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Predicting prognosis and IDH 
mutation status for patients 
with lower‑grade gliomas using 
whole slide images
Shuai Jiang1, George J. Zanazzi2 & Saeed Hassanpour1,3,4*

We developed end‑to‑end deep learning models using whole slide images of adults diagnosed with 
diffusely infiltrating, World Health Organization (WHO) grade 2 gliomas to predict prognosis and the 
mutation status of a somatic biomarker, isocitrate dehydrogenase (IDH) 1/2. The models, which utilize 
ResNet‑18 as a backbone, were developed and validated on 296 patients from The Cancer Genome 
Atlas (TCGA) database. To account for the small sample size, repeated random train/test splits were 
performed for hyperparameter tuning, and the out‑of‑sample predictions were pooled for evaluation. 
Our models achieved a concordance‑ (C‑) index of 0.715 (95% CI: 0.569, 0.830) for predicting prognosis 
and an area under the curve (AUC) of 0.667 (0.532, 0.784) for predicting IDH mutations. When 
combined with additional clinical information, the performance metrics increased to 0.784 (95% CI: 
0.655, 0.880) and 0.739 (95% CI: 0.613, 0.856), respectively. When evaluated on the WHO grade 3 
gliomas from the TCGA dataset, which were not used for training, our models predicted survival with a 
C‑index of 0.654 (95% CI: 0.537, 0.768) and IDH mutations with an AUC of 0.814 (95% CI: 0.721, 0.897). 
If validated in a prospective study, our method could potentially assist clinicians in managing and 
treating patients with diffusely infiltrating gliomas.

Diffuse gliomas are the most common primary brain tumors in adults, and one of the most common causes 
of cancer death affecting young  adults1. According to the World Health Organization (WHO) classification of 
tumors of the central nervous  system2, the diffusely infiltrating gliomas are categorized into grade 1 to 4 based 
on histologic features such as mitotic activity, tumor cell pleomorphism, and the presence of necrosis and/or 
microvascular  proliferation2. Lower-grade gliomas (LGG) refer to grade 2 and grade 3 gliomas, and the median 
survival time of patients with LGG is 7  years3. Predicting survival times for patients with LGG can inform treat-
ment and promote shared-decision making between physicians and patients, and is of great interest in clinical 
practice. But this is a challenging task given the heterogeneity of this disease from histological, genetic, and 
clinical aspects, as well as the efforts required for obtaining the morphological and molecular features.

Prognostic factors for adult diffuse gliomas include age, gender, performance status, the extent of tumor 
resection, and intrinsic factors of the tumor including grade, isocitrate dehydrogenase (IDH) mutation, chromo-
some 1p/19q status, and MGMT promoter  methylation4,5. Although tumor tissues are graded according to well-
established histological criteria, this manual process is time-intensive and cannot provide detailed information 
for an accurate survival estimation. The development of deep learning models over the past few years provides 
unique opportunities to extract information from unstructured data such as whole slide images (WSIs)6–8. Sev-
eral studies have used WSIs to predict the prognosis of patients diagnosed with diffuse gliomas and have shown 
promising  results9,10. However, these models either were developed and evaluated for glioma patients with various 
grades (grade 2 to 4), or did not report the performance when only using WSIs. Information on the prognostic 
performance of WSI-based deep learning models for LGG is limited. A model trained using data across grade 
2 to grade 4 cases can perform well in distinguishing high-risk patients from low-risk patients with different 
grades of gliomas; however, it might not be able to differentiate high-risk patients from low-risk patients within 
the same grade.
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In addition to morphological features, IDH mutation is another important prognostic feature for glioma 
patients. IDH mutations are common in LGG patients with a prevalence of about 80%11, and are associated with 
more favorable  outcome3,12 compared to IDH wild-type. Recent retrospective and clinical studies also suggest the 
presence of an IDH mutation is an important treatment  indicator9,13–19, thus it is crucial to consider IDH mutation 
status in clinical treatment planning. However, investigating IDH mutational status can be time-consuming and 
expensive. If we can obtain the IDH mutation information directly from the histopathological slides, both time 
and cost could be significantly reduced. However, there has not been a study on using deep learning models to 
infer IDH mutation status based on WSIs for LGG patients, and it is not clear how the WSI-inferred IDH muta-
tion status can affect the performance in predicting survival.

