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Self‑replication of a quantum 
artificial organism driven 
by single‑photon pulses
Daniel Valente

Imitating the transition from inanimate to living matter is a longstanding challenge. Artificial 
life has achieved computer programs that self‑replicate, mutate, compete and evolve, but 
lacks self‑organized hardwares akin to the self‑assembly of the first living cells. Nonequilibrium 
thermodynamics has achieved lifelike self‑organization in diverse physical systems, but has not yet 
met the open‑ended evolution of living organisms. Here, I look for the emergence of an artificial‑life 
code in a nonequilibrium physical system undergoing self‑organization. I devise a toy model where 
the onset of self‑replication of a quantum artificial organism (a chain of lambda systems) is owing to 
single‑photon pulses added to a zero‑temperature environment. I find that spontaneous mutations 
during self‑replication are unavoidable in this model, due to rare but finite absorption of off‑resonant 
photons. I also show that the replication probability is proportional to the absorbed work from the 
photon, thereby fulfilling a dissipative adaptation (a thermodynamic mechanism underlying lifelike 
self‑organization). These results hint at self‑replication as the scenario where dissipative adaptation 
(pointing towards convergence) coexists with open‑ended evolution (pointing towards divergence).

The longstanding question concerning the general principles of life still inspires a large diversity of concepts, 
methods and  viewpoints1–4. Besides its fundamental value, for instance towards a universal  biology5, looking for 
generalities could eventually enable us to imitate and extend the sophisticated dynamics achieved by living things. 
The artificial life approach, for instance, circumvents the biochemical constraints of living organisms by studying 
computer programs that mimic distinctive features of life. Artificial organisms can harness self-replication so as to 
mutate, compete and evolve complex  features6,7. When one is interested in the most essential aspects of artificial 
life, quantum mechanics can be instrumental in casting the computation as operations on a handful of quantum 
 bits8–11. Still, the finely engineered character of the computers assumed from the outset leaves open the question 
of what principles could explain the self-assembly of lifelike information-processing systems from physical laws.

The nonequilibrium thermodynamic approach, by contrast, looks for the emergence of lifelike behaviours in 
driven physical systems, comprising disordered, self-assembling, and self-replicating  ones4,12–20. Remarkably, it 
has been recently proposed that nonequilibrium thermodynamics could generalize Darwinian evolution, even for 
non-replicating  systems21. The idea is that exceptional specialization, or fine-tuned adaptation, to an environment 
by a fluctuating physical system can be fueled by the irreversible work consumption along far-from-equilibrium 
 trajectories22,23. This exceptional self-organized response of a driven system to the patterns of its environment 
has been called dissipative  adaptation4,13,20. Quantum physics can, once more, help us to showcase the most 
elementary aspects of dissipative  adaptation24. Yet, thermodynamic studies of adaptation have been focusing 
mostly on systems that stabilize in the out-of-equilibrium states, lacking a more thorough discussion on the 
origins of  diversification25 and open-ended  evolution7,26 akin to that achieved with artificial life, and necessary 
for explaining the ever-growing complexity and diversity of biological species.

Can a driven physical system undergoing dissipative adaptation implement an artificial-life computational 
operation? This would provide a further step in the connections between the information-processing underlying 
self-replication and the dissipation of energy inherent to  metabolism27–29, ultimately helping us to imitate the 
transition from inanimate to living  matter2,30 in diverse physical systems. More broadly, searching for a lifelike 
self-organized computation could also contribute to the recently proposed goal of ‘thermodynamic computing’31.

Here, I formulate a toy model inspired by this idea of an artificial-life code with a driven system undergo-
ing dissipative adaptation. Namely, the self-replication of a minimal quantum artificial organism starts due to 
single-photon pulses added to a zero-temperature environment. The model results in a replication probability 
that is linearly proportional to the average work absorbed by the replicating organism, characterizing a quantum 
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dissipative adaptation. Counterintuitively, spontaneous mutations cannot be completely suppressed even in the 
zero-temperature limit, since they are induced by the driving pulses themselves. Mutations are rare, as they 
happen far from resonance. Because mutations may lead to open-endedness, the model thus hints at a possible 
connection between dissipative adaptation and open-ended evolution that has not been discussed so far, to the 
best of my knowledge.

The significance of this paper is mainly to bridge some aspect of artificial life and nonequilibrium thermo-
dynamics. The quantum mechanical framework has been chosen so as to keep things in terms of basic resources 
such as atoms, photons, and their interactions. It turns out that the model may be thought of as illustrative of 
Walker and Davies  viewpoint30, in that genetics is a digital form of information processing (simulated here with 
quantum bits), to be contrasted with the analogue form of information processing in metabolism (simulated 
here with continuous pulses). From a quantum information perspective, this paper can be seen as the quantum 
thermodynamics of a quantum cloning  process32–35 driven by single photons. Even though the words ‘cloning’ 
and ‘self-replication’ can be used interchangeably here, the option for the latter is motivated by the original goal 
of mimicking lifelike information processing with an out-of-equilibrium physical system.

