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Deep learning‑based gene selection 
in comprehensive gene analysis 
in pancreatic cancer
Yasukuni Mori1*, Hajime Yokota2, Isamu Hoshino3, Yosuke Iwatate4, Kohei Wakamatsu5, 
Takashi Uno2 & Hiroki Suyari1

The selection of genes that are important for obtaining gene expression data is challenging. Here, 
we developed a deep learning‑based feature selection method suitable for gene selection. Our novel 
deep learning model includes an additional feature‑selection layer. After model training, the units in 
this layer with high weights correspond to the genes that worked effectively in the processing of the 
networks. Cancer tissue samples and adjacent normal pancreatic tissue samples were collected from 
13 patients with pancreatic ductal adenocarcinoma during surgery and subsequently frozen. After 
processing, gene expression data were extracted from the specimens using RNA sequencing. Task 
1 for the model training was to discriminate between cancerous and normal pancreatic tissue in six 
patients. Task 2 was to discriminate between patients with pancreatic cancer (n = 13) who survived 
for more than one year after surgery. The most frequently selected genes were ACACB, ADAMTS6, 
NCAM1, and CADPS in Task 1, and CD1D, PLA2G16, DACH1, and SOWAHA in Task 2. According to 
The Cancer Genome Atlas dataset, these genes are all prognostic factors for pancreatic cancer. Thus, 
the feasibility of using our deep learning‑based method for the selection of genes associated with 
pancreatic cancer development and prognosis was confirmed.

Deep learning techniques have produced impressive results in many fields, including image classification, image 
generation, automated driving, and even board  gameplay1–6. A great deal of research is now being conducted to 
apply the superior inference performance of deep learning to the field of  medicine7,8. In deep learning, a large 
amount of data is required for training the model in order to extract the features that are useful for inference. In 
particular, in the field of image recognition, it is common to use convolutional layers that incorporate convolu-
tional operations to capture local patterns in an image and emphasize specific features of the image. By layering 
multiple convolutional layers, complex higher-order features can be extracted, and image features for classifica-
tion and inference with high accuracy can be extracted automatically. Therefore, deep learning has a very high 
proficiency for medical image processing, and various applications have been reported.

However, unlike images, the gene expression data used in this study are table-type numerical data that 
represent the expression state of each gene and are characterized by the fact that many features (genes) are 
interrelated. When analyzing such table-type numerical data using deep learning, it is necessary to consider all 
possible interactions between the input features. This is very different to processes like convolutional operations 
that only consider the interactions taking place around the pixel of interest, such as those in images. This means 
that we must consider the global interaction of all features using dense layers when analyzing such table-type 
numerical data. By combining these dense layers multiple times, we expect to be able to extract higher-order 
features that are effective for inferences.

In recent years, there has been a great deal of research on the interpretability of machine learning  models9–11. 
For typical machine learning models such as logistic regression, random forests, and gradient boosting, we can 
interpret the basis for their inferences to some extent. On the other hand, it is generally difficult to reason out 
the inference results of neural networks. This is because neural networks repeatedly perform many layers of 
sum-of-product computation and nonlinear transformation on the input data in order to output predictions. 
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In image processing, techniques such as Grad-CAM12 can be used to visualize the parts of the image the model 
has focused on to make inferences, thereby helping us to interpret the nature of deep learning. When using a 
neural network with multiple fully connected dense layers in table-type numerical data, millions of operations, 
or even tens of millions of operations, can be performed. Although understanding the exact flow of conversions 
that turns input data to output prediction is practically hard in a such process, the input features that affected the 
inference result by using model-independent methods such as Permutation Feature  Importance13 and  SHAP14 
can be evaluated. However, the applicability of these methods to data with a low number of samples, more than 
10,000 features, and complex interactions between the features is limited.

Current medical practices and healthcare industry obligations require the involvement of personalized medi-
cine to be able to provide more appropriate  treatment15. One health area where personalized medicine may be 
of significant benefit is cancer treatment. Pancreatic cancer is a malignant tumor with a poor prognosis. Surgery 
and multidisciplinary treatments, such as anticancer drug therapy and radiotherapy, are important for ensuring 
favorable pancreatic cancer outcomes. However, the optimal treatment method may differ for each patient. To 
practically realize personalized medicine, genes significantly associated with a cancer subtype need to be identi-
fied to stratify patients based on gene expression  data16–19. However, the identification of important genes from 
complex gene data sets comprising tens of thousands of expression statuses is a considerable challenge. Various 
methods based on machine learning have been proposed for the feature selection of gene expression data, but 
there is no consensus on a standard method to be  used20–23.

