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Juvenile social defeat stress 
exposure favors in later onset 
of irritable bowel syndrome‑like 
symptoms in male mice
Kenjiro Matsumoto1*, Kana Takata1, Daisuke Yamada2, Haruki Usuda3, Koichiro Wada3, 
Maaya Tada1, Yoshiyuki Mishima4, Shunji Ishihara4, Syunji Horie5, Akiyoshi Saitoh2 & 
Shinichi Kato1

Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder. Traumatic 
stress during adolescence increases the risk of IBS in adults. The aim of this study was to characterize 
the juvenile social defeat stress (SDS)‑associated IBS model in mice. Juvenile mice were exposed to an 
aggressor mouse for 10 min once daily for 10 consecutive days. Behavioral tests, visceral sensitivity, 
immune responses, and fecal bacteria in the colon were evaluated in 5 weeks after SDS exposure. 
Social avoidance, anxiety‑ and depression‑like behavior, and visceral hypersensitivity were observed. 
Juvenile SDS exposure significantly increased the number of 5‑HT‑containing cells and calcitonin 
gene‑related peptide‑positive neurons in the colon. The gut microbiota was largely similar between 
the control and juvenile SDS groups. The alterations in fecal pellet output, bead expulsion time, 
plasma corticosterone concentration, and colonic 5‑HT content in response to restraint stress were 
exacerbated in the juvenile SDS group compared with the control group. The combination of juvenile 
SDS and restraint stress increased the noradrenaline metabolite 3‑Methoxy‑4‑hydroxyphenylglycol 
(MHPG) content and MHPG/noradrenaline ratio in the amygdala when compared with restraint stress 
in control mice. These results suggest that juvenile SDS exposure results in later onset of IBS‑like 
symptoms.

Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders. IBS is charac-
terized by abdominal pain and altered bowel habits, including constipation, diarrhea or both, and is categorized 
according to the Rome IV  criteria1. IBS patients often report a fear of incontinence in public spaces due to loose 
stools and fecal urgency, therefore IBS can affect quality of  life2. The pathogenesis of IBS is heterogenous and 
complex. Psychological, physiological, and social factors, the immune system, gut microbiota, epithelial perme-
ability, and altered brain–gut axis interactions have all been linked to  IBS3. There has been a growing interest in 
the influence of psychological factors because external events have been shown to affect digestive function and 
common psychiatric comorbidities, such as anxiety disorders, in  IBS4. Stressful life events, especially adverse 
events early in life, such as general trauma and abuse, are strongly associated with the development of  IBS5. Psy-
chiatric comorbidities and stressful conditions under the coronavirus disease 2019 pandemic also deteriorate 
IBS  symptoms6.

Several IBS animal models have been developed, including models induced by the maternal separation, 
wrap restraint stress, heterotypic chronic stress, water avoidance stress, chemical irritants, infection, toxin, and 
repetitive colorectal  distention7–9. Among them, neonatal maternal separation is a well-established model of 
IBS, mimicking early deprivation of maternal care in  humans10. Neonatal maternal separation, in which pups 
are separated for 3 h daily during early postnatal days, is a form of trauma due to maternal neglect. This stress 
induces long-lasting IBS-like alterations in rats, such as visceral hypersensitivity, enhanced intestinal motility in 
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response to acute stress, changes of the hypothalamic–pituitary–adrenal axis, and an increase in mast cells and 
enterochromaffin cells in gastrointestinal  tracts10,11. However, some reports have demonstrated that maternal 
separation paradigms in mice are often inconsistent because of the difficulty to induce consistent and robust 
behavioral alterations in  adults12,13. This suggests that the degree of physical stresses in maternal separation might 
be insufficient to sustain the effects of psychological stress in adult mice. Therefore, there is a need for more 
reliable mouse models to investigate the pathogenesis of IBS.

A social defeat stress (SDS) model, which subjects a mouse to repeated social subordination by an aggres-
sor male mouse, is used as a chronic stress  model14. SDS induces profound and stable behavioral changes such 
as anxiety- and depression-like behavior, including social  avoidance14,15. There is accumulating evidence that 
certain types of stress in childhood can have long-lasting consequences on adult  behavior16,17. Social behavior 
impairment induced by SDS exposure in juvenile mice persisted for 5  weeks18. Therefore, exposing juvenile 
mice to SDS may be useful for studying the pathogenesis of chronic stress-related psychiatric impairments in 
adolescents with early adverse experiences.