In this study, we set our focus on LGG and explored the use of deep learning models for survival and IDH 
mutation status predictions utilizing The Cancer Genome Atlas (TCGA) database. This is a more challenging 
task in comparison to previous studies due to the smaller sample size and less variation in patient outcomes. To 
overcome this challenge in our study, we used an ensemble deep learning framework and obtained pooled out-
of-sample predictions from repeated random splits of the dataset to ensure the stability and quality of our results. 
This approach helps obtaining the distribution of the model performance on the entire dataset and makes the 
results not subject to unbalanced splitting. We additionally evaluated if the WSI-inferred IDH mutation status 
can be used for survival prediction when such information has not been directly measured for these patients.

Results
Model performance and comparison with clinical features for prognosis prediction. The aver-
age performance of the models with the chosen hyperparameters was 0.644 (standard deviation = 0.107) in the 
32 separate test splits. The ensembled predictions achieved a C-index of 0.715 (95% CI: 56.9, 83.0) for the prog-
nosis prediction task over the entire dataset (Table 1). Several demographic and clinical variables were consid-
ered for survival analysis in our study. A Cox-proportional hazards model of age achieved a C-index of 0.745. 
When our WSI risk scores were added to the Cox model, the C-index was improved to 0.765 (difference = 0.020, 
95% CI: − 0.091, 0.100). Gender and race were unrelated to survival, with C-index close to 0.5. The C-index when 
using only a clinical variable (primary diagnosis) was 0.572. By adding our WSI-based risk scores, the C-index 
was increased to 0.689 (difference 0.117, 95% CI: − 0.003, 0.230) but still lower than WSI risk scores alone. IDH 
mutation status was another strong predictor with a C-index of 0.692 without WSI risk scores or 0.762 with WSI 
risk scores. When combining age and IDH mutations, the C-index was 0.774 (95% CI: 0.658, 0.863), and adding 
our WSI-based risk scores improved the C-index slightly to 0.784 (difference = 0.010, 95% CI: − 0.097, 0.085).

We then partitioned age and WSI risk score into 3 categories with an equal number of patients (i.e., tertiles) 
to visualize the survival curve for each category. Figure 1a and c show both age and WSI risk scores can suc-
cessfully identify high-risk patients (age > 46 years or WSI risk score > 1.37) shortly after diagnosis. However, 
patients with intermediate-risk were not significantly different from patients with low risk. The survival curve 
for patients with IDH mutations separated from the survival curve for IDH wild-type patients about half-year 
after diagnosis (Fig. 1b). Log-rank tests were significant for all three predictors.

In the WHO grade 3 cases (Supplementary Table S3), the WSI-based risk scores had lower performance alone 
(0.654, 95% CI: 0.537, 0.768). Age and IDH mutations together achieved a C-index of 0.786 (95% CI: 0.683, 

Table 1.  Model performance statistics for survival prediction task and IDH mutation prediction task, 
evaluated among patients with grade 2 gliomas. 95% confidence intervals were derived from 10,000 
bootstrapping replications. Bold texts indicate the best performance for each column. * Indicates statistically 
significant difference (p < 0.05).

Survival prediction performance: C-index [95% CI]

Without WSI risk score With WSI risk score Difference

None – 0.715 [0.569, 0.830] –

Age 0.745 [0.627, 0.838] 0.765 [0.643, 0.865] 0.020 [− 0.091, 0.100]

Gender 0.509 [0.345, 0.630] 0.688 [0.528, 0.815] 0.179 [− 0.007, 0.352]

Race 0.520 [0.444, 0.554] 0.713 [0.568, 0.831] 0.193 [0.056, 0.322]*

Primary diagnosis 0.572 [0.437, 0.707] 0.689 [0.539, 0.822] 0.117 [0.003, 0.230]*

IDH mutations 0.692 [0.573, 0.807] 0.762 [0.602, 0.878] 0.070 [− 0.048, 0.161]

Age + IDH mutations 0.774 [0.658, 0.863] 0.784 [0.655, 0.880] 0.010 [− 0.097, 0.085]