Feature selection based on machine learning can be categorized into the filter, wrapper, and embedding 
methods. The filter method, also known as feature ranking, is a method that quantifies and evaluates each fea-
ture according to a certain index. While it is computationally inexpensive, it is difficult to take into account the 
interrelationships among the multiple features and to evaluate them numerically. The wrapper method takes 
into account the interrelationships among the features by dynamically changing the feature subset to be evalu-
ated, but the computational cost tends to be high because the machine learning model is trained each time the 
feature subset is evaluated. The embedding method is one where feature selection is done simultaneously with 
the training of the machine learning model, and it allows for the elucidation of the interrelationships among 
the features at reduced computational cost. However, depending on the machine learning model used, some 
problems can occur, such as over-fitting and difficulty in interpreting the results. Thus, each method has its own 
merits and demerits.

Particularly in the case of gene expression data, where the number of samples is small and the number of 
features (genes) is very large, it is common for the results to be completely different for each method. In addi-
tion, since the behaviors and functions of all genes are not yet known, it is useful to evaluate the results compre-
hensively from various perspectives using a wide variety of feature selection methods in order to make a truly 
appropriate gene selection. Therefore, the main purpose of this study was to propose a methodology of feature 
selection based on deep learning, which includes a feature selection layer that can evaluate the importance of 
features in a deep learning model, and to show the feasibility of a new methodology for gene selection that has 
not been used before.

Results
Patient background. Patient backgrounds are summarized in Table 1. Significant differences in CA19-9 
levels, overall survival (OS), and disease-free survival (DFS) were observed between the better and worse prog-
nosis groups. No significant differences were observed in the pathological variables.

Experiment tasks. In this study, we experimented with the selection of important genes over two separate 
tasks. The first task was to discriminate between pancreatic cancer and normal pancreatic tissue (Task 1). The 
second task was to discriminate patients with pancreatic cancer who survived for more than one year after 
surgery (Task 2). Task 1 used gene expression data of pancreatic cancer and normal tissues sampled from six 
patients. Task 2 used gene expression data obtained from 13 pancreatic cancer tissues (6, better prognosis; 7, 
worse prognosis). The selected genes from Tasks 1 and 2 were validated using the Cancer Genome Atlas dataset 
(TCGA: https:// www. cancer. gov/ about- nci/ organ izati on/ ccg/ resea rch/ struc tural- genom ics/ tcga).

Results of gene selection. The top 25 genes and the number of times they were ranked in the top N among 
K trials of Task 1 and Task 2 are shown in Fig. 3. The number of trials was set to K = 1000 in the experiments. 
Figure 3a and b show the results of Task 1 with N = 10 and N = 50 , respectively, and Fig. 3c and d show the 
results of Task 2. The top 10 genes, representing the genes with the largest contribution to the proposed method, 
are shown in Table 2.

In each task, the genes selected with N = 10 and N = 50 were ranked almost the same. In Task 1, 9 out of 10 
genes were the same. While the top two ranked genes in N = 10 and N = 50 were identical for Task 1 (ACACB 
and ADAMTS6), the third-ranked genes were different ( N = 10 , NCAM1; N = 50 , CADPS). In Task 2, CD1D 
and PLA2G16 were selected within the top three for both N = 10 and N = 50 . While CD1D was selected first 
for N = 10 and third for N = 50 , PLA2G16 was ranked second for N = 10 and first for N = 50 . SOWAHA was 
chosen in the third place for N = 10 , and DACH1 in the second place for N = 50 . We also applied this method 
to TCGA data for gene selection, but the results were different to the results obtained using our data. This may 
be due to the small number of sample data we used, and the differences between our methods of data prepara-
tion and standardization.

Survival analysis. Survival analyses using the Cancer Genome Atlas (TCGA: https:// www. cancer. gov/ 
about- nci/ organ izati on/ ccg/ resea rch/ struc tural- genom ics/ tcga)) data for all genes in the top 10 ranking for each 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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Table 1.  Clinical background for pancreatic cancer.

