resources within a specified delay, 
so as to improve the number of supported devices and their computing efficiency in the system. Since users tend 
to execute tasks through their own devices, a clustering algorithm is adopted to divide a task into two subtasks 
considering the users’ computing capability. One subtask is executed locally, and the other is offloaded to a 
helper device or an edge server. LCDA is proposed to match the subtask-helper pair. Then, the system limitations 
are analyzed in terms of the size of the task, the tolerance time and the number of access devices. Besides, task 
execution, task offloading and computation resource allocation can be completed within the time constraints. 
Computing efficiency can be increased through the D2D-assisted MEC system effectively, and the computation 
resources in both the edge server and the devices are highly utilized in the system. The main contributions to 
this work are summarized as follows. 

1.	 To improve the network capability and computing capability, we propose a collaborative D2D-assisted MEC 
system that supports multi-level task offloading and resource allocation. In particular, we divide the task into 
two subtasks through partial offloading, which can be separately executed locally and remotely, followed 
by the offloading decision of each device from the microscopic point of view instead of the previous task 
assignment from the macroscopic view. Finally, the computation resource allocation of the MEC server is 
given. The problem is proposed as a mixed-integer non-linear problem, which is resolved through a two-
phase heuristic algorithm.

2.	 To increase the number of access devices and achieve the maximum task execution capability, the LCDA 
algorithm is proposed to match the subtask-helper pair in the system. The MEC server guarantees that the 
remaining subtasks can be completed. The simulation results show that in different profiles (such as the 
number of devices, time constraints and the size of the intensive tasks), the algorithm has a superior per-
formance with a lower time and space complexity, which effectively improves the computing capacity of the 
D2D–MEC system with time constraints.

3.	 To verify the practicability of the proposed model and the heuristic algorithm, we use improved greedy 
algorithm41, initial task assignment algorithm25, bipartite graph matching algorithm14 and efficient delay-
aware offloading scheme32 as the benchmark comparisons of the proposed algorithm. Compared with the 
four traditional D2D–MEC algorithms, the results corroborate the superior performance of the proposed 
scheme in the scenario with strict time constraints.

The remainders of this paper are organized as follows. The system model, problem formulation and problem 
solution are introduced in "Method" section. Simulation results are given in "Simulation results" section, and 
conclusions are given in "Conclusions" section.

Method
In this section, we introduce the D2D-enhanced MEC system, followed by the communication and computation 
model. The computation model is structured in the following three modes: Local execution mode, Local+D2D 
execution mode and Local+D2D+Edge execution mode. Then, depending on these three modes, we propose 
the optimization problem to find the solution to maximize the computational efficiency of the devices. Finally, 
three algorithms are utilized to solve this problem.

D2D–MEC system model.  As shown in Fig.  1, the D2D–MEC system consists of a base station(BS) 
equipped with an edge server and N mobile devices owned by some users. The devices are denoted by the 
set N �

= {1, 2, ...,N} , which contains Cluster 1 and Cluster 2. The devices represented by Cluster1 can com-
plete tasks locally within the time constraints and provide help to other devices. Cluster2 represents a group 
of devices that can not complete tasks locally within the time delay and need to offload part of their tasks 
remotely. They require extra computing resources from other devices via a D2D connection or the MEC 
server via a cellular connection. Among them, the set of devices in Cluster1 and Cluster2 are defined as 
N1

�
= {1, 2, ...,N1},N2 ∪N3

�
= {1, 2, ...,N2+N3} . In Cluster1, Dev_a represents devices that cannot provide 

services to nearby devices via D2D connection, and Dev_b represents devices that assist adjacent devices in 
Cluster2, i.e., Dev_b is a helper. In Cluster2, Dev_c refers to devices in N2 which need additional computing 
resources for task execution through D2D connection, and Dev_d refers to devices in N3 that fail to match 
neighboring helpers but need to offload their tasks to the edge server. In this process, like the work in39, BS 
can get task size sequence information that the device (Cluster1) can provide through feedback and send the 
sequence information to the device(Cluster2) that needs help. Besides, BS can acquire the channel state informa-
tion (CSI) of all devices via feedback, and the orthogonal frequency-division multiple access (OFDMA) method 
for channel access is adopted.