We speculate that juvenile SDS mimicking early life adverse events may be useful for studying the underlying 
mechanisms of IBS. The aims of the current study were to investigate the effects of juvenile SDS on adult mice. 
We conducted social avoidance, tail suspension, forced swim, and elevated plus maze tests, and immunohisto-
chemical and fecal bacteria analyses in the colon 5 weeks after SDS exposure. To gain further insight into the 
relationship between juvenile SDS and secondary stressors in adults, we investigated the effect of restraint stress 
on peripheral and central factors in adults. Our results suggest that juvenile SDS can be used as an experimental 
model for studying early in life adverse events associated IBS.

Results
Social avoidance behavior was identified at 5 weeks after exposure to juvenile SDS. We first 
investigated whether the effects of juvenile SDS were sustained for 5 weeks after the exposure to stress. Juvenile 
SDS did not affect body weight either during the SDS period or during the control rearing period (Fig. 1B). Dur-
ing the first session of the social interaction test (no target), juvenile SDS (stress) mice were similar to control 
(control) mice in the general pattern of arena occupancy (Fig. 1C,D). However, in the presence of an aggressor 
mouse (target), the stress group spent significantly more time in the escape zone (28.6 ± 2.2, p = 0.0123) com-
pared with the control group (17.7 ± 1.5).

Juvenile SDS induces anxiety‑ and depressive‑like behaviors. In the open field test, there was 
no significant difference in the traveled distances between control and juvenile SDS (stress) mice (Fig.  2A). 
There was no difference in the sucrose preference ratio between control and stress mice (Fig. 2B). To assess 
depression-like behaviors in juvenile SDS-treated mice, we performed the tail-suspension and forced swimming 
tests (Fig. 2C,D). Mice exposed to juvenile SDS exhibited a significant increase in immobility time (161 ± 11, 
p = 0.0006 and 114 ± 12, p = 0.0349) compared with control mice (87.7 ± 14.1 and 77.7 ± 4.8) in tail-suspension 
and forced swimming tests, respectively. Additionally, mice exposed to juvenile SDS exhibited a significant 
decrease in the time spent in the open arms (42.3 ± 7.1, p = 0.0099) compared with control mice (91.3 ± 17.1) 
(Fig. 2E). Mice exposed to juvenile SDS exhibited a significant increase in the time spent in the closed arms 
(431 ± 20, p = 0.0037) compared with control mice (340 ± 21) (Fig. 2E). There were no significant differences in 
the number of entries into the open arms and closed arms between the stress and control groups (Fig. 2E).

Juvenile SDS increased visceral sensitivity to colorectal distension. We next investigated the effect 
of juvenile stress on visceral hyperalgesia (Fig. 3). The amplitude of the electromyographic recordings indicated a 
significant stimulus effect (F = 7.1, p = 0.0007). There was no significant group effect (F = 2.9) or group × stimulus 
interaction effect (F = 2.3). The visceromotor response to colorectal distension was significantly increased in 
mice exposed to juvenile SDS compared with that in control mice at 45 (p = 0.0454) and 60 mmHg (p = 0.0293), 
which is indicative of the development of visceral hyperalgesia.

Juvenile SDS increased the number of 5‑HT‑positive cells and CGRP‑positive neurons in 
colon. We next investigated the number of cells that expressed of CD4, CD68, 5-HT, Ly6B.2, and CD117, and 
CGRP-positive neurons in the colonic mucosa of control and stress mice (Fig. 4). Juvenile SDS exposure signifi-
cantly increased the number of 5-HT-positive cells (p = 0.0049) and CGRP-positive neurons (p = 0.0466) in the 
colon, but not the number of CD4-, CD68-, Ly6B.2-, or CD117-positive cells in comparison with the control 
group. There was no significant difference in the histological score between the control and stress groups (Sup-
plementary Fig. 1A). Alcian blue and periodic acid schiff staining were used to highlight the goblet cell popula-
tion (Supplementary Fig. 1B). The number of goblet cells per trench was similar between the groups.

