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Costs of position, velocity, 
and force requirements in optimal 
control induce triphasic muscle 
activation during reaching 
movement
Yuki Ueyama 

The nervous system activates a pair of agonist and antagonist muscles to determine the muscle 
activation pattern for a desired movement. Although there is a problem with redundancy, it is 
solved immediately, and movements are generated with characteristic muscle activation patterns 
in which antagonistic muscle pairs show alternate bursts with a triphasic shape. To investigate 
the requirements for deriving this pattern, this study simulated arm movement numerically by 
adopting a musculoskeletal arm model and an optimal control. The simulation reproduced the 
triphasic electromyogram (EMG) pattern observed in a reaching movement using a cost function 
that considered three terms: end-point position, velocity, and force required; the function minimised 
neural input. The first, second, and third bursts of muscle activity were generated by the cost terms 
of position, velocity, and force, respectively. Thus, we concluded that the costs of position, velocity, 
and force requirements in optimal control can induce triphasic EMG patterns. Therefore, we suggest 
that the nervous system may control the body by using an optimal control mechanism that adopts the 
costs of position, velocity, and force required; these costs serve to initiate, decelerate, and stabilise 
movement, respectively.

Mammalian biomechanical motor control comprises multiple joints and muscles that form redundant systems 
with multiple degrees of freedom. To move, the nervous system must overcome the problem of redundancy and 
determine a movement trajectory and muscle activation pattern (i.e. the electromyogram [EMG] pattern) that 
involves pairs of agonist and antagonist muscles. In both single-joint and multi-joint reaching movements, the 
agonist and antagonist muscles typically burst in triphasic patterns in an alternating  manner1,2. Thus, the muscles 
are presumably tuned selectively according to movement direction, similar to isometric force  production3. Ago-
nist and antagonist muscles are activated in a triphasic alternating pattern (Fig. 1). Agonist muscles are strongly 
activated at movement onset (Fig. 1, AG1); the antagonist muscles then show single peaks at the midpoint of 
movement (Fig. 1, ANT), following delayed peaks in velocity  profiles4. Subsequently, the agonist muscles are 
weakly reactivated (Fig. 1, AG2). The AG1 and ANT burst pair determines the increase and decrease in accel-
eration, respectively; the AG2 burst increases  deceleration5 or dampens oscillations that occur at the end of 
 movement6. Thus, the triphasic EMG pattern is not directly related to movement amplitude, speed, or duration; 
it is directly related to acceleration and  deceleration7. This simple relationship between the EMG pattern and 
movement implies that the nervous system can easily determine the muscle activation patterns needed to produce 
specific  movements8. Indeed, single-neuron and population-level activities in the primary motor cortex (M1) 
show triphasic changes in temporal pattern and instantaneous directionality, similar to the  EMG9,10; however, 
the function of these neurons is currently controversial, with research suggesting that they determine the speed 
and direction of hand  motion11,  acceleration12, or joint movement and muscle  force13. The triphasic EMG pattern 
is induced by the nervous system as an open-loop control, although the central program is currently unknown.

In the computational motor control domain, optimal feedback control (OFC) theory has been  proposed14–16, 
which predicts various movement phenomena (e.g. obstacle  avoidance17, adaptation to novel  tasks18, stiffness 
 modulation19, specific muscle  actions20,21, and the manipulation of complex  objects22); it also predicts neural 
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representation in  M123. The neural activity in M1 is presumably optimised for the musculoskeletal structure 
using an OFC-like cost  function24–26. Most trajectory planning models (e.g. minimum-jerk27 and minimum-
torque-change28 models) are presumably unable to predict muscle  actions29, while a simple model of optimal 
control can predict EMG patterns in step-tracking wrist  movement30. Although the minimum acceleration with 
constraints model can predict triphasic muscle  activity31, it predicts only the durations of muscle activation 
and inactivation; it cannot explain how redundant muscles are recruited to specific motor tasks, or how they 
modulate the bursts of each muscle. Thus far, various studies have evaluated several cost functions in optimal 
control to generate a point-to-manifold reaching task that leaves the target  underdetermined32–34. They suggested 
that the reaching trajectories are generated by the optimality principle with compositions of multiple costs (e.g. 
kinematic smoothness and mechanical energy consumption). However, the cost function that can predict the 
EMG patterns in arm movement remains unknown.