Communication model.  Each device in N2 ∪N3 is allocated one sub-channel for the cellular link or 
D2D link. Then we can denote B and N0 as the bandwidth and the power of additive white Gaussian noise for 
each sub-channel respectively. If Device n chooses to offload its task remotely, using Shannon’s formula, the 
maximum achievable transmission rate of the D2D connection or cellular link can be expressed as
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where Pcomn  is the transmission power of one device to its nearby helper or the edge server, h is the channel gain, 
which is assumed to be known in each device and remains constant but may change from the boundary of each 
offloading period45,46. In addition, this paper considers that there are no objects and large buildings blocking 
radio waves in the first Fresnel region, so the LOS channel model is adopted. The notations used in this paper 
are summarized in Table 2.

(1)r = Blog2

(

1+
Pcomn h

N0

)

Figure 1.   D2D-assisted MEC system. Local/D2D/Edge computing means the tasks executed via the 
corresponding mode.

Table 2.   Notation.

Notation Definition

N , N The set/number of total devices

N1 , N1 The set/number of local computing devices

N2 , N2 The set/number of D2D computing devices

N3 , N3 The set/number of edge computing devices

An Computation offloading decision of device n

B The bandwidth of one sub-channel

N0 Power of noise of one sub-channel

Pcom
n The transmission power of D2D link/cellular link

Pmax
n The maximum transmission power of D2D link/cellular link

h Channel gain between D2D link or cellular link

Ploc
n  , Pidl

n Power of device n in local processing/idle

In The computation task of device n

Dn The size of input data of In
Appn The required CPU cycles per bit of In
Tmax
n Maximum time delay

f locn Computation resources of local device

f devn Computation resources of helper device

f
edg
n Computation resources assigned to device n at edge server

Fedg Total computational capability of the edge server

CElocn Computing efficiency of local execution device

CEtotaln The CE of local computing devices of local execution and helper execution
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Computation model.  For the computation model, we consider that each device n(n ∈ N ) has a computa-
tion task characterized by In= {Dn, Appn,t

max
n } . Here Dn (in bits) is the data size of the task, Appn is the process-

ing density (in CPU cycles/bit), which depends on the computational complexity of the application, Cn is the 
total number of CPU cycles required for computing Dn which can be characterized by Cn=DnAppn and tmax

n  is 
the maximum tolerable latency(in second). Device n can obtain the information about Dn and Appn , and they 
remain the same value within the time range tmax

n .
Each device can execute its computation task locally or offload part of the task to one nearby helper device 

or the edge server. We denote An=
{

xn, yn, zn
}

 as the offloading decision of device n. Specifically, we have 
An={1, 0, 0} if device n can complete its task locally. We have An={1, 1, 0} if device n offloads some tasks to 
a D2D helper, and we have An={1, 0, 1} if device n chooses the edge server for remote execution. We can get 
1 ≤ xn + yn + zn ≤ 2 , with xn, yn ∈ {0, 1}.

As depicted in Fig. 2, Dev_a, Dev_b, Dev_c and Dev_d correspond to Dev_a, Dev_b, Dev_c and Dev_d in 
Fig. 1 respectively. From the perspective of the utilization of computing resources, Dev_b in Fig. 2a provides 
additional computing resources for Dev_c in Fig. 2b, which increases the utilization of resources in Dev_b and 
enables the task of Dev_c to be completed within the required time. Besides, we use Ddev

b,c  to represent the sub-
task that Dev_b would execute for Dev_c. The edge server in Fig. 2c provides additional computing resources 
for Dev_d in Fig. 2b. The edge server can handle a large number of tasks, which are also a factor affecting the 
processing of the edge server.

We next discuss the overhead of Local computing, Local+D2D computing and Local+D2D+Edge computing 
in terms of three aspects (delay analysis, energy consumption and computing efficiency).

Local computing.  Local computing means that a device completes the task locally with its inherent computing 
capability within a specified time. The time taken by a local computing device is expressed as

where f locn  represents the local computing capability of device n (in CPU cycles/s), and we use Plocn  to represent 
the local processing power of device n (in watt). Energy consumption brought in task processing is mainly 
studied, so the inherent energy consumption brought by the chip structure is not considered here. The energy 
consumption can then be expressed as

We define the computing efficiency(CE) of device n during tmax
n  as the proportion of the task handled by the 

device to the task that could be executed with the inherent computation capacity of the device within this time 
range. In this way, the local CE can be expressed as

Our goal is to enhance the CE of local execution devices, namely Dev_a and Dev_b in Cluster1 in Fig. 1. 
When a device executes some tasks as a helper during tmax

n  , the CE of the device increases.