Results
Quantum artificial organism. The quantum organism is defined as a chain of quantum systems, as 
inspired by the polymeric structure of nucleic acid strands (DNA or RNA). Each quantum system has three 
energy levels. We choose a lambda configuration, so as to guarantee that the two lowest-energy levels are stable 
in the zero-temperature limit. The two lowest-energy levels are labeled here as |an�1 and |bn�1 , where n refers 
to the n-th lambda system in the chain, and the index 1, to the original gene (the original chain). States |an�1 
and |bn�1 play the role of two possible equivalents of nucleotide bases (instead of four, as in DNA or RNA). The 
original quantum artificial gene is defined by a (generally aperiodic) sequence of these lowest-energy states (a 
string), let us say

N here is the gene size, also corresponding to the chain size. Quantum superpositions of bases in |gene�1 are not 
considered in this paper, as further explained below.

Self‑replication. The idea is to look for a dynamical process U (a global organism-plus-environment uni-
tary dynamics), so that

where U must be independent of the initial state |gene�1 . In (2), |bases�2 =
∏N

n=1 |bn�2 is the state representing 
the available environment bases upon which the organism can act to compose the copied gene, |gene�2 . States 
|bn�2 here are the fundamental states of the lambda systems (therefore, their thermal equilibrium states in the 
limit of zero temperature). The source state

describes the initial state of the environment degrees of freedom that provide the energy source; by the end 
of the process, the environment may have been modified to some final state |source′� =

∏

n |s′n� . Importantly, 
the nucleic-acid analogy guides us to look for a process U = U({rn}) , which depends on the free parameters 
{rn} symbolizing spatial distances between each gene base (the template lambda system) and its corresponding 
environment base (the environment lambda system which undergoes the copying process). In other words, 
the ability of the template lambda system to copy itself shall depend on the distance to the environment base.

From now on, replication is assumed to be modular, that is, the replication of each gene unit ( |•n�1 ) is inde-
pendent of the other units, U({rn}) =

∏

n Un(rn) , where [Un,Um] = 0 for all m, n. This assumption is motivated 
by the modular character of the self-replication of nucleic acids. A perfect replication transition should now read

and a perfect dormant transition,

for n = 1, ...,N . To guarantee that a gene base does not affect an infinitely far apart environment base, we look 
for a unitary that satisfies Un(rn → ∞) → 1 . See Fig. 1.

Arbitrary superpositions of |an�1 and |bn�1 cannot be copied with an arbitrarily high fidelity (quality), as states 
the so called no-cloning  theorem32–35. The theorem assumes, however, that it is perfectly possible in principle to 
do so for a particular (preferred) orthonormal basis. This explains our choice in Eq. (1). Here, we intend to find 
the best replicator allowed by nature (by quantum mechanics, in this case), with the goal of verifying whether it 
does consume a maximal amount of work. In other words, we look for a model for Un , trying to fulfill the perfect 
cloning as allowed in principle for the eigenenergies of the lambda systems.

(1)|gene�1 = |a1�1|b2�1 ... |aN�1.

(2)U |gene�1|bases�2|source� → |gene�1|gene�2|source′�,

(3)|source� =
N
∏

n=1

|sn�

(4)Un|an�1|bn�2|sn� → |an�1|an�2|s′n�,

(5)Un|bn�1|bn�2|sn� → |bn�1|bn�2|sn�,
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Organism‑plus‑environment Hamiltonian. We assume an autonomous dynamics

where the time-independent global Hamiltonian H, describing the organism plus the environment, is given by

H does not depend on the index n, meaning that the dynamics of each base follows the same rules. The system 
Hamiltonian, HS , describes the original gene base only. HE describes a composite environment, HE = HB +HF , 
where HB is the environment base Hamiltonian, and HF is the electromagnetic field Hamiltonian. Correspond-
ingly, the interaction Hamiltonian HI is also composite, HI = HSB +HBF , where HSB describes the interaction 
of the original gene base with the environment base, and HBF describes the interaction of the environment base 
with the electromagnetic field.

The explicit expressions for the Hamiltonians are as follows. First,

where |en�1 is the excited state of the n-th lambda system in the original artificial organism. Analogously, the 
environment base Hamiltonian reads

showing that all lambda systems have been chosen identical to one another.

(6)Un = exp (−iHt/�),

(7)H = HS +HI +HE .

(8)HS = �ω
(0)
b |en�1�en|1 + �δ(0)a |an�1�an|1,

(9)HB = �ω
(0)
b |en�2�en|2 + �δ(0)a |an�2�an|2,

a b

rn
|a1〉1 |b2〉1 |a3〉1

|b3〉2|b2〉2|b1〉2

U({rn}) |a1〉1 |b2〉1 |a3〉1

|b2〉2|a1〉2 |a3〉2

|b3〉2|b2〉2|b1〉2(rn → ∞)

A

T

A

A

T

T

c

0 z
|1b〉

|an〉1
|bn〉2

J(rn)