All Better prognosis Worse prognosis p-value

All 13 6 7

Sex

Male 8 5 3

Female 5 1 4

Age 64 (48–76) 66 (64–76) 63 (48–72) 0.352

Overall survival (day) 299 (143–1428) 942 (323–1428) 214 (143–299) 0.008

Disease free survival (day) 190 (77–1429) 696.5 (323–1429) 104 (77–190) < 0.001

Preoperative CEA 3.4 (1.3–28.5) 3.75 (1.3–28.5) 3.1 (2.1–14.0) 0.214

Preoperative CA19-9 412.7 (2.0–32951.5) 19.3 (2.0–10447.0) 2124.5 (143.1–32951.5) 0.038

Operation time (min) 383 (212–469) 316.5 (253–403) 413 (212–469) 0.225

Operation blood loss (ml) 600 (110–1570) 687.5 (330–1570) 590 (110–900) 0.520

Operation type

Pancreatoduodenectomy 9 3 6

Distal pancreatectomy 4 3 1 0.196

Cytology

Negative 11 5 6

Positive 2 1 1 0.538

Margin status

R0 12 6 6

R1 1 0 1

R2 0 0 0 0.538

Differenciation

Well 1 0 1

Moderate 9 4 5

Poor 3 2 1 0.220

Interstitium type

Int 11 5 6

Med 1 1 0

Sci 1 0 1 0.269

Lympathic invasion

Negative 3 1 2

Positive 10 5 5 0.441

Vascular invasion

Negative 0 0 0

Positive 13 6 7 1.000

Neural invasion

Negative 1 1 0

Positive 12 5 7 0.462

Lymph node metastasis

Negative 1 1 0

Positive 12 5 7 0.461

p max diameter (cm) 4.3 (1.5–8.5) 3.55 (1.5–8.5) 4.5 (3.6–4.5) 0.423

pT (UICC) 8th

T1 1 1 0

T2 4 3 1

T3 8 2 6 0.065

pStage (UICC 8th)

IA 0 0 0

IB 1 1 0

IIA 0 0 0

IIB 3 2 1

III 9 3 6 0.167



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16521  | https://doi.org/10.1038/s41598-021-95969-6

www.nature.com/scientificreports/

task demonstrated the significance of 6 out of the 10 genes in Task 1 (both N = 10 and N = 50 ) and 9 out of 
the 10 genes in Task 2. The Kaplan-Meier plots of the four genes selected in the top three positions in Task 1 and 
Task 2 are shown in Figs. 4 and 5, respectively. The genes selected using this method were significantly associated 
with the prognosis of pancreatic cancer.

Discussions
In this study, we adapted our proposed deep learning model with a feature selection function for pancreatic 
genetic data. Important genes were selected in two separate classification tasks: pancreatic cancer vs. normal 
tissue; and better prognosis vs. worse prognosis. The selected genes were related to the prognosis of pancreatic 
cancer when evaluating TCGA dataset as an external data source.

The number of genes that were considered to be significant in TCGA dataset was higher in Task 2 than in Task 
1 (9 of 10 vs. 6 of 10). Task 1 involved the selection of genes for effective binary classification between pancreatic 
cancer tissue and normal pancreatic tissue. Task 2 involved a binary classification between better prognosis and 
worse prognosis. Because Task 2 directly searched for prognostic determinants, it was unsurprising that the 
survival analysis in TCGA dataset showed more differences in Task 2 than in Task 1.

ACACB encodes acetyl-CoA carboxylase (ACC) β , a rate-limiting enzyme in fatty acid synthesis (where it 
plays a role in the regulation of fatty acid oxidation). The effects of ACC β inhibition on the survival of pancreatic 
cancer cells have previously been  investigated24. ACC β induces apoptosis in some pancreatic cancer cell lines, 
suggesting that the use of ACC β inhibitors may represent a new therapeutic strategy. CD1D (the top-ranked 
gene in Task 2) encodes CD1d, a transmembrane glycoprotein structurally related to major histocompatibil-
ity complex (MHC) proteins that activate natural killer T cells (NKT cells)25. The high ranking of CD1D may 
reflect the level of immunity it possesses against tumors. Furthermore, the other ranked genes are also likely to 
be strongly involved in the progression or control of pancreatic cancer, although further studies are needed to 
elucidate the details.