(2)Tloc
n = Cloc

n

/

f locn , n ∈ N

(3)Elocn = Plocn

(

Cloc
n

/

f locn

)

, n ∈ N

(4)CElocn = C
loc

n

/

f locn tmax
n , n ∈ N

loc

D b

loc

D a

max

nt

D
dev
b,c

(a) Local computing

loc

D d

loc

D c

max

nt

D
dev
b,c

D
edg
d

(b) D2D computing

D
edg
d

max

nt
(c) Edge computing

Figure 2.   Delays for offloading and computing.
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Local + D2D computing.  A device that can’t entirely execute a task within its computation capability needs to 
request computing resources from nearby devices. When the device finds an adjacent device that can assist in 
processing partial tasks, the execution mode is changed to Local+D2D mode, and the auxiliary device is a helper. 
Device n1 represents the helper, and device n2 represents the neighboring device that needs help from device 
n1, and device n2 offloads the task of size Ddev

n1,n2 to device n1. The delay caused by the D2D communication 
consists of two parts, the transmission delay of the subtask that needs to be executed by the helper device and the 
processing delay in the helper. The delay for device n2 and its helper n1 and the energy consumption for device 
n2 can be expressed as

where f devn1  represents the computation capability of the helper, Pcomn1,n2 represents the transmission power of D2D 
communication link, Pidln2  represents idle power of device n2 (in watt). Besides, we define Tdev′

n1 = Cdev
n1,n2

/

f devn1  
represents the processing delay in the helper device. After the device executes a partial task as a helper, its energy 
consumption increases and is expressed as

After executing the additional task as a helper, the computing efficiency of this helper device improves and can 
be expressed as

Local + D2D + edge computing.  Devices that did not choose to offload the subtasks to nearby helper devices 
would offload their subtasks to the edge server for task execution. The execution mode is modified into 
Local+D2D+Edge mode. Similar to Local+D2D mode, the delay is also composed of the transmission part and 
processing part. The delay and energy consumption can be expressed as

where Pcomn,e  represents the transmission power of the cellular link. In this paper, the consumption (time and 
energy) is considered from the perspective of devices using battery power, so it is necessary to consider con-
sumption for the devices. Generally, the edge server with cable power always has enough power to complete 
the tasks, so the calculation energy consumption of the MEC server is omitted here, similar to the work in47. 
Just like the studies in48,49, the transfer of calculated results of time and energy consumption from edge server is 
neglected in this work, as the calculation results are generally much smaller than the calculated input data. It’s 
also fit for D2D computing.

Finally, we can get the total time delay and total energy consumption of device n in the current time frame 
expressed as

The total delay for each device can be represented by Eq. (12). Tn is the largest one of the time consumed by 
local execution, D2D execution and the edge server execution.

Problem formulation.  In this section, we propose an integrated framework of computing offloading and 
computation resource allocation in D2D–MEC wireless cellular networks. We set �n = [Tloc

n , Tdev′
n , �Tedg

n ] , 
µn = [Dloc

n ,Ddev
n ,D

edg
n ] , and give the optimization formulation of the problem as follows

(5)Tdev
n2 = Ddev

n1,n2

/

rdevn1,n2 + Cdev
n1,n2

/

f devn1 , n1 ∈ N1, n2 ∈ N2

(6)T
helper
n1,n2 = Tloc

n1 + Cdev
n1,n2

/

f devn1 , n1 ∈ N1, n2 ∈ N2

(7)Edevn2 = Pcomn1,n2

(

Ddev
n1,n2

/

rdevn1,n2

)