Figure 1.  Natural versus artificial gene self-replication. (a) Simplified picture of a self-replicating 
biological gene. A single nucleic acid strand forms the original gene with nucleotide bases A, T and A . 
The complementary environment bases, T, A and T, form the copy. In the process, the bare states (dashed 
gray circles) undergo a transformation to the filled states (full black circles) dictated by the original 
gene (curved arrows). (b) A sequence of states |a1�1|b2�1|a3�1 (full black circles) specifies the original 
quantum artificial gene. The environment bases are initially set to their ground states, |bn�2 , for n = 1, 2, 3 
(dashed gray circles), which can be regarded as bare states. In the process, the bare states undergo a 
transformation to a filled state (full arrow), dictated by (and ideally identical to) the original gene state, 
|a1�1|b2�1|a3�1 ⊗ |b1�2|b2�2|b3�2 → |a1�1|b2�1|a3�1 ⊗ |a1�2|b2�2|a3�2 . This transformation is described by 
a unitary operator U({rn}) for the global organism-plus-environment dynamics, including that of the source 
of energy. The unitary operator U({rn}) depends on the free parameter rn , representing the distance between 
the n-th gene base and its corresponding environment base. If rn → ∞ , the environment bases are expected 
to be left unchanged (dashed arrow). (c) Inspired by the idea that sunlight has been crucial to the transition 
from inanimate to living matter, here each single-photon pulse (red wavepacket described by the state |1b� ) 
drives (activates) a single environment base (lambda system in dashed gray circle). The pulse propagates 
towards the positive z direction and couples states |bn�2 and |en�2 (red thicker double arrow). This light-matter 
dynamics depends on the couplings J(rn) between each original base (lambda system in full black circle) and the 
corresponding environment base.
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The coupling Hamiltonian between the system (the original gene base) and the environment base is

where σ (z)
ai = |en�i�en|i − |an�i�an|i . HSB allows the gene base state to act as a switch to the dynamics of the envi-

ronment base. As will become clearer below, the gene can selectively induce the environment base to become 
energetically resonant with the electromagnetic field, reminding us of an enzyme-like effect. For the degree of 
influence to depend on the distance parameters, we consider J = J(rn) . Condition Un(rn → ∞) = 1 suggests 
that J(rn → ∞) = 0 . Ising-type couplings such as the one used here find widespread applications in protein 
 physics36,37. Also, similar position-dependent dipole-dipole couplings generalizing the van der Waals forces 
have been proposed as a means for constructing biologically-inspired quantum molecular machines, which 
actively and autonomously self-protect their quantum data against noise from pre-existing non-engineered 
 environments38,39.

The base-field interaction Hamiltonian is given by a dipolar coupling, in the rotating-wave 
 approximation24,35,40,

The continuum of frequencies, 
∑

ω →
∫

dω̺ω ≈ ̺
∫

dω , gives rise to the dissipation rate Ŵ = 2πg2  ̺, in the 
Wigner-Weisskopf approximation. Modes {aω} and {bω} represent orthogonal quantized field modes. The raising 
operators read σ †

a2 = |en�2�an|2 and σ †
b2 = |en�2�bn|2 . H.c. is the Hermitian conjugate. The choice for coupling the 

field only to the environment base ( |•n�2 ) is justified by the fact that all lambda systems are identical in this model, 
hence it should ideally make no difference what base the photon hits each time. The rotating-wave approximation 
is useful here so as to keep the calculations restricted to the one-excitation subspace. Finding the consequences of 
more general light-matter couplings on self-replication, in the spirit of recent light-harvesting  studies41,42, seems 
an interesting direction for further investigations. Finally, the field Hamiltonian is HF =

∑

ω �ω(a†ωaω + b†ωbω) , 
also considered in the continuum of frequencies limit.

Single‑photon pulses as the energy source. The source of energy for the self-replication is the ini-
tial out-of-equilibrium state of the electromagnetic environment. This is inspired by the reasonable hypothesis 
that sunlight may have played a significant role in the transition from inanimate to living matter. To make it 
the most elementary energy source, we consider in Eq. (3) single-photon pulses added to a zero-temperature 
 background24, so that

|0� =
∏

ω |0aω�|0bω� is the vacuum state of all the field modes. Modes {aω} are not initially populated, so as to 
maximize the irreversibility of the self-replication. The single-photon pulse admits a one-dimensional real-space 
representation (see Fig. 1c.),

where kω = ω/c , and c is the speed of light. As before, the sum over modes is to be considered in the continuum 
of frequencies limit. The pulse can also be decomposed as

in terms of its central frequency ωL and its envelope function φe(z, t).
To keep the spirit of an autonomous scenario, the photon pulse is assumed to have been spontaneously emit-

ted from an arbitrarily distant source (not considered in the Hamiltonian). This implies an exponential shaped 
envelope

� here is the pulse spectral linewidth. N ≡
√
2π̺� , a normalization constant. �(z) , the Heaviside step func-

tion. The transition frequency of this hypothetical distant emitter corresponds to ωL , in Eq. (14), and its natural 
linewidth, to � . Most importantly, ωL shall be regarded here as a fixed constant, rather than a free-varying param-
eter. This is analogous to the idea of a steady peak in the sunlight spectrum. By contrast, the spectral linewidth 
� of each photon pulse may vary, so as to mimic a kind of disorder in the natural linewidths in the hypothetical 
ensemble of distant single-photon emitters.