Feature selection is often used as a preprocessing step for machine learning and usually improves model per-
formance and learning speed. If there are k features in total, the number of all combinations of features is 2k − 1 . 
Therefore, if k is sufficiently large, it is practically impossible to evaluate all feature subsets in a full search, and 
a feature selection algorithm is used to select m(≪ k) features. Nevertheless, the evaluation of gene expression 
data with more than 10,000 features (as used in this study) is extremely difficult, even when using the feature 
selection methods proposed thus far.

Our deep learning model that uses the feature selection layer can evaluate ultra-high-dimensional features, 
and the importance of features can be learned by considering the complex interactions among the multiple 
features using dense layers. By inserting the feature selection layer immediately after the input layer, the input 
vector, which is multiplied by the weights of the feature selection layer and performs a nonlinear transformation, 
is regarded as the input to the subsequent network. The weights of the feature-selection layer are successively 
updated to increase the discrimination performance of the subsequent network through learning. Hence, the 
weights of the feature selection layer are considered to represent the importance of the input features, and fea-
tures with higher weights are considered to be more effective in determining the discrimination capability of 
the later networks than features with lower weights, which do not contribute significantly to the performance 
of the network.

This study has several limitations. Because the number of samples used was very small (Task 1, 12; Task 2, 
13), we could not prepare validation data when training the network, and we could not use external test data for 
evaluation. To improve the reliability of the output results, multiple trials were conducted, and further validation 
using TCGA database was performed. In addition, since the purpose of this study was to evaluate the feasibility 
of a new approach to discovering unknown genes related to cancer, we did not compare our method with other 
gene selection methods.

In conclusion, the use of our deep learning-based gene selection method for the selection of genes associated 
with pancreatic cancer development and prognosis was feasible. This method can be applied to gene expression 
data obtained for all diseases and may contribute to cancer stratification and to improving personalized medicine.

Material and methods
Study population criteria. The protocol was approved by the Institutional Review Board of Chiba Cancer 
Center (No. 28-15) and all patients and healthy volunteers provided their written informed consent. The study 
was carried out in accordance with the World Medical Association’s Declaration of Helsinki. In this study, 13 
patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) between January 2013 and December 2017 
were included. All patients underwent surgery, and both specimens of cancer and frozen samples of nearby nor-
mal pancreatic tissue were collected. No preoperative chemotherapy was administered to any patient. Patients 
were observed for at least one year after surgery.

RNA sequencing (RNA‑seq). Total RNA was extracted from frozen tissue blocks containing 50− 100 
mg of PDAC tissue or normal tissue using standard protocols. First, frozen tissues were ground and homog-
enized using liquid nitrogen. Total RNA was extracted using an miRNeasy Mini Kit (QIAGEN) according to 
the manufacturer’s protocols. The quality, quantity, and integrity of total RNA were evaluated using a NanoDrop 
One/OneC UV-Vis spectrophotometer (Thermo Fisher Scientific) and a Bioanalyzer 2100 (Agilent Technolo-
gies). Only samples with an RNA quality score (RIN value)> 7.0 were used for RNA-seq. The RiboMinus Eukar-
yote System v2 was used to exclude rRNA from the total RNA. The mRNAs were barcoded with the Ion Xpress 
RNA-Seq Barcode 1–16 Kit (Thermo Fisher Scientific), and libraries were generated using the Ion Total RNA-
Seq Kit v2 (Thermo Fisher Scientific). The library was constructed for next-generation sequencing (NGS) on an 
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Ion Proton instrument (Thermo Fisher Scientific) using a 2× 75 bp pair-end protocol. In total, we sequenced 
eight libraries, generating 34–60 million pairs of reads per sample. NGS BAM files containing the sequence 
data were then analyzed by bioinformaticians. The number of reads mapped to annotated genomic features was 
quantified from the BAM files using the feature counts in the Subread package. The sample data were normalized 
to count per million (CPM).

Deep learning‑based gene selection. Deep learning can automatically extract the features needed for 
inference directly from raw data. However, the extracted feature information is distributed among the weights 
of the multilayered network, and it is usually difficult to obtain information about the basis of the inference in 
a form that humans can understand. We hypothesized that the addition of a feature selection layer in the deep 
learning model would solve this problem. The feature selection layer multiplies the input by weight in a one-to-
one relationship and outputs vectors with the same shape as the input. Thus, the values of the input features are 
increased or decreased by the weights and passed to the next network.