IDH mutation prediction performance: AUC [95% CI]

Without WSI Predicted IDH Mutation 
Probability

With WSI Predicted IDH Mutation 
Probability Difference

None – 0.667 [0.532, 0.784] –

Age 0.689 [0.552, 0.816] 0.726 [0.599, 0.845] 0.037 [− 0.053, 0.097]

Gender 0.536 [0.430, 0.643] 0.650 [0.507, 0.769] 0.114 [− 0.078, 0.240]

Race 0.567 [0.480, 0.650] 0.687 [0.560, 0.800] 0.120 [− 0.002, 0.229]

Primary diagnosis 0.519 [0.389, 0.641] 0.637 [0.472, 0.755] 0.118 [− 0.090, 0.261]

Age + Race 0.711 [0.585, 0.834] 0.739 [0.613, 0.856] 0.028 [− 0.051, 0.078]
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0.877). When combining WSI risk scores, the model performance improved slightly to 0.792 (95% CI: 0.701, 
0.876). Kaplan–Meier curves for patients with WHO grade 3 gliomas are shown in Supplementary Figure S1.

Model performance and comparison with clinical features for IDH prediction. The AUC of the 
WSI-based models for predicting IDH mutations was 0.667 (95% CI: 0.532, 0.784) (Table 1 and Fig. 1d). In addi-
tion, age is a strong predictor of IDH mutations with an AUC of 0.689 (95% CI: 0.552, 0.816). Race is a weak 
predictor with an AUC of 0.567 (95% CI: 0.480, 0.650). Combining race and WSI-based scores, the AUC was 
increased to 0.687. When combining age and race, the AUC was 0.711 (95% CI: 0.585, 0.834). Including WSI-
based scores raised the AUC to 0.739, with 0.028 improvement (95% CI: − 0.051, 0.078).

For WHO grade 3 cases (Supplementary Table S3 and Figure S1), the WSI-based scores can predict IDH 
mutations with an AUC of 0.814 (95% CI: 0.721, 0.897), which is much higher than the demographic and clinical 
predictors. When combining age, the AUC was 0.845 (95% CI: 0.759, 0.919), which is a statistically significant 
improvement over using only age as the predictor (0.122, 95% CI: 0.001, 0.198).

Figure 1.  Kaplan–Meier curves and ROC curves were evaluated among patients with grade 2 gliomas. (a), (b), 
(b) Kaplan–Meier curves by age, IDH mutations, and WSI risk score, respectively. P-value was calculated by log-
rank test. Age and WSI risk score were categorized in tertiles. (d) ROC curve for IDH mutation prediction.
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Prognosis prediction using WSI predicted IDH mutation probability. Additionally, we explored 
if WSI-predicted IDH mutation probability can be used to replace IDH mutation status measurement in pre-
dicting the prognosis (Table 2 and Supplementary Table S4). Among patients with grade 2 gliomas, we found 
predicted IDH mutation probability alone achieved a C-index of 0.727, which is notably greater than the WSI 
risk score (0.715) and IDH mutations (0.692). When combining with age, the C-index increased to 0.767 (95% 
CI: 0.646, 0.862), but not as good as combining age and IDH mutations (C-index = 0.774). Finally, when combin-
ing predicted IDH mutation probability with age and WSI risk score, the C-index was 0.771, which was better 
than age and survival risk score (0.766), but not as good as combining age, survival risk score, and IDH muta-
tions (0.784). Among patients with grade 3 gliomas, similarly, we found that the WSI-inferred IDH mutation 
probability could improve the performance of survival prediction. For example, combining WSI-inferred IDH 
mutation probability with age and WSI risk score could achieve a C-index of 0.771. Although this performance 
is lower than using IDH mutations measurement directly (C-index = 0.792), it is 0.014 higher than using age and 
WSI risk score alone (C-index = 0.757).