Global organism‑plus‑environment dynamics. The global dynamics can be described by the state

where H is given by Eq. (7), and |Gk(0)� = |kn�1|bn�2|1b� , for k = a, b.
Due to conservation in the number of excitations, the time-dependent state can be written for k = a as

(10)HSB = −J σ
(z)
a1 σ

(z)
a2 ,

(11)HBF = −i�g
∑

ω

(aωσ
†
a2 + bωσ

†
b2 − H.c.).

(12)|sn� = |1b� ≡
∑

ω

φb
ω(0)b

†
ω|0�.

(13)φ(z, t) ≡
∑

ω

φb
ω(t) exp(ikωz),

(14)φ(z, t) = φe(z, t) exp [−iωL(t − z/c)],

(15)φe(z, 0) = N�(−z) exp [�z/(2c)].

(16)|Gk(t)� = exp(−iHt/�)|Gk(0)�,
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Fω describes a failed replication, leaving a photon at mode bω . Re describes a replication transient excitation, 
leaving the field in the vacuum state. Raω describes a replication accomplishment, leaving a photon at mode aω.

Accordingly, the global state can be written for k = b as

Dω describes a dormant state, leaving a photon at mode bω . Me describes a mutation transient excitation, leaving 
the field in the vacuum state. Maω describes an (undesirable) mutation accomplishment, leaving a photon at mode 
aω . The initial state of the field implies that Fω(0) = φb

ω(0) or Dω(0) = φb
ω(0) , as defined in Eq. (12), depending 

on the initial state of the original gene base. The equations of motion are shown in the Methods.

Transition probabilities. The organism replication probability is defined here as 
pa1,b2→a1,a2(t) ≡ �an|1�an|2 trF

[

|Ga(t)��Ga(t)|
]

|an�1|an�2 , where trF [•] is the partial trace over the field degrees 
of freedom. Similarly, the dormant probability is defined as 
pb1,b2→b1,b2(t) ≡ �bn|1�bn|2 trF

[

|Gb(t)��Gb(t)|
]

|bn�1|bn�2 . With Eq.  (17), we find that 
pa1,b2→a1,a2(t) =

∑

ω |Raω(t)|2 . With Eq. (18), we also find that pb1,b2→b1,b2(t) =
∑

ω |Dω(t)|2.
To obtain explicit expressions, we turn to the one-dimensional real-space representation of the frequency-

dependent amplitudes, namely, Ra(z, t) ≡
∑

ω Raω(t) exp(ikωz) and D(z, t) ≡
∑

ω Dω(t) exp(ikωz) , as done in 
Eq. (13), and find that

and

See the expressions for Ra(z, t) and D(z, t) in the methods.
We now assume the spontaneously emitted photon as described by Eq. (15). If the initial state of the original 

base is |an�1 , we make φ(z, 0) = F(z, 0) =
∑

ω Fω(0) exp(ikωz) ; otherwise (for |bn�1 ), we make φ(z, 0) = D(z, 0) 
(defined in the previous paragraph). We find that (see Methods)

where the detuning is δL−bJ ≡ ωL − ωbJ , with reference to the perturbed frequency transition ωbJ ≡ ω
(0)
b + J , and

We regard only � and J as the truly free parameters in Eq. (22). We assume, by contrast, that ωL is fixed by the 
external world, whereas ω(0)

b  and Ŵ are fixed by the internal world. We are particularly interested in the regimes 
where ωL − ω

(0)
b ≫ Ŵ (blue-detuning) and J > 0 , which clarify the picture.

Optimal replication. The replication probability at long times, pa1,b2→a1,a2(∞) , is maximized when the 
coupling J = J(rn) induces the resonance condition δL−bJ ≡ ωL − ωbJ = ωL − (ω

(0)
b + J) = 0 . This energy-

matching mechanism increasing the likelihood of the process, conditional to the distance rn between the gene 
base and the environment base, is reminiscent of an enzyme effect (see Fig. 2a). Perfect replication also requires 
a monochromatic photon ( � ≪ Ŵ ), as we find from Eq.  (22), pa1,b2→a1,a2(∞)

∣

∣

∣

{δL−bJ=0, �→0}
= P(0, 0) = 1 . 

The dormant transition probability is given by

where the detuning now refers to the unperturbed frequency, δL−b ≡ ωL − ω
(0)
b  , and P(�, δL−b) is also defined 

by Eq. (22). The problem of maximizing both the replication and the dormant transition probabilities is discussed 
in the following.

Mutations. Optimizing the replication transition, as described by Eq.  (21), and the dormant transition, 
Eq. (23), requires a coupling J that makes the environment base resonant with the photon when the original 
lambda system is at |an�1 (i.e., ωbJ = ωL ), whereas keeping it far from resonance when the original lambda 
system is at |bn�1 . The crucial point here is to notice that, for any finite J, an off-resonant photon with respect to 
the unperturbed frequency ( δL−b = J , since ωbJ = ωL ) can eventually be absorbed, with the mutation probabil-
ity (see Fig. 2b) pb1,b2→b1,a2(∞) =

∑

ω |Maω(∞)|2 = P(�, δL−b) , which vanishes only in the δL−b = J → ∞ 
limit. This requires un unphysical photon of infinite frequency to fulfill the perfect replication condition, 

(17)|Ga(t)� =
∑

ω

Fω(t)|an�1|bn�2|1bω� + Re(t)|an�1|en�2|0� +
∑

ω

Raω(t)|an�1|an�2|1aω�.