Gut microbiota was largely similar between the control and juvenile SDS groups. Next, we 
investigated the influence of juvenile SDS on gut microbiota for the eight most abundant (having a relative 
abundance > 1%) bacterial family (Fig. 5A) and genus (Fig. 5B) levels, in control and juvenile SDS (stress) mice. 
There were no considerable differences between the control and stress groups. Bacteroidaceae (p = 0.0102) at the 
family level and Bacteroides (p = 0.0159) at the genus level were significantly less abundant in the juvenile SDS 
group than in the control group (Fig. 5B). The other major genera showed no differences in abundance between 
the groups.
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Figure 1.  Social avoidance behavior was identified at 5 weeks after the exposure of juvenile social defeat stress 
(stress). (A) Protocol of juvenile SDS. (B) Body weight change during the juvenile stress and post-stress periods. 
(C) Duration of time spent in the escape zone (yellow square) with (target) or without (no target) aggressor 
mouse. (D) Representative results of heat maps in social interaction test with or without aggressor mouse. Data 
are presented as the mean ± SEM (n = 8 mice per group). *p < 0.05 for comparison with the corresponding no 
target.
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Figure 2.  Juvenile SDS induced depression- and anxiety-like behaviors. The behaviors of control and juvenile 
SDS mice (stress) in open field (A), sucrose preference (B), tail suspension (C), forced swimming (D) and 
elevated plus maze (E) tests. Data are presented as the mean ± SEM (n = 8–13 mice per group). *p < 0.05 
compared with the control group.
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Restraint stress increased fecal pellet output, plasma corticosterone concentration, and sero‑
tonin content in juvenile SDS mice. To investigate the vulnerability to acute severe stress in adults, we 
evaluated the number and characteristics of fecal pellets, stress susceptibility, and intestinal permeability in juve-
nile SDS (stress) and control mice under restraint stress conditions. The number of fecal pellets excreted dur-
ing restraint stress was significantly increased in stress group (12.4 ± 0.9, p = 0.0211) compared with the control 
group (7.38 ± 0.81, Fig. 6A). The bead expulsion time during restraint stress was significantly decreased in stress 
group (1.60 ± 0.17, p = 0.0329) compared with the control group (3.61 ± 0.72, Fig. 6B). There was not significant 
difference between the groups on stool water content after the restraint stress (Fig. 6C). To assess stress suscep-
tibility, we examined the plasma corticosterone level (Fig. 6E). There were no significant differences in the basal 
corticosterone level between the stress and control groups. In animals that received the restraint stress treatment, 
the corticosterone concentration in plasma was significantly increased in the stress group (156 ± 15, p = 0.0105) 
compared with the control group (85.6 ± 5.2). The plasma levels of FITC dextran in the control (p = 0.0311) and 
stress groups (p = 0.0465) were significantly increased by restraint stress exposure compared with that in the 
corresponding non-restraint groups (Fig. 6D). However, there was no significant difference between the stress 
and control groups in the restraint condition (Fig. 6D). The colonic content of 5-HT in the control (p = 0.0003) 
and stress groups (p < 0.0001) was significantly increased by restraint stress exposure compared with that in the 
corresponding non-restraint groups (Fig. 6F). The 5-HT content in stress group (1529 ± 69, p = 0.0313) was sig-
nificantly higher than that in the control group (1280 ± 61) in the restraint condition (Fig. 6F).

Juvenile SDS affected noradrenergic pathway in amygdala during acute severe stress in 
adults. Finally, we investigated the levels of monoamines and their metabolites in six brain regions (amyg-
dala, frontal cortex, hippocampus, hypothalamus, limbic, and striatum) in the control and juvenile SDS (stress) 
groups with or without restraint stress (Supplementary Tables 1–3). Of the six regions, the effect of juvenile SDS 
and restraint stress on the levels of monoamines and their metabolites was especially pronounced in the amyg-
dala (Fig. 7). Juvenile SDS alone did not affect basal levels of dopamine, noradrenaline, 5-HT, 3,4-dihydroxyphe-
nylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxy-4-hydroxyphenylglycol (MHPG), or 5-hydrox-
yindole acetic acid (5-HIAA) in the amygdala. Restraint stress had no effect on dopamine in the control and 
stress groups. Restraint stress significantly increased HVA (p = 0.0082 and p = 0.0009) and the DOPAC + HVA/