Visualization of model predictions. The average WSI-based risk scores across patients were 0.947 
(standard deviation: 1.587). Prediction results on the whole slide and patch level are shown in Fig. 2 and Sup-
plementary Figure S2. Increased tumor cell density and tumor cell atypia, i.e., increased nuclear size, hyperchro-
masia, and irregular nuclear contours, are associated with higher grade and worse prognosis. The images of the 
resection specimen in Fig. 2a show a diffusely infiltrating glial neoplasm with many areas of high cellularity and 
pleomorphism. This tumor was diagnosed at the time as an oligoastrocytoma (mixed glioma), and the patient 
died 1.4  years after diagnosis. The predicted risk score was high (10.77). The histology of this tumor differs 
dramatically from the one shown in Fig. 2b, which reveals only small foci of hypercellularity and atypia (insets, 
left). Much of the resection specimen from this 32-year-old man diagnosed with mixed glioma showed reactive 
astrogliosis and mildly infiltrated brain parenchyma (insets, right). The model’s low predicted risk score of 0.65 
is consistent with the low-grade histologic features of this tumor. The patient’s relatively long survival of six years 
corroborated the model’s performance.

Discussion
In this study, we have shown that by using deep learning models on WSIs, we are able to achieve promising 
results for predicting prognosis and IDH mutational status on the LGG dataset from the TCGA database. The 
performance of the deep learning model based on WSIs alone is better than the model based on the primary 
diagnosis and some demographic variables such as race and gender, but not as good as age at diagnosis. Com-
bining WSI-based deep learning predictions with demographic and clinical features could further improve the 
model performance up to 0.784 to predict prognosis and 0.739 to predict IDH mutational status. We also found 
if WSI predicted IDH mutation probability is used instead of IDH mutation status measurement, we could still 
obtain a C-index of 0.771. Our results were further validated using the WHO grade 3 subset which was not used 
during the training and hyperparameter selection.

Age is the single best predictor for almost all the tasks evaluated, except for IDH mutation prediction among 
grade 3 glioma patients. However, gender, race, and primary diagnosis provided little value in the prognosis 
prediction. It has long been known that histopathological diagnosis of lower-grade gliomas does not adequately 
predict clinical outcomes due to interobserver  variability20. And previous studies have identified age as an impor-
tant prognostic factor using non-TCGA datasets, with older age associated with worse  outcomes21,22. This could 
be due to the natural progression of the disease or that age is a proxy variable for many factors that could affect 
the survival of LGG patients, such as comorbidities. Similar to previous studies, we also found that IDH muta-
tion is an important predictor of survival. Despite the strong prognostic value of age and IDH mutations, we still 
achieved a small yet consistent improvement in C-index when including WSI-derived predictions, demonstrating 
that our deep learning approach could extract complementary prognostic information from WSIs for developing 
a more accurate survival prediction framework.

Table 2.  Performance of survival prediction using predicted IDH mutation probability evaluated among 
patients with grade 2 gliomas. 95% confidence intervals were derived from 10,000 bootstrapping replications. 
Bold texts indicate the best performance for each column. * Indicates statistically significant difference 
(p < 0.05).

Without WSI predicted IDH mutation 
probability

With WSI predicted IDH mutation 
probability Difference

None – 0.727 [0.593, 0.834] –

Age 0.746 [0.625, 0.838] 0.767 [0.646, 0.862] 0.021 [− 0.069, 0.091]

Gender 0.509 [0.344, 0.629] 0.704 [0.561, 0.823] 0.195 [0.041, 0.367]*

Race 0.520 [0.445, 0.554] 0.719 [0.585, 0.831] 0.199 [0.075, 0.322]*

Primary diagnosis 0.573 [0.433, 0.707] 0.700 [0.554, 0.818] 0.127 [0.001, 0.236]*

WSI risk score 0.715 [0.573, 0.831] 0.723 [0.574, 0.839] 0.008 [− 0.114, 0.081]

Age + WSI risk score 0.766 [0.646, 0.866] 0.771 [0.647, 0.867] 0.005 [− 0.083, 0.062]
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Previous work on the application of deep learning models to LGG datasets is relatively limited. Studies using 
less restrictive data inclusion/exclusion criteria reported higher performance in the survival prediction task and 
IDH mutation prediction task. Specifically, Mobadersany et al.9 predicted survival of patients diagnosed with 
grade 2 to 4 gliomas from the TCGA database, and they obtained a C-index of 0.741 in the testing phase. The 
C-index of 0.715 achieved by the WSI risk scores in our study with only grade 2 patients is considerably lower 
likely due to the smaller sample size of our study population and less variation in the disease severity.