(18)|Gb(t)� =
∑

ω

Dω(t)|bn�1|bn�2|1bω� +Me(t)|bn�1|en�2|0� +
∑

ω

Maω(t)|bn�1|an�2|1aω�.

(19)pa1,b2→a1,a2(t) =
1

2π̺c

∫ ∞

−∞
|Ra(z, t)|2dz,

(20)pb1,b2→b1,b2(t) =
1

2π̺c

∫ ∞

−∞
|D(z, t)|2dz.

(21)pa1,b2→a1,a2(t → ∞) = P(�, δL−bJ ),

(22)P(�, δL−bJ ) ≡
Ŵ2

�

2Ŵ−�
2

�2 + δ2L−bJ



1+
�

2Ŵ
−

�(2Ŵ +�)
�

2Ŵ+�
2

�2 + δ2L−bJ



.

(23)pb1,b2→b1,b2(∞) = 1− P(�, δL−b),
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ωL = ω
(0)
b + J . Put differently, equations pa1,b2→a1,a2(∞) = 1 and pb1,b2→b1,b2(∞) = 1 cannot be simultane-

ously satisfied for finite couplings, J < ∞.
The finite off-resonant photon absorption probability, leading to pb1,b2→b1,b2(∞) < 1 , is at the root of the 

unexpected mutations in this model. It is unexpected because the model was not intentionally designed to present 
mutations. On the contrary, we intended to find perfect cloning on a preferred basis, as allowed by the no-cloning 
 theorem32. Nevertheless, the idea of a light-induced rare mutation represents here an appealing analogy with 
natural mutations in biological genes. According to ref.5, error in replicating information creates the conditions 
for the evolvability of life as we know it. This turns an unfortunate drawback into a powerful resource.

Finally, we note that in the rn → ∞ limit (i.e., J(∞) = 0 ), the incoming photon is off-resonant for both initial 
states of the gene base, δL−bJ = δL−b ≫ Ŵ , leading to a predominantly dormant dynamics, pb1,b2→b1,b2(∞) → 1 
and pa1,b2→a1,a2(∞) → 0 , as expected from the U(rn → ∞) → 1 condition discussed after Eq. (5).

Dissipative adaptation. We finally investigate how dissipative adaptation underlies the self-replication in 
the present model. As stated in the introduction, dissipative adaptation is a general thermodynamic mechanism 
explaining lifelike self-organization in classical far-from-equilibrium systems. It clarifies how fine-tuned, excep-
tional behaviours can be fundamentally related with work consumption. The main picture is that, when a given 
fluctuating physical system absorbs work from its environment, it can reach exceptional dynamical transforma-
tions that are selected by the work source characteristics. If the excess energy provided by this nonequilibrium 
work source is dissipated to the environment (in the form of heat), the system can get irreversibly trapped in 
those rare configurations; in other words, adapted to its environment. Mathematically, this idea is best described 
in terms of a fluctuation theorem. By using Crooks’ microscopic reversibility condition for the forward, pi→j(t) , 
and backward, p∗j→i(τ − t) , classical trajectory probabilities between the initial i and the final j  states43, the dis-
sipative adaptation has been formulated  as13,21

where the angle brackets denote a weighted average over all microtrajectories with fixed start i and end j, k points. 
β is the inverse temperature, Ekj = Ej − Ek is the energy difference, and Wabs is the stochastic nonequilibrium 
work absorbed from a time-dependent drive. Equation (24) evidences that a higher work absorption in the i to 
j transition boosts the probability of state j over the alternative k. Dissipative adaptation can, therefore, describe 
the self-organization of a physical system enabling it to become apparently well suited to perform some finely-
tuned, exceptional task: to seek  energy16,23, to avoid  energy23,24,44, or to self-replicate12,13,21.

Here, we find quite similar behaviour. An exceptionally high probability of replication at a zero-temperature 
environment requires the absorption of a proportionally high amount of average work, as given by

(24)
pi→j(t)

pi→k(t)
= e−βEkj

p∗j→i(τ − t)

p∗k→i(τ − t)

�e−βWabs �ik
�e−βWabs �ij

,

(25)pa1,b2→a1,a2(∞) = �Wabs�a1,b2/(2�ωL).

Figure 2.  Mechanism behind replication and mutation. (a) A gene base at |an�1 (black dot) induces an energy 
shift (from the gray to the black horizontal bars) of �J (smaller arrow), building a resonance with the photon, 
�ω

(0)
b

+ �J = �ωL (longer arrow). �ω(0)
b

 is the transition energy of the unperturbed lambda system (dotted 
arrow). The environment base thus undergoes a replication transition |bn�2 → |an�2 (full curved arrow). (b) A 
gene base at |bn�1 (black dot) leaves the frequencies unaltered (black horizontal bars), keeping the environment 
base far from resonance, ω(0)

b
≪ ωL . However, rare off-resonant photon absorption may induce the mutation 

transition |bn�2 → |an�2 (dashed curved arrow).
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〈Wabs〉a1,b2 is more precisely defined in the following section; its index denotes that the average is calculated with 
the initial state |an�1|bn�2 for the matter (and |1b� for the field, as usual). Because Eq. (25) is valid at zero tem-
perature and has been obtained from a fully-quantized model, we can call it a quantum dissipative  adaptation24. 
We emphasize that Eq. (25) is independent of the pulse envelope function (as defined in Eq. (14)), and that it 
generalizes the result from ref.24, in being not limited to a resonant photon, and in having been obtained for the 
dynamics of coupled lambda systems.