In this study, we re-examined the triphasic muscle activation patterns observed in EMGs during arm move-
ment from the perspective of optimal control using an OFC-like cost function that consisted of terminal require-
ment costs with minimised neural input to predict the muscle activation patterns. Then, we performed numerical 
simulations involving application of an iterative linear–quadratic–Gaussian (ILQG)  method35, which approxi-
mates OFC, to physiological arm dynamics with a realistic muscle model for macaque monkeys. This revealed 
that the optimal control could selectively tune muscles according to movement direction, and it indicated an 
interlaced cost based on combinations of the terminal requirement of the end-point position, velocity, and 
force under minimisation of neural input during movement. The control induced triphasic muscle activation 
patterns similar to the patterns in recorded EMGs, only under certain conditions validating the position, veloc-
ity, and force costs. Thus, each cost corresponded to each burst of the agonist and antagonist muscles (i.e. AG1, 
ANT, and AG2). Consequently, we suggest that the neural system controls the body by using an optimal control 
mechanism based on a cost function that consists of position, velocity, and force requirements. These require-
ments correspond with the first (AG1), second (ANT), and third (AG2) muscle activation bursts, which serve 
to initiate, decelerate, and stabilise movement, respectively.

Results
We simulated movement using an approximate  OFC35 and a two-joint six-muscle arm  model19,36,37 (i.e. shoulder 
flexor [SF], shoulder extensor [SX], elbow flexor [EF], elbow extensor [EX], biarticular flexor [BF], and biarticular 
extensor [BX] muscles). The simulation reproduced a centre-out reaching task, which required moving the hand 
to targets aligned 8 cm from the initial hand position. For base setting, we fixed the simulation duration at 500 ms 
and fixed the movement duration at 400 ms to fit the experimental  data2,19. Then, we assumed four situations 
involving the various cost weights in Eq. (10) as Cases 1–4. In Case 1, the positional cost was active, and move-
ment was only constrained in the terminal position. In Case 2, the cost terms of the position and velocity were 
active. This required movement under kinematic constraints. In Case 3, the force actively inhibited the end-point 
force at the target position. Finally, in Case 4, cost terms of the position, velocity, and force were active, which 
required regulation of the end-point position, velocity, and force states at the movement end. The task required 
stopping at the target without force generation.

Our model showed that the hand pathways varied slightly, forming curves or almost-straight lines in all cases, 
according to direction (Fig. 2, left column). However, the movement parameters and muscle activation patterns 
(Fig. 3) showed distinct specifications according to the cost functions. Although the muscles were selectively 
activated according to the target direction, which was defined as a counter-clockwise direction from the right 
(i.e. the x-direction), regardless of the case following the first muscle activation (AG1), the second (ANT) and 
third (AG2) bursts of the muscles varied temporally among cases.

Movement parameters. In Case 1, the hand passed through on the targets and the speed did not converge 
on zero at the end of movement (i.e. 400 ms); the joint torques peaked at the onset of movement to generate the 
hand force triggering the movement (Figs. 2a, 4a). Then, the hand force is shown as the root mean square (RMS) 
computed as 

√

f 2x + f 2y  , where fx and fy are the lateral and longitudinal forces generated at the hand in the hori-
zontal plane, respectively (Fig. 2). The joint torques and hand force then diverged slightly at the movement end 

Figure 1.  Triphasic muscle activation pattern during reaching movement. AG1, AG2, and ANT indicate the 
sequence of bursts for the pair of agonist (AG1 and AG2) and antagonist (ANT) muscles.
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because a passive tensile force was generated by stretching the muscles. In Case 2, the hand stopped on the tar-
gets and the speed was almost set to zero at the movement end, although slight motions were observed after the 
movement end (Figs. 2b, 4b). The hand force and joint torques showed biphasic peaks. The second peak of the 
joint torques was generated in the direction opposite to the movement, thus decelerating the movement and set-
ting the hand speed to zero at the movement end. However, the hand force and joint torques did not converge at 
zero at the movement end; instead, they gradually decreased. In Case 3, the hand passed through the targets and 
the speed was not zero at the movement end time, similar to the findings in Case 1; furthermore, the hand force 
and joint torques converged on zero at this time in contrast to Case 1 (Figs. 2c, 4c). In Case 4, the hand stopped 
on the targets and the speed was close to zero with gradual curves, forming clear bell-shaped profiles (Figs. 2d, 
4d). Although the hand force and joint torques showed biphasic peaks similar to the findings in Case 2, they 
converged on zero at the movement end.