+ Pidln2

(

Cdev
n1,n2

/

f devn1 +

∣

∣

∣
Ddev
n1,n2

/

rdevn1,n2 − Tloc
n1

∣

∣

∣
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�nA
T
n /t

max
n  represents the proportion of execution time of the device in the maximum time delay of the differ-

ent modes, and we expect to get a larger one.
Considering the changing trend of Tloc

n /tmax
n  , Tdev

n /tmax
n  and Tedg

n /tmax
n  are opposite, we prefer the proportion 

of the former two to be as high as possible, and the latter is vice versa. Thus, we introduce the negative value 
� to represent the weight of Tedg

n  . Constraints C1 and C2 guarantee the offloading decisions which meet some 
conditions. Constraint C3 bounds the maximum delay time of each device. Constraint C4 ensures that all tasks 
can completely be executed. Constraint C5 is the total computation resource limitation of the edge server. Con-
straint C6 ensures that each device offloads its task to the edge server and can be allocated to some computation 
resources. We can observe that P 1 is a mixed-integer non-linear problem consists of both combinational vari-
ables {An} and continuous variables {µn, f

edg
n } which is hard to resolve. In the next section, we will decompose 

it into two phases and solve them by heuristic algorithms.

Problem decomposition and solution.  The main challenge in solving P 1 is that both combinational 
variables {An} and continuous variables {µn, f

edg
n } are involved. However, by analyzing the problem, we can suc-

cessfully divide it into two phases and then solve them individually.
By analyzing these six constraints, we can find that constraints C1 and C2 are about task offloading, con-

straints C5 and C6 are about the resource allocation of the edge server and constraints C3 and C4 are aimed at the 
whole task process. The offloading decisions xn, yn, zn satisfy 1 ≤ xn + yn + zn ≤ 2 . We know that task executed 
via D2D connection is also executed on another helper device and 1 ≤ xn + yn ≤ 2 holds. It has nothing to do 
with the edge server, which means constraints C2 and C4 can be divided. Based on this, we decompose the task 
into two parts, executing on the device through D2D communication and executing on the edge server.

Task assignment and offloading decision.  Since our goal is to maximize the weighted sum of the computing 
efficiency and the proportion of edge server execution time to the total time of all devices, the main limitations 
of P 1 include the task offloading strategy and the limited computation resources of the edge server. In the first 
phase, we decompose the task offloading strategy and device computing efficiency acquired from P 1 and its 
mathematical formula can be expressed as
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We transform the constraint (C3)∼(C4) into (C3)1 ∼ (C4)1 , because the device that needs help belongs to 
N2 . Only the device that requires additional resources via D2D connection is considered, and its task is executed 
locally or executed through a helper. The total delay of these devices is the largest one of the local execution delay, 
the delay of the device that executes D2D computing and the helper execution delay, namely constraint (C3)1.

According to whether the devices can complete their tasks within the required time, we divide the devices 
into two clusters: local computing and remote computing. The proposed clustering method for the task-assigned 
algorithm (CTAA) is described in Algorithm 1. Local computing devices may have excess computing resources 
to provide for another device, while remote computing devices have reached the maximum computing effi-
ciency when performing local computing. Then, the low complexity dichotomy algorithm (LCDA) described in 
Algorithm 2 is used to get the set of devices that execute the remaining tasks in the nearby helper devices and 
the edge server respectively.
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In Algorithm 2, the choice of the adjacent helper is reflected in using LCDA to match the computation 
resources required by the device and provided by the helper device to achieve the best matching. The device with 
enormous task requirements can match the corresponding helper device and vice versa. It’s the sub-optimal but 
best solution because the optimal solution requires a perfect match, which is bound to incur a lot of extra costs.

Computation resource allocation.  The second phase considers the allocation of computing resources at the edge 
server to minimize computing time. We can express the problem as

We convert (C3)∼(C4) to (C3)2 ∼ (C4)2 . The devices offloaded to the edge server are in N3 , which does not 
involve helper execution, so this conversion is reasonable. In this round of task execution, the maximum delay 
of all devices offloaded to the edge server is the same, i.e., Tmax

n  . We need to ensure the execution time of each 
device is not over the maximum time delay, namely constraint (C3)2 . We set the computing resources allocated 
to the devices that execute tasks at the edge server as {f edg1 , f

edg
1 , ......, f

edg
N3
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Then we add and subtract the sum of coefficients 
∑N3

n=1 F
edg
n  respectively, and the value of the formula doesn’t 

change. Utilizing means inequality to get the solution

According to the property of inequality, we get

Finally, we can get the computing resources allocated to each device executing the task on the edge server. The 
specific algorithm is described in Algorithm 3.