Figure 3.  Juvenile SDS induced colonic visceral hyperalgesia. (A) Representative electromyographic recordings 
of control and SDS model (stress) mice. (B) Visceromotor response (VMR) to colorectal distension (CRD) 
in control and SDS model mice. Data are presented as the mean ± SEM (n = 6–8 mice per group). *p < 0.05 
compared with the control group.
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Figure 4.  Juvenile SDS increased the number of 5-HT-positive cells and CGRP-positive neurons. Representative 
images of immunohistochemistry for CD4-, CD68-, 5-HT-, Ly6B.2-, and CD117-positive cells and CGRP-
positive neurons in the colonic mucosa of control and stress mice. The number of CD4-, CD68-, 5-HT-, Ly6B.2-, 
and CD117-positive cells, and CGRP-positive neurons per  106 μm2 were counted. Data are presented as the 
mean ± SEM (n = 7, 8 mice per group). *p < 0.05 compared with the control group. Scale bars, 50 μm.
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Figure 5.  Composition of gut bacterium at the levels of family (A) and genus (B) in the control and juvenile 
SDS (stress) mice. Microbiome analysis of fecal samples for each bacterial genus was performed using next 
generation sequencing of bacterial 16S rDNA. The relative abundance (upper panel) and population (lower 
panel) of the top eight gut bacterium in control and juvenile SDS mice stool samples. Data are presented as the 
mean ± SEM (n = 8–10 mice per group). *p < 0.05 compared with the control group.
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dopamine ratio (p = 0.0103 and p = 0.0263) compared with the non-restraint stress groups in both the control and 
stress groups, respectively (Fig. 7A). Restraint stress significantly decreased noradrenaline compared with the 
non-restraint group in both the control (p = 0.0002) and stress groups (p = 0.0005) (Fig. 7B). There was an inter-
action between juvenile SDS and acute restraint stress on noradrenaline metabolism in the amygdala. Restraint 
stress significantly increased noradrenaline metabolite MHPG (p = 0.0494) and the MHPG/noradrenaline ratio 
(p = 0.0142) compared with non-restraint in the stress group (Fig. 7B). These alterations were not observed in 

Figure 6.  Juvenile SDS exacerbated stress responses in the restraint condition. Fecal pellet output number 
(A), bead expulsion time (B), stool water content (C), relative plasma FITC content (D), plasma corticosterone 
(CORT) levels (E), and 5-HT content (F)of control and juvenile SDS (stress) mice in the non-restraint 
and restraint stress conditions. Data are presented as the mean ± SEM (n = 8 mice per group). *p < 0.05 for 
comparison with the non-restraint group. #p < 0.05 for comparison with the control group in the restraint 
condition.
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Figure 7.  Monoamine and metabolite levels in the amygdala of control and juvenile SDS (stress) mice 
in the non-restraint and restraint stress conditions. (A) Dopamine (DA), homovanillic acid (HVA), and 
3,4-dihydroxyphenylacetic acid (DOPAC) content, and (DOPAC + HVA)/DA ratio in control and juvenile 
SDS mice in the non-restraint and restraint stress conditions. (B) Noradrenaline (NA) and 3-methoxy-4-
hydroxyphenylglycol (MHPG) content and MHPG/NA ratio in control and juvenile SDS mice in the non-
restraint and restraint stress conditions. (C) Serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) 
content and 5-HIAA/5-HT ratio in control and juvenile SDS mice in the non-restraint and restraint stress 
conditions. Data are presented as the mean ± SEM (n = 8 mice per group). *p < 0.05 for comparison with the non-
restraint group.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16276  | https://doi.org/10.1038/s41598-021-95916-5

www.nature.com/scientificreports/

the control group. Restraint stress had no effect on 5-HT and its metabolite in the control and stress groups in 
the amygdala (Fig. 7C).