Before going through the details concerning the derivation of Eq. (25), it is worth calling attention to some 
of its most meaningful consequences.

First, it turns out that the absorbed work is not directly proportional to the excited-state population, namely 
|Re(t)|2 , but instead to the time integral of |Re(t)|2 [as we can see from Eq. (41)]. As a surprising consequence, 
while the monochromatic regime ( � → 0 ) maximizes the work absorption (along with pa1,b2→a1,a2(∞) ), it none-
theless minimizes the occupation of the state |en�2 [i.e., |Re(t)|2 ∝ � → 0 , as it can be obtained from Eq. (42)]. 
Such a virtual occupation of the excited state, as necessary for maximal work absorption, is a quantum-coherent 
process that goes beyond any classical scenario possibly described by Eq. (24). Classically, if a particle jumps 
from one metastable state to another one (as, for instance, in a double-well potential), there is a 100% chance 
that it will be transiently found at the top of the hill at some instant of time.

Second, the absorbed work does not depend on the final energy stored in the system. To see this, we 
can substitute Eq. (22) back in Eq. (25), and notice that Eq. (22) does not depend at all on δ(0)a  (as defined 
in Eqs.(8) and (9)). Just to provide some examples, the expression for the work simplifies, at resonance, to 
�Wabs�a1,b2 = 2�ωL/[1+�/(2Ŵ)] , and, in the monochromatic regime, to the Lorentzian 2�ωL/

[

1+ (δL−bJ/Ŵ)
2
]

 . 
As it happens in classical thermodynamics, the work here is process-dependent and, because the lambda system 
is open, the work cannot be directly obtained from the variation of the internal (average) energy. When δ(0)a = 0 , 
no energy will be stored at the end, so the nonequilibrium work will have been entirely dissipated as heat to the 
environment.

Third, the system-plus-reservoir approach used here allowed us to express the quantum dissipative adaptation 
with no use of probability ratios (as they appear in the classical version, resulting from using Crooks’ condition). 
However, defining a stochastic work (in the sense implied by Crooks) for this single-photon scenario addressed 
here will be left as an open problem. This discussion will be especially relevant at finite temperatures, due to the 
presence of stochastic heat absorption. In the zero-temperature limit, the replication is irreversible. Once the 
base achieves the final state |an�2 , it stays there. This final state is also transparent to any following pulses in the 
{bω} modes that may arrive later. Put differently, pa1,a2→a1,b2(t) = 0.

Last, but not least, casting our results in terms of a dissipative adaptation serves the main purpose of sug-
gesting that our toy model may represent a much broader phenomenon spanning diverse classical and quantum 
systems, possibly comprising disordered and complex ones. The thermodynamic concept of dissipative adapta-
tion is, perhaps, the long awaited guide for us to imitate the transition from inanimate to living matter in diverse 
systems, so as to understand and extend the marvellous architectures, functions, and evolution of living  things13.

Work consumption. To obtain our quantum version of the dissipative adaptation, Eq. (25), we depart from 
a definition of average incoming work as given by the Heisenberg picture, following ref.24,

where d(t) = U†
n d Un is the dipole operator and Ein(t) is the incoming-field operator. Here, 

d =
∑

i dei(σ
†
i2 + H.c.) , Ein(t) =

∑

ω iǫ(aω + bω)e
−iωt + H.c. , and deiǫ = �g . Definition (26) is very close to 

our classical notion of  work40,45 (to see that, one can think of an initial coherent, or semiclassical, incoming 
pulse |α� , fulfilling aω|α� = αω|α� , as established by  Glauber46). The Heisenberg picture also provides a signa-
ture to characterize how adding the single photon pulse as described by state |1b� is in general not equivalent to 
slightly increasing the environment temperature. Because state |1b� presents coherence in the basis of frequency 
modes, the pure-state correlation function, namely �1b|E(−)

in (t ′)E(+)
in (t)|1b� , where (±) is for the positive/nega-

tive  frequencies46, is in general quite different from the equilibrium-state correlation function at temperature 
T, namely tr [ρTE(−)

in (t ′)E(+)
in (t)] , where ρT is a Gibbs state of the field with respect to HF . In other words, the 

electromagnetic field in the pure state containing a single-photon pulse behaves more as an external driving force 
(a source of work) than as a stochastic Langevin force (a source of heat). In the rotating-wave approximation, and 
using the initial global state |an�1|bn�2|1b� , we find that (see Methods) �Win�a1,b2 = �Wabs�a1,b2 + �Wreac�a1,b2 , in 
terms of the absorptive contribution,

and the reactive (dispersive)  contribution45,

R[•] stands for the real part. In Eq. (28), we have defined Fe(t) such that F(−ct, 0) ≡ Fe(t) exp(−iωLt) . Eqs.(41) 
and (51) in the Methods, combined with (27), give us Eq. (25).