Muscle activation patterns. In Case 1, agonist muscles were activated once to initiate movement (Figs. 3a, 
4e). Then, the monoarticular elbow muscles EF and EX showed no activation. In Case 2, activation of the agonist 
and antagonist muscles alternated similarly to AG1 and ANT burst, occurring immediately after the beginning 
and at the end of movement, respectively (Figs. 3b, 4f). The antagonist muscles might contribute torque in the 
direction opposite to the movement to decelerate the movement. However, EF and EX were activated only as 

Figure 2.  Centre-out movement for 16 targets. Columns from left to right are the hand paths, hand speed 
profiles, root mean squared (RMS) hand force profiles, and joint torque profiles. In the hand paths, target 
positions are shown as filled circles. In the joint torque profiles, solid and dotted lines indicate torques of the 
shoulder and elbow joints, respectively. Cases 1–4 are in rows (a)–(d), respectively.
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antagonist muscles synchronising with the biarticular muscles BF or BX. In Case 3, the agonist muscles were 
activated twice, similar to bursts of AG1 and AG2 (Figs. 3c, 4g). The second activations might suppress the devel-
opment of hand force and joint torques at the end of movement. Muscles EF and EX were weakly activated to 
supplement BF or BX. In Case 4, muscle activations showed a triphasic pattern resembling the superposition of 
activations in Cases 2 and 3, such that the agonist and antagonist muscles were activated in an alternating man-
ner; however, the agonist muscles were occasionally activated twice (Fig. 3d). Notably, when the SF muscle acted 
as an agonist (e.g. 90° movement direction; Fig. 4h: left), it was activated twice, at the start and end of move-
ment; it was activated only once in the middle of movement when it was an antagonist muscle (e.g. 270° move-
ment direction; Fig. 4h: right). The later activation of agonist muscles may contribute to movement stabilisation 
because the later torque observed in Case 2, which the antagonist muscles generated, may induce unnecessary 
movement after reaching the target. Thus, the additional torque generated by the agonist muscles was required 
to counteract opposite torques and stabilise movement after completing the task.

The costs of the position, velocity, and force corresponded to AG1, ANT, and AG2, respectively. Thus, Case 
4 could only reproduce the triphasic muscle activation pattern.

Stabilisation control. Our results suggest that the force cost reactivates the agonist muscle to counteract 
the breaking torques for stabilisation. An alternate hypothesis is that to achieve a reaching movement within 
a certain timeframe, the stability of the terminal kinematic state (i.e. position, or position and velocity) must 
be optimised after the movement phase, but not to minimise the terminal cost solely at the movement end. To 
investigate this hypothesis, we defined two extra cost functions for stabilisation control as shown in Eq. (11).

Although the cost function in Eq. (11) showed the biphasic muscle pattern present in Case 2 (Fig. 5c), the 
cost function in Eq. (12) reproduced the triphasic muscle pattern present in Case 4 (Fig. 5d). Accordingly, we 
could not reject the hypothesis of stabilisation control represented by Eq. (12). However, stabilisation control 
may regulate a cost term differential because the stabilisation of Eq. (11), which adopts only the position cost, 
decreased the hand speed in a manner similar to Case 2 (Fig. 5a). Therefore, we presume that the stabilisation 
control of Eq. (12) suppressed hand acceleration during the stabilisation period (Fig. 5b), and it played a role 
similar to the force cost in Case 4.

Figure 3.  Muscle activation patterns plotted as a function of time and target direction. The target direction is 
counter-clockwise from the right. Cases 1–4 are shown in (a)–(d), respectively. Values are normalised using the 
highest activation level in each muscle across all cases. Muscle activation levels were normalised by the highest 
activation level in each muscle across all cases: SF, 0.32; SX, 0.35; BF, 0.24; BX, 0.23; EF, 0.28; EX, 0.29.
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Effects of movement duration on muscle activation patterns. As the movement duration was 
shorter and the velocity of movement increased, the muscle activities were strengthened while the activation 
duration decreased. Slower movements were associated with prolonged activation from the agonist muscle with 
little or no antagonist activity, although the agonist bursts  twice38. We evaluated the effects in Case 4 and the 
stabilisation control adopting the position and velocity costs to change their movement durations to 0.2 s, 0.8 s, 
and 1.0 s under the simulation time at 1.1 s (Fig. 6).