Of note, for the IDH mutation prediction task, Momeni et al. applied deep recurrent attention models using 
the TCGA dataset and obtained an AUC of 0.8623. In another study, Liu et al. achieved an AUC of 0.920 with a 
dataset combining 200 TCGA grade 2 to 4 cases and 66 private  cases24. In contrast, the AUC of our model evalu-
ated on the restrictive grade 2 dataset was only 0.667, possibly because most (85%) of the grade 2 LGG patients 
had IDH mutations. Although we explored both oversampling of the minority class and down-weighting the loss 

Figure 2.  Example predictions on whole slide images for prognosis prediction. (a) A 59-year-old female patient 
diagnosed with mixed glioma, died 1.4 years after diagnosis. The predicted risk score is 10.77. (b) A 32-year-old 
man diagnosed with mixed glioma, died 6 years later. The predicted risk score is 0.65.
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for the majority class, the performance could not be further improved on such an imbalanced dataset. However, 
on grade 3 dataset, which is more balanced in terms of IDH mutation status (68.6%), we observed a much higher 
AUC (0.814) using the same model. This indicates that our model does not lack the ability to distinguish IDH 
mutation status, but that the imbalanced dataset makes the objective evaluation challenging.

Additionally, we found that using the inferred IDH mutation probability estimated from the WSIs could help 
prognosis prediction. Among grade 2 patients, there was a 0.005 increase in AUC when including the inferred 
IDH mutation probability in addition to age and WSI risk score. Among grade 3 patients, such improvement 
was 0.014. While the prognosis prediction performance using IDH mutation probability was not as good as 
using IDH mutation measurement directly, it can still provide the LGG patients more accurate survival estimate 
when their IDH mutation status is not available. Determining IDH mutation status can be expensive and time-
consuming, because only a small proportion of mutations can be currently identified by  sequencing25. Our deep 
learning model can serve as a readily available tool for predicting IDH mutation status from WSIs without extra 
cost and waiting time.

During initial experiments, we noticed that for a single data split, the higher performance in the validation 
dataset does not necessarily translate to higher performance in the test dataset. This could be due to unbalanced 
sampling when the sample size is small. We also found that a discrepancy in validation and test AUC occurred 
in Liu et al.’s  study24. For example, the AUC for their baseline model achieved an AUC of 0.920 on the test set, 
while in the validation dataset the AUC is 0.823. This highlights the difficulty in obtaining a balanced train/
validation/test splitting with a limited sample size. Our adoption of the repeated data splits and pooling method 
can alleviate this problem.

There are several limitations to this study. First, the sample size in the study is relatively small and the number 
of lost to follow-up is substantial. With only 296 patients (among which 49 were observed at the endpoint and 44 
were IDH wild-type), developing a deep learning framework is challenging. The small sample size also limited the 
power to detect statistically significant improvement using the predictions based on WSIs over only demographic 
and clinical information. Secondly, we did not evaluate the performance of our models on additional datasets; 
thus, the generalizability of this method needs further validation. Thirdly, only the IDH mutation status was 
considered as a molecular biomarker in this study. Other molecular biomarkers that are also important for LGG 
prognosis prediction, such as 1p/19q co-deletion, that were not included in the current study will be explored 
in future work. Lastly, the cause of death was not recorded in the TCGA dataset, thus our ground truth might 
not be accurate for all the samples which could affect the model performance.

Notably, histological information could only explain part of the variance in survival time. Other information, 
such as the location of the tumor, treatment, and comorbidities are also important determinants of the progres-
sion of the disease. In this study, we did not include important clinical data, such as treatment, in our analysis, 
as the detailed information was not available in the TCGA dataset. We will pursue expanding our dataset and 
include this additional relevant information in our analysis in future work. We expect incorporating additional 
demographic, clinical, and genetic/molecular information in our method could potentially further improve the 
ability to predict the prognosis of patients diagnosed with LGG.