Simulation results
In this section, simulation results of the proposed D2D–MEC system are presented to verify the perfor-
mance enhancement. The channel power gain in the D2D–MEC system is modeled as h = 10−3d−ζ φ , where 
d ∼ u(0.2, 30)(in m) represents the distance between the two communication terminals, ζ represents the path-
loss exponent and is assumed to be 2.523, and φ is small-scale fading and φ ∼ CN(0, 1) is an independent and 
identically distributed circularly symmetric complex Gaussian vector with zero mean and covariance one27. The 
major simulation parameters employed in the simulations, unless otherwise stated, are summarized in Table 3.
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Table 3.   Simulation parameters.

Parameter Value

Total number of devices, N 40

Delay tolerance, T 1.1s

Data size of task, Dn [0.1, 2] Mbits

Sub-channel bandwidth, B 0.5 MHz39

Computation resources of the device, f locn [0.5, 2] ×109 CPU cycles/s39

Power density of the noise, N0 10−823

Transmit power, Pcom
n 0.15 W23

Power of device n in local/idle processing, Ploc
n , Pidl

n [0.1, 0.5] W, [0.001, 0.01] W50

Required CPU cycles per bit, Appn [500,2000]CPU cycles/bit

Edge computation resource, Ffog 40× 109 CPU cycles/s39
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Task execution result.  The simulation is carried out to verify the rationality of the proposed algorithm 
from two aspects, i.e., task execution time and task execution energy consumption of each device, as shown in 
Figs. 3 and 4. In Fig. 3, the number and the access ratio of devices executed locally, offloaded to a helper via D2D 
connection and offloaded to the edge server via cellular connection are (24, 10, 6), (0.6, 0.25, 0.15) respectively. 
The number of devices executed locally is significantly higher than that executed remotely and the tasks’ execu-
tion time at the edge server is relatively less because they are not heavy. In addition, all tasks are completed 
within the maximum tolerance time.

Task execution delay and consumption are two important factors affecting the performance of a model. As 
shown in Fig. 4, the energy consumption of each device and the incremental energy consumption of helper 
devices are given. The average energy consumption of local computing devices is lower than that of remote com-
puting devices. Devices have fluctuated time and consumption to execute tasks locally, which depends on their 
performance and the size of the assigned tasks. The results show that the proposed resource allocation model 
and task offloading algorithm can ensure that each device could complete the assigned task with less energy 
consumption within the specified time delay.

Task mode comparison.  To increase the computing efficiency and the access rate of the devices, improve 
the completion rate of the tasks in the system, three task execution modes are adopted, namely local computing, 
D2D computing and edge server computing. We measure the effectiveness of the proposed algorithm in terms 
of the number of devices existing on the system, the task size assigned to a single device and the task execution 
delay, then carry out the comparison of the three modes. The results are averaged over 1000 independent experi-
ments to ensure the scientific nature of the simulation.
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Figure 3.   The task execution time versus number of supported devices in the system (N = 40).
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We set the number of devices to 40 and 80 respectively. When the number of devices is the same and the 
maximum delay ranges from 0.8 to 1.5 s, we conduct a statistical simulation of device access in the three modes. 
As Fig. 5 shows, the trend is the same. We analyze the situation when the total number of devices is 40. When 
the delay is the minimum one (i.e., 0.8 s), the number of devices that execute tasks locally reaches the minimum 
value. The number of devices that offload tasks to helpers via D2D connection is relatively smooth cause only 
the devices with high performance allocated relatively small tasks are likely to execute additional tasks as helpers 
and these devices are relatively constant. In addition, the number of devices that execute tasks remotely is the 
maximum at this time, so is that of offload tasks to the edge server. With the increase of time delay, the number 
of devices that can complete tasks locally increase slowly, while that of offload tasks remotely decrease. The 
utilization of computing resource at the edge server is reduced, so is the number of devices executed on it. The 
remaining computing resources on the edge server can be used in other parts of the cellular network.

The introduction of D2D communication improves the computing efficiency of the device and relieves the 
computing pressure of the edge server effectively. In addition, if the latency is too small, most of the devices can 
not complete their tasks locally, which causes the congestion of the connected links and the resources allocated 
by the edge server may not be sufficient to complete the task.