The meaning of the absorptive and reactive work contributions from a single-photon pulse becomes 
clearer in the monochromatic regime, where an analogy with a classical harmonic oscillator takes place. The 
monochromatic regime is set for � ≪ Ŵ , given the exponential pulse used in Eq. (21). We then find that 

(26)�Win� ≡
∫ ∞

0
�(∂td(t))Ein(t)�dt,

(27)�Wabs�a1,b2 ≡ �ωL

∫ ∞

0
(−2g)R[R∗

e e
−iδ

(0)
a tF(−ct, 0)]dt,

(28)�Wreac�a1,b2 ≡
∫ ∞

0
(−2�g)R[iR∗

e e
−iδ

(0)
a t(∂tF

e)e−iωLt ]dt.
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r(t) ≈ χ f (t) , where the susceptibility is defined as χ ≡ iŴ/(Ŵ − iδL−bJ ) . Here, r(t) ≡
√
ŴRe(t)e

iδ
(0)
a t and 

f (t) ≡ i
√
� exp[−(�/2+ iωL)t] . This approximately linear dependence is obtained from Eq. (42), which 

depends on the entire history of the photon pulse, revealing the non-Markovianity of the dynamics of the 
lambda  systems47. In the monochromatic regime, however, we find that the approximate linearity holds at times 
t ≫ Ŵ−1 . By writing the susceptibility in terms of its real and imaginary parts, χ = χ ′ + iχ ′′ , we find that 
�Wabs�a1,b2 ≈ 2�ωL χ

′′ , and �Wreac�a1,b2 ≈ �� χ ′ , in close analogy to what has been discussed in refs.40,45. Note 
that the reactive work, 〈Wreac〉a1,b2 , vanishes both at resonance ( δL−bJ = 0 ), and arbitrarily far from resonance, 
δL−bJ → ∞ (as expected in dispersive light-matter interactions). More importantly, it vanishes in the monochro-
matic limit � → 0 , where the self-replication is optimized. The absorptive work, 〈Wabs〉a1,b2 , does not depend on 
� → 0 , is maximal at resonance, but also vanishes far from resonance. This tells us that the far-from-resonance 
(rare) mutations absorb a very small (though finite) amount of work. In the context of adaptation, this means that 
mutations may be a source of open-endedness (that may describe evolutionary divergence and novelty) while still 
fulfilling a dissipative adaptation (more tightly bound to the notions of evolutionary convergence and stability).

Analogous results arise from considering a fully classical damped harmonic oscillator with complex position 
rc(t) , driven by the force fc(t) =

√
� exp[−(�/2+ iωL)t] , with a slowly-varying amplitude � ≪ Ŵ , where Ŵ is 

the oscillator dissipation rate. We then have from Newtonian dynamics that rc(t) ≈ χcfc(t) , so the classical work 
reads Wcl ≡

∫∞
0 2R[f ∗c ∂t rc]dt = −

∫∞
0 2R[r∗c ∂t fc]dt ≈ �χ ′

c + 2ωLχ
′′
c  , where �χ ′

c is the reactive (dispersive) 
part, and 2ωLχ

′′
c  is the absorptive part (see ref.40).

Discussion
In summary, the toy model devised here shows how the nonequilibrium work provided by spontaneously emit-
ted single-photon pulses can fuel the self-replication of an elementary quantum artificial organism formed by 
a chain of lambda systems. The guiding intuition was that dissipative adaptation could result in some kind of 
self-organized process reminding us of an artificial-life code. Quantum mechanics allowed us to think in terms 
of basic resources in nature, namely, atoms, photons, and their interactions.

Mutations were found to be unavoidable, though rare, due to far-from-resonance photon absorption. Inter-
estingly, because mutations and self-replication may imply a possible route towards open-ended evolution in 
biological systems, the model thus alludes to a theoretical link between dissipative adaptation and open-ended-
ness that calls for further investigations. Finally, it is worth emphasizing that the mutations play a central role 
in justifying a posteriori why we could assume the existence of an arbitrary state |gene�1 from the outset. Put 
differently, how could state |an�1 first have appeared, in an otherwise zero-temperature autonomous universe at 
thermal equilibrium? Without mutations, all the bases would perpetually remain in their ground states |bn�i , 
implying a completely dormant, rather trivial universe.

As a perspective, we can search for self-organized artificial-life codes with some degree of (quantum or clas-
sical)  complexity48. We can think, for instance, of mimicking the self-organized evolution of an entire artificial 
genetic code, going beyond the artificial gene we have considered. To evolve the natural genetic code, biological 
organisms have taken great advantage from the so called horizontal gene transfer (HGT), according to refs.3,49. 
An artificial HGT can be envisioned by letting the free parameters rn here (representing the distances between 
pairs of lambda systems) to behave as Brownian particles in a common environment (to be more precise, the 
center of mass of each lambda system could be considered as a Brownian particle). Common environments can 
mediate attractive effective couplings between pairs of Brownian particles (classical and quantum), as shown in 
refs.50–52. The size N of each artificial gene would then become a stochastic variable (the artificial gene being slowly 
split or merged with others in the environment), simply from the environment-induced Brownian movements 
and effective couplings, thus implementing an artificial HGT.