The triphasic pattern in Case 4 was consistent, regardless of movement duration, although the bursts were 
weakened under prolonged duration when the movement duration was long (Fig. 6a–c). In the stabilisation 
control, the muscle activation pattern changed from triphasic to biphasic for the shoulder muscles (SF and SX) 
at the movement end 1.0 s (Fig. 6f), although it was a similar effect to Case 4 (Fig. 6d–f). Deformation of the 
muscle activation pattern occurred because of a decrease in the antagonist muscle burst at long movement dura-
tions. The agonist muscle SF and SX (i.e. AG2) were not required to negate the breaking torques induced by the 
antagonist muscle ANT. However, in Case 4, the agonist muscles were required to compensate the passive tensile 
force of the stretched muscles according to force cost, regardless of movement duration.

Discussion
This study investigated the requirements for deriving muscle activation patterns, in which antagonistic muscle 
pairs show alternating bursts with triphasic shapes. To achieve this aim, we carried out simulations of arm 
movements and applied four types of cost function, considering the end-point position, velocity, and force 
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Figure 4.  Example of joint torques and muscle activities for forward (90°) and backward directions (270°). 
Cases 1–4 are in rows from top to bottom, respectively. (a–d) Joint torques profiles. (e–h) Muscle activities.
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requirements under minimisation of the neural input. To summarise the results, the position, velocity, and force 
costs were found to play following roles: (1) the position cost led to the activation of the first agonist muscle, 
triggering movement; (2) the velocity cost activated the antagonist muscles and generated braking torques to 
decelerate the movement; and (3) the force cost reactivated the agonist muscle to negate the breaking torques and 
the passive tensile force of the stretched muscles, providing stabilisation. Other stabilising cost functions of the 
terminal position and velocity after the movement phase also produced the triphasic muscle pattern. However, 
the pattern was deformed at long movement duration, while the cost function adopting the position, velocity, 
and force exhibited a consistent pattern, regardless of movement duration. Taken together, our results suggest 
that triphasic muscle activation is induced by the costs of the position, velocity, and force at the movement end.

Our control methodology was only approximately optimal, given the challenge of solving the optimal control 
problem analytically in nonlinear systems such as the musculoskeletal system. According to the original OFC 
model for a linear dynamics plant whose state variable x(t) comprises the position, velocity, and  force16, the motor 
command is represented as·u(t) = K(t) · x̂(t) , where K(t) is the feedback gain and x̂(t) is the estimated state 
integrating the prediction of the internal model (i.e. feedforward model) with the sensory feedback similar to a 
Kalman filter. Because the Kalman filter allowed a delay in the feedback depending on the physiological systems, 
the feedback delays did not directly affect feedback gains. The components of the feedback gain for the position, 

Figure 5.  Stabilisation control. Controls of position cost and two position and velocity costs are shown in (a, c) 
and (b, d), respectively. (a, b) Centre-out movement for 16 targets. The format is identical to Fig. 2. (c, d) Muscle 
activation pattern. The format is identical to Fig. 3. Muscle activation levels were normalised by the highest 
activation level in each muscle across both cases: SF, 0.31; SX, 0.33; BF, 0.23; BX, 0.23; EF, 0.27; EX, 0.28.
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velocity, and force peaked at various times, corresponding to the cost functions of Cases 1–4 (Fig. 7a). Simultane-
ous peaks were observed in Case 1; two peaks were observed in Cases 2 and 3; and the position, velocity and force 
peaked in turn in the early, mid, and late phases of movement in Case 4. Then, the position gain served to initiate 

Figure 6.  Changes of muscle activation patterns in relation to movement duration. Muscle activation patterns 
of movement times at 0.2, 0.8, and 1.0 s are shown from top to bottom, respectively. Case 4 and the stabilisation 
control are shown in (a–c) and (d–f), respectively. Values were normalised using the highest activation level in 
each muscle across all movement durations, (a–c) SF, 0.64; SX, 0.68; BF, 0.45; BX, 0.45; EF, 0.51; EX, 0.54, (d–f) 
SF, 0.57; SX, 0.61; BF, 0.42; BX, 0.42; EF, 0.47; EX, 0.48.
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movements that generated positive motor command, and the velocity and force gains contributed to deceler-
ate and stabilise the movement (Fig. 7b), thus supporting our hypothesis regarding the roles of the cost terms.