As shown in Fig. 6, with the number of devices ranging from 10 to 80 in the system under the three modes, 
we conduct a statistical analysis on the access rate of devices. The performance configuration of the devices is 
shown in Table 3. When the total number of devices is less than 20, the number of local computing devices is 
larger. As the devices’ number increases and ranges from 20 to 50, D2D mode and the edge mode change in 
opposite directions. At this time, the number of devices accessing D2D mode increases steadily. When the 
number of devices is 40, the corresponding access rate of the three modes is (0.58, 0.3, 0.13) respectively, which 

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
The maximum time delay

0

10

20

30

40

50

60

70

80

N
um

be
r o

f d
ev

ic
es

total devices, N=40
local execute, N=40
D2D execute, N=40
MEC server execute, N=40

total devices, N=80
local execute, N=80
D2D execute, N=80
MEC server execute, N=80
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has the same conclusion obtained in Fig. 3. When the total number of devices is greater than 50, the device access 
rate tends to be stable in the three modes. Besides, some insightful results can be obtained via simulation param-
eters from Table 3. The ranges of Dn and Appn are [0.1, 2] Mbits and [500, 2000] CPU Cycles/bit respectively, 
the tolerance time is 1.1s and the computation resource of a device fn is [0.5, 2] CPU cycles/s. For convenience 
of description, the lower and upper limits of Dn and Appn are denoted by Dl

n and Dh
n , Appln and Apphn respectively. 

The joint distribution of Dn and Appn , namely the task assigned to each device is uniformly distributed on the 
rectangle S =

{(

x, y
)

|Dl
n ≤ x ≤ Dh

n, App
l
n ≤ y ≤ Apphn

}

 . When 
(

x, y
)

∈ S , the joint probability density is 
f
(

x, y
)

= 1
/

((

Dh
n − Dl

n

)(

Apphn − Appln
))

 , when 
(

x, y
)

/∈ S , f
(

x, y
)

= 0 . Since the range of task which can be 
executed locally by the device follows the uniform distribution of [Tskln, Tsk

h
n] , where Tskln = 0.5 ∗ 1.1 ∗ 109 and 

Tskhn = 2 ∗ 1.1 ∗ 109 . By solving the probability

We can get the ratio of the devices that execute tasks locally to be 0.65 accordingly. When the total number of 
devices is 40 and 80, the theoretical optimal value of the local execution devices should be 26 and 52 respectively. 
As shown in Fig. 5, the actual measured value is 24 and 49 respectively, and the matching degree reaches 93.27%, 
which is within the tolerance and consistent with our conclusion.

We extended the task size range from [0.1, 1] to [0.1, 3] Mbits to conduct statistical analysis on the number 
of devices in the three modes. Different task size will also affect the task execution process of each device. As 
shown in Fig. 7, when the task size is small, local mode and D2D mode can finish all tasks in the system. As the 
maximum task cap increased, some devices need to execute larger tasks, the performance of local devices limits 
the number of devices that can execute tasks locally. The increasing number of devices that can’t execute tasks 
locally affects the devices’ number that execute tasks through D2D mode. The number of devices executing tasks 
in D2D mode increases slightly and remains relatively stable overall. At this time, D2D mode can no longer 
improve the overall performance of the system. The number of devices executed on the edge server is increasing 
to relieve system stress. Compared with traditional D2D communication, Local + D2D + MEC mode has more 
significant advantages in processing tasks.

Task algorithm optimization.  The mode selection algorithm we proposed in the D2D–MEC system is 
the low complexity dichotomy algorithm (LCDA), which we compared with two baseline algorithms, namely the 
maximum task assignment method (MTAM) and the random task assignment method (RTAM). The MTAM 
algorithm allows a device to select one neighboring device as a helper to provide the largest computation capabil-
ity, which causes the device that selects previously has a higher hit rate, while that of selects afterward has a lower 
probability to offload its task. The RTAM algorithm randomly selects one adjacent device as a helper to match 
the device, i.e., the device that can provide sufficient computing capability. Fig. 8 shows how the proposed algo-
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rithm improves the computing efficiency of the local computing devices compared with the other two bench-
mark algorithms. Fig. 8a–c and d–f show the improvement of computing efficiency of local computing devices 
when the number of devices is 40 and 80 and the maximum delay is (0.8 s, 1.1 s, 1.5 s) and (0.9 s, 1.1 s, 1.3 s) 
respectively. Table 4 shows the number of helper devices and the average CE rate under the three algorithms in 
the six situations mentioned above.