Methods
Solution of the global dynamics. The Schrödinger equation i�∂t |Gk(t)� = H|Gk(t)� (as defined in Eqs.
(7) and (16)) leads us to

for k = a , and

(29)∂tDω = −iωDω + gMe ,

(30)∂tMe = −iω
(0)
b Me − g

∑

ω

(Dω +Maω),

(31)∂tMaω = −i(ω + δ(0)a )Maω + gMe ,

(32)∂tFω = −i(ω + δ(0)a )Fω + gRe ,

(33)∂tRe = −i(δ(0)a + ω
(0)
b + J)Re − g

∑

ω

(Fω + Raω),

(34)∂tRaω = −i(ω + 2δ(0)a − J)Raω + gRe ,
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for k = b.
Formally integrating for Dω(t) , and using Maω(0) = 0 , gives, in the Wigner-Weisskopf approximation, that

where Ŵ ≡ 2π̺g2 (due to the continuum limit, 
∑

ω → ̺
∫

dω ), and D(z, t) ≡
∑

ω Dω(t) exp(ikωz) (where 
ω = ckω ). Also, we find that D(z, t) = D(z − ct, 0)+

√
2π̺Ŵ�(z)�(t − z/c)Me(t − z/c) , and that

The results for Re(t) , F(z, t) and Ra(z, t) follow quite similarly,

where ωbJ ≡ ω
(0)
b + J , F(z, t) = F(z − ct, 0)e−iδ

(0)
a t +

√
2π̺Ŵ�(z)�(t − z/c)Re(t − z/c)e−iδ

(0)
a z/c , and

The mutation probability reads

By substituting Eq. (36) in (39), and changing variables, we find that pb1,b2→b1,a2(t) = Ŵ
∫ t
0 |Me(t

′)|2dt′ . Similarly, 
by substituting Eq. (38) in the replication probability, namely,

we find that

The integration above is performed with the solution of Re(t) , that is,

Eqs.(14) and (15) allow Re(t) to be analytically obtained. Eq. (41) is a key step for the quantum dissipative adapta-
tion relation, Eq. (25), as explained below.

Calculating the incoming work. Using integration by parts, we can rewrite Eq.  (26) as 
�Win� = −

∫∞
0 �d(t)∂tEin(t)�dt . In the present model, this results in

where c.c stands for complex conjugate. Choosing |1b� as the initial state of the field implies that �σ †
a2(t)aω� = 0 . 

The non-zero correlation function gives

Finally,

(35)∂tMe = −(Ŵ + iω
(0)
b )Me − gD(−ct, 0),

(36)Ma(z, t) =
√

2π̺Ŵ�(z)�(t − z/c)Me(t − z/c)e−iδ
(0)
a z/c .

(37)∂tRe = −
(

Ŵ + i(ωbJ + δ(0)a )
)

Re − gF(−ct, 0),

(38)Ra(z, t) =
√

2π̺Ŵ�(z)�(t − z/c)Re(t − z/c)e−i(2δ
(0)
a −J)z/c .

(39)pb1,b2→b1,a2(t) =
∑

ω

|Maω(t)|2 =
1

2π̺c

∫ ∞

−∞
|Ma(z, t)|2dz.

(40)pa1,b2→a1,a2(t) =
1

2π̺c

∫ ∞

−∞
|Ra(z, t)|2dz,

(41)pa1,b2→a1,a2(t) = Ŵ

∫ t

0
|Re(t′)|2dt′.

(42)Re(t) = −g

∫ t

0
F(−ct′, 0)e

−
(

Ŵ+i(ωbJ+δ
(0)
a )

)

(t−t′)
dt′.

(43)�Win� = −
∫ ∞

0
dt(i�g)

∑

ω

(−iω)�σ †
a2(t)aω�e

−iωt + (−iω)�σ †
b2(t)bω�e

−iωt + c.c. ,

(44)�σ †
b2(t)bω� = �U†σ †

b2Ubω|an�1|bn�2|1
b�

(45)= �U†σ †
b2UFω(0)|an�1|bn�2|0�

(46)= �U†σ †
b2e

−iδ
(0)
a tFω(0)|an�1|bn�2|0�

(47)= �U†e−iδ
(0)
a tFω(0)|an�1|en�2|0�

(48)= �Ga(t)|(|an�1|en�2|0�)e−iδ
(0)
a tFω(0)

(49)= R∗
e (t)e

−iδ
(0)
a tFω(0).
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We define F(−ct, 0) = Fe(−ct, 0) exp(−iωLt) , and obtain Eqs.(27) and (28). To find Eq. (25), we get from Eq. (37) 
that

We substitute Eq. (51) in Eq. (41), using that Re(0) = Re(∞) = 0 . Finally, we identify the real part in Eq. (51) 
with that in the absorptive term, Eq. (27), which follows from Eq. (50). This leads to Eq. (25), independently of 
the choice for F(−ct, 0) , that is, the initial photon wavepacket.
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