This approach may close the gap between ideal arm movements in the horizontal plane and actual nonlinear 
dynamics in neurophysiological systems. Indeed, it has been difficult to acquire optimal solutions for more 
complex and realistic motor control, such as multi-dimensional motions that recruit numerous muscles; how-
ever, OFC may be provided by a neural substrate in M1, integrating joint motion information into joint torque 
for fast feedback  control39,40. Thus, trajectory planning in kinematics and the muscle activation pattern may be 
generated in separate  steps41,42. Based on this idea, a hierarchical control framework has been suggested, which 
divides the control problem into high-level and low-level  controllers42,43. The high-level controller is designed to 
capture the main features of the complex high-dimensional plant dynamics, although it exhibits reduced dimen-
sionality, similar to a mass-point dynamics system. The low-level controller generates arm configurations and 
muscle activations to exactly match the high-level controls, while concurrently satisfying biological constraints. 
Although the solutions of this framework are essentially identical to the solutions acquired by the approach used 
in this work, the optimal solution for this system was acquired and we did not apply any external load; therefore, 
it could potentially be used to understand how neural systems handle natural biological motions.

Several studies in patients with motor disorders have demonstrated that the basal ganglia may have a role in 
scaling the size of AG1, reinforcing voluntary command and inhibiting inappropriate EMG  activity6. Therefore, 
we assumed that in the basal ganglia module, the positional cost weight wp is related to AG1. The cerebrum 
may regulate the other cost weights wv and wf to balance wp, because the cerebellum plays a role in timing the 
voluntary bursts of ANT and AG2. Indeed, cerebellar patients are unable to perform accurate  movements44. 
This deficit is known as dysmetria, which is a lack of coordination of movement that results in overshooting or 
undershooting a target during reaching tasks.

Dehghani and Bahrami suggested that arm movements are planned with some principal patterns of muscle 
synergies; the plans can be divided into relatively few phases to reduce the dimension of the control  space45,46. 
Furthermore, Sakaguchi et al. proposed a computational model in which the brain adaptively divides the contin-
uous-time axis into discrete segments and executes feedforward control in each segment to allow sensorimotor 
 delays47. However, the OFC realised control of the muscle synergies through feedback gains, and the segmenta-
tion of motor execution may have been identified as steady-state feedback gains computed by a model predictive 
control under the framework of the  OFC23.

In previous studies that used similar muscle  models25,35, the tensile force of the passive elastic component 
was excluded from the muscle model (i.e. FPE2 in Eq. (8)), despite the size of the force. We assume that this was 

Figure 7.  Typical feedback gains of the optimal feedback control (OFC) model and the contributions to 
motor command. The optimal feedback gains were analytically computed for a linear system to model hand 
movements as mass-point dynamics. Each case (Cases 1–4) corresponds to the same formation of the cost 
function in the above results. (a) Feedback gains. Each value of the position, velocity, and force gains was 
normalised to the values of Case 4. (b) Contributions of the feedback terms to the net motor command. Each 
value was normalised to the net motor command of Case 4.
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excluded because of parameter selection sensitivity for the muscle model, such as the moment arms, optimal 
muscle lengths, and optimal joint angles, which affect the muscle length and generate a tensile force without 
muscle activation. In our model, the tensile force requires initial muscle activation to maintain the initial posi-
tion before movement onset; this affects the hand trajectories, causing marked distortion. Thus, we set the 
initial hand position to an equilibrium point balancing the forces, ensuring that the initial muscle activations 
remain at zero. With such sensitive effects, it is important to investigate how movement can be generated and 
controlled. Previous studies suggested that the neurons are optimised for physical  mechanics23–25. However, if 
individuals have learned fine motor tasks once, such learnings tend to persist, regardless of whether they are 
clearly  suboptimal48. Subsequently, individuals learn to overcome real and virtual changes in their biomechan-
ics, but prefer to rescale their prior motor habits, rather than recomputing to optimise the control  policy49. The 
prior motor habits may be learned from muscle activation patterns generated by lower sensorimotor circuitry 
that is functionally suboptimal. However, we ignored the lower sensorimotor circuitry, which is a limitation of 
our model. Recently, a model of the spinal circuitry and musculoskeletal system was  developed50, which may be 
useful for studying habitual motor control systems.