Materials and methods
Data source. The digitized hematoxylin and eosin (H&E) stained whole slides used in this project were 
obtained from the TCGA database. TCGA database is de-identified and is publicly available on the Web. There-
fore, this project does not meet the requirements of human subject research. Only grade 2 diffuse glioma patients 
were included for model development (number of patients = 307). There are two different types of whole slide 
images in this dataset, namely formalin-fixed paraffin-embedded (FFPE) slides and frozen section  slides26. 
Since the frozen section slides contain many artifacts, we only included FFPE slides in our dataset (number of 
patients = 296, number of WSIs = 524).

Demographics and clinical information were also downloaded from the TCGA website. For the deceased 
patient, the follow-up time was derived from “days to death”. For patients who were alive at the last follow-up, 
the follow-up time was derived from “days to last follow-up”. IDH mutation status was derived from IDH1 and 
IDH2 mutation variables. Eight participants without IDH mutation information were excluded from IDH related 
analysis. Demographic and clinical information including age, gender, race, and primary diagnosis, were used 
in our analysis for comparison purposes. The average age of the patients in our dataset was 40.9 years with a 
standard deviation of 13.0 years. Among those, 55.7% were men, and the majority (91.6%) of the patients were 
white. The proportions of patients diagnosed as astrocytoma, oligoastrocytoma, and oligodendroglioma were 
19.9%, 43.9% and 36.1%, respectively. 80.2% of the patients had an IDH1 mutation, while 4.5% had an IDH2 
mutation (Supplementary Table S1).

To further evaluate the performance of our method, we obtained the grade 3 glioma cases from the TCGA 
database for testing purposes only (number of patients = 194, number of whole slides images = 319). The data 
processing procedure for grade 3 cases is the same as the grade 2 cases. The distribution of demographic variables 
was similar to grade 2 cases, and IDH mutations were present in 68.6% of the patients (Supplementary Table S2).

Preprocessing of whole slide images. As WSIs are large and cannot fit in GPU memory, several pre-
processing steps were taken to extract patches from the original images. We loaded the WSIs at the magnification 
factor of 10 × (1 μm/pixel) and extracted patches with a size of 224 × 224 pixels without overlap. Background 
patches were excluded by using color thresholding. A total of 1,887,767 patches were generated through this 
process.
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Model architecture. For the prognosis prediction task, our model architecture is adapted from the pro-
posed work by Wulczyn et al.27 and is illustrated in Fig. 3. In summary, for each batch, n participants were ran-
domly chosen from the training dataset. For each participant, k patches were randomly selected. These patches 
were fed into a deep learning model. The ResNet-18 model with pre-trained ImageNet weights was used as the 
backbone  model28, and a fully-connected layer was replaced by an identity layer. The output size for each patch 
was 512. We then averaged the feature vectors over k patches for each participant and used the pooled features 
for risk estimation through a subsequent two-layer neural network with 128 neurons and 1 neuron for each layer, 
respectively. The final output can be interpreted as risk scores and the loss is calculated as the negative log Cox 
partial likelihood, which is defined as

where n is the number of patients, xi is the risk score, yi is the event indicator (0 for alive and 1 for death), R(Ti) 
is the risk set at the event time of i th patient.

The model architecture for the binary IDH mutation prediction task is similar to the one for prognosis 
prediction, except that the final output size is 2. Since the percentage of participants with IDH mutations was 
much larger than that of participants without IDH mutations, we used weighted cross-entropy loss to handle 
the imbalanced dataset by assigning a larger weight to cases without IDH mutations.

During validation, 100 random patches were selected for each patient in the validation group for a balance 
between variations and efficiency. All the patches were used when making out-of-sample predictions for cases 
in the test set.

Model evaluation metrics. Concordance index (C-index), which is defined as the proportion of concord-
ant pairs among all possible pairs, was used as the evaluation metric of our prognosis prediction model. Area 
under ROC (receiver operating characteristic) curve (AUC) was used as the evaluation metric for the binary 
classification tasks.

Training‑validation data splits. The data splitting was performed at the patient level to avoid the infor-
mation leak across partitions. Due to limited training data, to ensure more balanced group splits, we first sorted 
the patients by vital status and follow-up time, then created multiple 4-patient-blocks. Within each block, we 
assigned 2 patients to the training group and 1 patient to each of the validation and test groups. This random 
splitting was repeated 8 times for hyperparameter tuning, and was repeated another 24 times for model evalua-
tion (as explained below).