When the devices’ number is fixed, taken 40 as an example, the CE of the device which needs to be offloaded 
reaches the maximum value, so only the local execution devices are analyzed in the figure. As the delay increases, 
the total number of local execution devices also increases. The number of devices in Fig. 8a–c is (16, 24, 30). 
For the convenience of observation, the CE depicted in the figure removes the local CE. It represents the incre-
mental CE of helpers. The number of nodes in the figure represents the number of helpers, and the amplitude 
represents the increased value of CE. The overall improvement in the proposed algorithm is superior to the 
other two algorithms.

Table 4 shows the number of helper devices and the percentage of improved efficiency under the three 
algorithms when the total number of devices is 40 and 80 respectively and the maximum time delay is (0.8 s, 
1.1 s, 1.5 s) and (0.9 s, 1.1 s, 1.3 s) respectively. The comparison results show that the number of helper devices 
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Figure 8.   Computing efficiency versus the number of local computing devices of different kinds: (a) The 
number of devices(NUM) and the maximum delay(DEY) is 40 and 0.8s, (b) The NUM and DEY is 40 and 1.1s, 
(c) The NUM and DEY is 40 and 1.5 s, (d) The number of devices(NUM) and the maximum delay(DEY) is 80 
and 0.9 s, (e) The NUM and DEY is 80 and 1.1s, (f) The NUM and DEY is 80 and 1.3 s.

Table 4.   The number of helper devices and the average CE rate in different parameters.

Picture number (a) (b) (c) (d) (e) (f)

Total helper devices 16 24 30 42 48 54

Parameter specification
N=40 N=80

0.8 s 1.1 s 1.5 s 0.9 s 1.1 s 1.3 s

The number of helper devices

LCDA 12 10 10 29 29 25

MTAM 10 20 17 27 41 43

RTAM 13 21 19 31 41 43

Average CE rate

LCDA 34 39.4 49.8 42.1 39.8 37.1

MTAM 27 9.9 15.2 26.2 18.6 15.2

RTAM 25 8.3 12.4 29 18 17.6
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of the proposed algorithm is relatively small, but the average CE rate is significantly higher than the other two 
algorithms.

Model comparison results.  The above simulation results comprehensively analyze the performance of the 
D2D–MEC system and show that the proposed algorithm can effectively improve the computing efficiency of 
the devices, enhance the capacity and increase the number of access devices for the system. To further verify the 
performance of the algorithm, we compare the proposed algorithm with the traditional D2D–MEC algorithm, 
including the improved greedy algorithm41, the initial task assignment algorithm (ITA)25, bipartite graph match-
ing algorithm (BGMA)14, and energy-efficient and delay-aware offloading scheme (EEDOS)32. Besides, the com-
parison is under our proposed scenarios. The completed tasks of the five algorithms under different execution 
modes are illustrated in Figs. 9 and 10. Since each device is assigned a task, the devices number of the system is 
equal to the number of tasks. The devices number in Figs. 9 and 10 is 40 and 80 respectively and the maximum 
delay is 0.8–1.5 s and 0.8–1.4 s respectively.

As an example, Fig. 9 compares the total number of devices executed through local computing and D2D 
computing with the number of devices executed on the edge server under different time delays. As shown in 
the figure, the LCDA algorithm, which gives priority to local computing and D2D computing, can complete all 
tasks within the specified time delay, while the other four algorithms cannot. When the delay is short, the LCDA 

Figure 9.   The number of devices versus the maximum time delay of different modes (N = 40).

Figure 10.   The number of devices versus the maximum time delay of different modes (N = 80).
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algorithm requires more computing resources from the edge server and the EEDOS algorithm has the same trend, 
while the other algorithms have no significant change in demand for the edge server.

The number of completed tasks of the five algorithms is compared. The number of devices is set to 40 and 
80, and the delay constraint is set to 0–1.4 s respectively. Accordingly, we can acquire the total number of tasks 
completed by the five algorithms in each time delay. Figures 11 and 12 shows that the proposed LCDA algorithm 
is better than the other four algorithms. With the increase of time delay, the total number of completed tasks of 
the LCDA algorithm is significantly larger than the other four algorithms. When the delay time reaches 0.8s, all 
devices under the LCDA algorithm can complete their tasks and remain stable in the following time delay, while 
at this point, the other four algorithms still can’t complete all tasks.