The OFC framework has another potential limitation. The model cannot predict movement duration, but 
requires this duration as an input. Indeed, the amplitudes and timings of the muscle activities and feedback gains 
are directly related to movement time and velocity. According to the findings in a previous  study51, the move-
ment duration affects the cost function in optimal control, through a mechanism equivalent to reward delay; 
this is because the passage of time reduces the value of a reward in the human  brain52. Shadmehr et al. suggested 
a cost function introducing the cost of time as a hyperbolic function to the OFC-like cost  function51. However, 
the cost of time is dependent on parameters in the hyperbolic function of the model, and the cost appears to be 
influenced by several factors (e.g. life  span53).

In summary, the results of this study imply that a triphasic muscle activation pattern can be predicted by an 
optimal control mechanism (e.g. by adopting an OFC-like cost function). Furthermore, the costs of position, 
velocity, and force requirements may be critical parameters for the physiological control of movements; they 
correspond to the triggering, braking, and stabilising of movement, respectively.

Methods
We considered the monkey’s arm to be a two-joint arm composed of the shoulder and elbow joints. The joint 
angles were defined as vector θ = [θ1, θ2]T, where θ1 and θ2 indicate the shoulder and elbow variables, respectively. 
Suppose joint torque τ ∈ R2, the dynamics of the monkey’s arm in horizontal plane are denoted by

where M(·) ∊ R2×2, C(·) ∊ R2, and D ∊ R2×2 are the inertia matrix, Coriolis force vector, and viscosity matrix, respec-
tively, and are given by

They are represented by the link parameters: mass mi, length li, distance from the joint centre of mass lgi, 
moment of inertia Ii, joint friction di1, di2 (i = 1, upper arm; i = 2, forearm). The parameters are shown in Table 1, 
and were estimated from our measurements of a Japanese macaque. Because many muscles act on the arm in the 
horizontal plane, we modelled only two degrees of freedom actuated by six muscle groups: SF, shoulder flexor; 
SX, shoulder extensor; BF, biarticulate flexor; BX, biarticulate extensor; EF, elbow flexor; and EX, elbow extensor 
(Fig. 8a). The joint torque is a function of its moment arms A ∈ R2×6 and the muscle tension vector T = [T1, T2, 
ˑˑˑ, T6]T, and it is given by τ = A·T. The moment arm is defined as the perpendicular distance from the muscle 
line of action to the joint centre of rotation, given by

(1)τ = M(θ) · θ̈+ C(θ, θ̇)+D · θ̇,

M(θ) =

[

s1 + 2s2 cos θ2 s3 + s2 cos θ2
s3 + s2 cos θ2 s3

]

,

C(θ, θ̇) =

[

−θ̇2(2θ̇1 + θ̇2)

θ̇21

]

· s2 sin θ2, D =

[

d11 d12
d21 d22

]

,

s1 = I1 + I2 +m2l
2
1 , s2 = m2l1lg2, s3 = I2.

(2)A =

[

1.5 −1.5 0 0 1.5 −1.5
0 0 1.5 −1.5 1.5 −1.5

]

/100 [m],

Table 1.  Link parameters.

Link mi (kg) li (m) lgi (m) Ii (kg  m2) di1 (N m s/rad) di2
i = 1 0.3 0.15 0.07 5.0 ×  10–3 5.0 ×  10–3 2.5 ×  10–3

i = 2 0.3 0.21 0.12 9.0 ×  10–3 2.5 ×  10–3 5.0 ×  10–3
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The jth muscle activation aj (j = 1, 2, …, 6) is not equal to the instantaneous neural input uj; instead, it is gen-
erated by passing uj through a filter that describes the calcium dynamics modelled with a first-order nonlinear 
 filter54:

where

The time constant parameters were set as tact = 0.05 [s] and tdeacct = 0.066 [s] because the input-dependent 
activation dynamics are faster than the constant deactivation dynamics (Fig. 8b).