Hyperparameter tuning. Within each random data split, our deep learning model was fit on the training 
split, with its performance monitored using the validation split. When the training is finished, an out-of-sample 
prediction was obtained for the test dataset. We repeated this process in all of these 8 repetitions, and used the 
average validation performance metrics to choose the best set of hyperparameters. The final set of hyperparam-
eters chosen was batch-size of n = 8 patients with k = 8 patches for each individual (64 patches per batch in 
total), an initial learning rate of 1e−4 for the fully connected layers and 3e−7 for the convolutional layers.

J(β) = −
1

n
�n

i=1yi[xi − log(�j∈R(Ti)exp(xj))]

Figure 3.  An overview of the deep learning pipeline for prognosis prediction. Patches of size 224 × 224 × 3 are 
randomly sampled from whole slide images at a 10 × magnification level. The ResNet-18 Convolutional Neural 
Network transformed each patch into a 512 × 1 vector. Average pooling is performed at the patient level. The 
patient level vectors then go through a two-layer fully connected network with a final output size of 1, which can 
be interpreted as risk scores. Cox proportional hazards loss is calculated using the risk scores with consideration 
of follow-up time and vital status. The gradient is calculated and backpropagated through the fully connected 
layers and the ResNet-18 layers to train the entire model.
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Data augmentation methods, such as random horizontal and vertical flips and color jittering, were used 
during training time. To mitigate overfitting, we applied an L1 penalty with a regularization strength of 0.01 on 
the fully connected layers. Adam optimization was used for training. Cosine annealing was used as the learning 
rate scheduler. Each model was evaluated when every 20,480 (i.e., 320 steps) patches were used and training was 
stopped after 96 thousand steps.

Bootstrapping on out‑of‑sample predictions. After training and hyperparameter tuning across the 
first 8 random splits, we trained the models with the same hyperparameters using the additional 24 random 
splits. These 32 models provided 32 out-of-sample predictions. The test set size for each model was one-fourth 
of the total dataset. Because each participant was selected into the test dataset with a probability of 0.25, the 
number of out-of-sample predictions for a participant follows the Poisson distribution with a mean of 8 (min = 2, 
max = 18). We ensembled all the out-of-sample predictions by averaging them as the final prediction.

Subsequently, we performed a bootstrapping method to evaluate the model performance. To do so, we ran-
domly selected 296 observations from the entire dataset with replacement as the training dataset (about 63% 
of the patients). A statistical model (Cox or logistic) using demographic and clinical information with/without 
deep learning predictions was fit on the training dataset. The participants who were not selected formed the 
test dataset (about 37% of the patients) and were used to evaluate the performance of the statistical model. We 
repeated this process 10,000 times to estimate the distribution of C-index and AUC without or with deep learn-
ing predictors as well as their difference. The deep learning framework was implemented in PyTorch (version 
1.1.0). The statistical tests were performed using R (version 3.6.1).

Results visualization. Kaplan–Meier curves were used to present the observed survival probability over 
time by tertiles (i.e., 33rd and 67th percentiles) of age and WSI risk score, and IDH mutation status. The Kaplan–
Meier curves were replicated for patients with grade 3 gliomas using the same cut-offs. For the IDH mutation 
prediction task, ROC curves were plotted with age and WSI-based IDH mutation probability as the predictor.

To visualize the model performance at the whole slide level, we selected two patients from the prognosis pre-
diction task and another two from the IDH mutation prediction task. For the prognosis prediction task, we chose 
one patient who died shortly after diagnosis, and another patient who survived at least 5 years after diagnosis. For 
the IDH mutation prediction task, we chose one patient with an IDH mutation and one without. One whole slide 
image was selected for each patient. Representative regions from the slide were chosen for a more detailed view.

Data availability
This project’s source of data is the TCGA database, which is publicly available on the Web (https:// portal. gdc. 
cancer. gov/ proje cts/ TCGA- LGG).

Code availability
This project’s source code is publicly available at https:// github. com/ BMIRDS/ WSI- PLP.
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