In conclusion, compared with some traditional D2D–MEC resource allocation algorithms, the LCDA algo-
rithm is superior under the proposed scenarios. The reason for the better performance of the proposed algorithm 
is that the local and edge server computation resources are considered together and the partial offloading strategy 
is used in the model. Compared with the proposed algorithm, the improved greedy algorithm only considers 
binary offloading and idle helper devices, the ITA algorithm ignores the partial offloading strategy, the BGMA 
algorithm does not take the computing resources of the BS into account, and the EEDOS algorithm only consid-
ers the help from idle devices but ignores the high-performance devices with little tasks to be handled.

Figure 11.   The number of devices that can complete the task versus Maximum delay of different modes (N = 
40).

Figure 12.   The number of devices that can complete the task versus Maximum delay of different modes (N = 
80).
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Complexity analysis.  In this section, we briefly analyze the complexity of the proposed algorithm in two 
phases, i.e., the computation offloading strategy and D2D computing efficiency acquired in Phase P2 and edge 
server resource allocation in Phase P3 , where we examine the complexity of solutions to the two phases respec-
tively. In addition, in the proposed scheme, Problem P2 can be divided into two sub-problems. The devices are 
divided into two clusters through Algorithm 1, the time complexity is O(N), where N represents the number of 
devices involved in resource allocation. The goal of Algorithm LCDA is to select the helper device and calculate 
its CE. The time complexity of LCDA is O(logN1 ), where N1 is the number of devices that have been matched in 
the system, and in the best and the worst case, the complexity is O(N1 ) and O(iteratorN1 ) respectively. According 
to the fifth line of Algorithm 2, the iterations to find the matching device is set to iterator, and N1 is the number 
of matched devices. When devices can complete their tasks on time but can only provide fewer resources, those 
that need help need a lot of resources in this period, in this extreme case, the worst computational complexity 
is attained. The problem of resource allocation of the edge server is solved in P3 , which can be completed in 
polynomial time. Accordingly, the overall computational complexity is O(N). Compared with the other four 
traditional D2D–MEC algorithms, the time complexity of the greedy algorithm is O(N2 ), that of ITA algorithm 
is O(NN+2 ) and that of BGMA algorithm is O(TN3 ), which are related to the time delay, and EEDOS algorithm 
is in a long polynomial. Therefore, the scheme proposed in this paper has a low computational complexity.

Conclusions
This paper proposes a multi-user D2D–MEC system to improve the computing efficiency of devices, where each 
device includes a task with a variable length to execute within a specified delay. The devices choose to execute 
tasks locally unless they are unable to complete them on time and offload some tasks to nearby devices with 
ample computing resources via D2D execution or an edge server. Firstly, a mixed-integer non-linear problem is 
presented to maximize the computing efficiency of the system. Then, we resolve it by dividing it into two phases. 
Specifically, according to the local computation priority, the first phase is to divide a task into local execution 
and remote execution according to Algorithm 1. The nearby helpers are first selected by the remote executing 
devices to offload their tasks through Algorithm 2, then an offloading strategy can be obtained by solving the 
problem. The assignment of computing resources in the edge server is considered in the second phase, and the 
assignment scheme is obtained through Algorithm 3. Numerical simulation results show that, compared with 
some traditional D2D–MEC algorithms, the number of access devices and completed tasks can be effectively 
improved through the proposed algorithm. Further, the task execution efficiency is improved, and a superior 
performance is achieve with a lower complexity.

Through the combination of D2D communication technology and MEC, computing and spectrum resources 
are expanded and a large-scale access of devices is increased. This is an application scenario of 5G, providing low-
latency service for computation-intensive tasks of mobile terminals, which belongs to the technical field of task 
offloading in the D2D–MEC system. In addition, ICT technology, as the integration of IT(MEC) and CT(D2D) 
technology, can be used for infrastructure construction in the smart city of 6G. In future work, ICT, digital twin 
and blockchain technologies will be applied to the Internet of Vehicles field, which can further promote the 
research on resource management and task offloading area in multi-link cooperative transmission and secure 
transmission. Our works have theoretical guiding significance for the subsequent research.
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