Mammalian muscles have remarkable scaling properties, meaning that all are similar after proper normali-
sation: length is expressed in units of L0j  the length at which the maximum isometric force is  generated55, and 
velocity is expressed in units L0j  per  second56. Thus we assume that the units are unified across all muscles as 
L0 = 0.08 [m], and we denote a normalised muscle length Lj as follows:

where Aj is the jth row vector of A, θ0j ∈ R2 is the optimal joint angle vector of the jth muscle for generating the 
maximal torque in the shoulder and elbow, respectively. Then the muscle tension Tj is given to scale the unit-
less tension by the absolute muscle force of the physiological cross-sectional area (PCSA) to yield the physical 
 tension57:

where Fa is the absolute muscle force and is set to Fa = 32 [N/cm2] based on measurements in  monkeys58, and P 
is the PCSA that is assumed to be uniform across muscles as P = 10  [cm2]. According to a model of mammalian 
skeletal  muscle56,59, the unit-less muscle tension is produced by a nonlinear muscle model composed of the func-
tions of contractile element FCE(·) and passive elastic element FPE(·):

where

Here, Af(·), FL(·), FV(·) are the functions of the activation-frequency relationship, the tetanic force–length rela-
tionship, and the tetanic force–velocity relationship, respectively. The passive elastic force is represented by two 
separate functions, FPE1(·) and FPE2(·), which exert a tensile force and resist compression force, respectively. They 
are defined as follows:

(3)ȧj =
uj − aj

f (uj , aj)
,

f (uj , aj) =

{

tdeact + uj(tact − tdeact) uj > aj
tdeact uj ≤ aj

.

(4)Lj = 1+ AT
j (θ

0
j − θ)

/

L0,

(5)Tj = Fa · P · Tj ,

(6)Tj = FCE(aj , Lj , L̇j)+ FPE(Lj),

(7)FCE(aj , Lj , L̇j) = Af (aj , Lj) · FL(Lj) · FV (Lj , L̇j),

(8)FPE(aj , Lj) = FPE1(Lj)+ Af (aj , Lj) · FPE2(Lj).

Af (aj , Lj) = 1− exp



−

�

aj

0.56
�

2.12+ 3.31(1
�

Lj − 1)
�

�2.12+3.31(1
�

Lj−1)


,

Figure 8.  Simulation model. (a) Allocation of muscles in the two-link, six-muscle arm model. The SF models 
the pectoralis major, coracobrachialis, and deltoid anterior muscles. The SX models the posterior and middle 
deltoid muscles. The BF models the long and short biceps muscles. The BX models the long triceps muscle. 
The elbow flexor (EF) models the brachialis, brachioradialis, and extensor carpi radialis longus muscles. The 
elbow extensor (EX) models the lateral and medial triceps muscles. (b) Muscle activation dynamics. (c) Length–
velocity–tension curve of the muscle model.
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The dependence of force on the length and velocity of a muscle are often referred to as the force–length and 
force–velocity curves, respectively (Fig. 8c). The muscle model parameters are shown in Table 2; these were 
assigned based on the results of anatomical measurements of macaque  monkeys58,60.

Approximately optimal feedback control. We transformed the two-joint six-muscle model into a 
state–space model. The control object was denoted by the state vector x ∊ R10 as

where a = [a1, a2, …, a6]T is the muscle activation vector. Here, we define the state vector at time t as x(t). Then, 
the dynamics of the musculoskeletal arm model can be written as a state–space equation described as.

The nonlinear functions F(·) and G(·) are defined for descriptive purposes to represent the dynamics in an 
affine form. In practice, they are given as locally linearised forms around each state at time t to obtain an approxi-
mately OFC law. The motor command u(t) is given by u(t) = u(t) + K(t)∙(x(t) − x(t)), where u(t) is an open-loop 
control component, K(t) is a feedback gain, and x(t) is a nominal trajectory. The parameters are computed 
iteratively to optimise u(t) using the Levenberg–Marquardt algorithm to minimise the following cost function:

where Ts and T are the terminal time of movement and simulation duration, respectively. The iterative optimisa-
tion process finally brings an outcome converging K(t) ≈ 0 and x(t) ≈ x(t). Note that we set the times Ts = 0.4 
[s] and T = 0.5 [s] as default, and Ts = 0.2, 0.8, or 1.0 [s] and T = 1.1 [s] for evaluation of movement time effect. 
The vectors p(Ts) ∊ R2, v(Ts) ∊ R2, and f(Ts) ∊ R2 are the end-point position, velocity, and force in Cartesian space 
at the movement end Ts, respectively. They are calculated from the joint angles, angular velocities, and torques 
as follows:

where J(t) ∈ R2×2 is the Jacobian matrix

In addition, p* is a target position in Cartesian space, and wp, wv, and wf are cost weights of the position, 
velocity, and force requirements at the movement end, respectively. On the right-hand side of Eq. (10), the first, 

FL(Lj) = exp



−

�

�

�

�

�

L1.55j − 1

0.81

�

�

�

�

�

2.12


,

FV (Lj , L̇j) =







−7.39−L̇j

−7.39−(3.21−4.17Lj)L̇j
L̇j ≤ 0

1.05+1.53L̇j

1.05+L̇j
L̇j > 0

,

FPE1(Lj) = 0.15 log

{

exp

(

Lj − 1.54

0.059

)

+ 1

}

,

FPE2(Lj) = min
[

−0.02
{

exp
(

18.7(Lj − 0.79)
)

− 1
}

, 0
]

.

(9)x =





θ

θ̇

a



,

ẋ(t) = F(x(t))+ G(x(t)) · u(t).

(10)q1 = wp

∥

∥p(Ts)− p∗
∥

∥

2
+ wv�v(Ts)�

2 + wf �f(Ts)�
2 +

∫ T

0
�u(t)�2dt,

p(t) =

[

l1 cos θ1(t)+ l2 cos(θ1(t)+ θ2(t))
l1 sin θ1(t)+ l2 sin(θ1(t)+ θ2(t))

]

,

v(t) = J(t) · θ̇(t),

f(t) = (J(t)T )−1 · τ(t),

J(t) =

[

−l1 sin θ1(t)− l2 sin(θ1(t)+ θ2(t)) −l2 sin(θ1(t)+ θ2(t))
l1 cos θ1(t)+ l2 cos(θ1(t)+ θ2(t)) l2 cos(θ1(t)+ θ2(t))

]

.

Table 2.  Optimal joint angles of each muscle. a Does not affect the muscle length regardless of the value, 
because the moment arms are set to zero to avoid transforming the effects.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
180

π
θ
0
j (deg) 15 5 –a –a 15 5

–a –a 90 110 100 100
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second, and third terms evaluate the requirements of the end-point position, velocity, and force, respectively, at 
the end of movement in achieving the desired state, whereby the end-point is close to the target position with 
zero values for the end-point velocity and force. The fourth term, which is the sum of the squares of the neural 
inputs during the movement, evaluates the metabolic cost of the neural input. This plays a role in minimising 
the end-point variance at the movement end under the condition of motor noise, known as signal-dependent 
 noise61. However, the noise was not incorporated into this model for simplification, enabling us to focus on the 
muscle activities excluding external effects.

Cost weight parameters. We simulated four situations requiring movement under minimised neural 
input by balancing the cost weights in Eq. (10) (Table 3). These were determined heuristically to achieve the task. 
We confirmed that the results of this model were robust under parameter changes by performing a sensitivity 
analysis (see Supplementary Note 1).

Stabilisation control. We examined an alternate hypothesis that stabilises the terminal position, or posi-
tion and velocity, after the movement phase; however, it does not minimise only the terminal cost at the move-
ment end. Thus, we additionally defined following two cost functions for stabilisation control:

and

Then, we set the default time at the movement end and stabilisation period as 0.5 s and 0.1 s, respectively (i.e. 
Ts = 0.4 [s], T = 0.5 [s]). To evaluate effects of changes in the movement duration, the movement duration was set 
to 0.2 s, 0.8 s, or 1.0 s under the simulation time equal to 1.1 s (i.e. Ts = 0.2, 0.8, 1.0 [s]; T = 1.1 [s]).

Data availability
The MATLAB (MathWorks, Natick, MA, USA) codes and data sets that support the findings of this study are 
available at GitHub (https:// github. com/ yuki- ueyama/ Muscle- Activ ation- Patte rn).
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