A conceptual diagram of the feature-selection layer is shown in Fig.  1. When x = (x1, x2, · · · , xk)
T  , 

W = (w1,w2, · · · ,wk)
T , and y = (y1, y2, · · · , yk)

T are the input vector, the weights, and the output respectively, 
the operation performed by the feature selection layer is expressed as follows:

Figure 1.  The network structure for the feature selection layer.

Figure 2.  The network structure for gene selection used in Task 1 and Task 2.

Table 2.  Results of gene selection for Task 1 and Task 2.

Task 1 Task 2

# of ranking N = 10 N = 50 N = 10 N = 50

1 ACACB ACACB CD1D PLA2G16

2 ADAMTS6 ADAMTS6 PLA2G16 DACH1

3 NCAM1 CADPS SOWAHA CD1D

4 RGS1 NCAM1 DACH1 SOWAHA

5 CADPS RAB3IP TBC1D8 TBC1D8

6 RAB3IP FAM107A KIAA1217 KIAA1217

7 SLC4A4 TNXA ITGB8 ITGB8

8 CCL28 LPCAT2 ZBTB46 CCDC142

9 FAM107A RGS1 CCDC142 SLC16A7

10 TNXA SLC4A4 SLC16A7 ZBTB46
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Figure 3.  The number of counts of the top 25 genes ranked in the top 10 and 50 positions during 1000 trials.
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where ⊗ is the Hadamard product, and f (·) is the activation function. In the present study, a linear function of 
f (x) = x was used as the activation function, and the value obtained after multiplication by the weights was 
directly passed to the network in the subsequent stage.

Figure 2 illustrates the network structure. The network after the feature selection layer comprised a very 
simple structure consisting of three 500-unit dense layers with a dropout probability of 0.5 and an output layer 
that outputs the probability of each class. The ReLU function was used as the activation function for all of the 
dense layers. Categorical cross-entropy was used as the loss function, and the weights of the feature-selection 
layer were regularized to be non-negative.

The gene expression data used in this study were based on the expression levels of 11,273 genes measured 
in 13 patients with pancreatic cancer. The gene expression data were performed the min-max normalization in 
order to present all values between 0 and 1. A feature selection layer with the same number of units as the genes 
was placed immediately after the input layer with the 11,273 units. The classification network was then placed 
behind it. Each layer in a neural network can be regarded as a kind of feature extractor. In other words, it can 
be thought of as a process that creates new features by applying complex nonlinear transformations from all 
the outputs of the previous layer. In particular, in the case of dense layers, the neurons in each layers consider 
the output of neurons in the previous layer as a new feature, and combine all of these features to produce a new 
feature. In general, neural networks are trained in such a way that the weights for features that contribute to 
reducing the loss function and the weights for unnecessary features are increased or decreased. Due to the min-
max normalization for data and the non-negative regularization for feature selection layer, training proceeds in 
such a way that weights corresponding to features that are not necessary for minimizing the loss function are 
reduced. After model training, the weight of each unit in the feature selection layer is considered to represent 
the importance of the corresponding features.

Our method can be categorized as an embedding type of feature selection method. However, neural networks 
also include random factors, such as the initial values of weights and the order in which the training data are 
provided. In addition, when a neural network learns using high-dimension data from a low number of samples, 
the network may not be appropriately trained, and the weights of the feature selection layer may not be reliable. 
Thus, in this study, the importance of the genes was evaluated in terms of the number of times the genes were 

(1)y =f (W ⊗ x),

Figure 4.  Kaplan–Meier plots of overall survival for the top three genes in Task 1. The top three genes were 
ACACB, ADAMTS6, and NCAM1 at N = 10 , and ACACB, ADAMTS6, and CADPS at N = 50 . These genes 
were significant prognosis predictors.
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ranked in the top N positions after the network was trained K times. The ranking was sorted in descending order 
by weight corresponding to each feature in each training trial.

Statistics. The differences between patients’ backgrounds were assessed using Fisher’s exact test and the 
Mann–Whitney U test. OS was defined as the period between surgery and final observation (in days), whereas 
DFS was defined as the time from surgery to tumor recurrence or death. A P-value of less than 0.05 was con-
sidered significant. These statistical analyses were conducted using JMP Pro version 13.2.0 (SAS Institute Inc., 
Cary, NC, USA). Survival analyses were performed using the R2: Kaplan Meier Scanner (http:// r2. amc. nl) to 
separate the gene expression data of TCGA data into two groups and select the best Kaplan–Meier curves based 
on a log-rank test.
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