Discussion
Early life stress is a significant risk factor for development and maintenance of IBS. There are multiple ways 
to measure the outcome in an experimental animal model of IBS, including physiologic and reflex responses, 
spontaneous behaviors, visceral pain-directed complex behaviors, or brain  responses19. The major findings of this 
study are as follows. Firstly, we confirmed that juvenile SDS caused anxiety- and depression-like behaviors and 
visceral hypersensitivity in adult mice. Secondly, juvenile SDS mice showed vulnerability to the effects of acute 
restraint stress in adulthood. Thirdly, the interaction between juvenile SDS and acute restraint stress affected 
noradrenaline metabolism in the amygdala.

Multiple factors such as duration of physical contacts, aggressive behavior, types of food, body water con-
tent, affect body weight characteristics during the SDS  period20. A previous study reported that defeated mice 
showed reduced body weight during a 10-day SDS  paradigm21. However, other studies reported that defeated 
mice showed increased body weight compared with a control group during the stress  period22. In the present 
study, juvenile SDS did not affect body weight either during the SDS period or during the control rearing period. 
Therefore, body weight may not be a reliable indicator of SDS. The SDS model is well established in adult mice 
to induce anxiety- and depression-like  behaviors23. Mouri et al. reported that social avoidance behavior in mice 
exposed to SDS as juveniles is more persistent than these behaviors in mice exposed to SDS as  adults18. In the 
present study, juvenile SDS induced social avoidance behavior in a social interaction test, decreased the dura-
tion of time spent in open arms in the elevated plus maze test, and increased immobility in the tail-suspension 
and forced swimming tests at 5 weeks after the exposure to juvenile SDS. There were no significant differences 
in locomotor activity in the open field test between control and juvenile SDS mice. These results suggest that 
juvenile SDS provoked social aversion and anxiety- and depression-like behaviors, but did not affect spontane-
ous motor activity in adults.

The pathogenesis of visceral hypersensitivity is a complex process and not well  understood24. Chronic vis-
ceral pain, which can be mediated by peripheral and central pathways, is a typical symptom of  IBS24. SDS in 
adulthood induces visceral hypersensitivity in C57BL/6 mice 24 h after the last SDS  session25. Our data indicate 
that the lack of significant statistical interaction of group effect or group × stimulus interaction effect. Post hoc 
tests revealed that the visceromotor responses of juvenile SDS mice was significantly higher than control mice 
only at 45 and 60 mmHg. These results suggest that SDS during childhood affected visceral sensitivity 5 weeks 
after the last SDS session. It has been previously shown that neonatal maternal separation induces an increase 
of CGRP expression and 5-HT content, and contributes to visceral hypersensitivity in  adults26. Increased CGRP 
release in the colon of mice exposed to water avoidance stress induced visceral hyperalgesia in the  mice27. 
Furthermore, social stress induces TRPV1, which colocalizes with CGRP-dependent afferent nerve activity in 
mouse urinary  bladder28. In the present study, juvenile SDS mice showed vulnerability to acute restraint stress 
in adulthood and had an increased number of sensory neurons and 5-HT content in the colon. These results 
suggest that the visceral hypersensitivity in adult mice induced by juvenile SDS is possibly related to complex 
central and peripheral factors.

Accumulating evidence suggests that maternal separation and SDS affect gut microbiota associated with 
psychological and gastrointestinal functional  disorders29,30. We investigated gut microbiota profiles 5 weeks 
after juvenile SDS exposure. Although the profiles were largely similar between the control and juvenile SDS 
groups, we found significant reductions of Bacteroidaceae and Bacteroides in the juvenile SDS mice compared 
with control mice. Qu et al. has also reported marked reductions of Bacteroides in SDS  mice29. Low levels of 
Bacteroides are associated with the pathogenesis of  depression30. Our results indicate that juvenile SDS did not 
strongly affect gut microbiota. Previous studies reported that chronic SDS in adulthood showed the largest 
changes in gut  microbiota31,32. In the present study, we were unable to clearly identify the effect of juvenile SDS 
on gut microbiota profiles in adulthood. However, the alterations of Bacteroidaceae and Bacteroides might play 
a role in psychological and gastrointestinal dysfunction induced by juvenile SDS.

Many IBS patients have difficulty coping with stressful conditions and suffer from anxiety, depression or panic 
 disorder4. To analyze coping ability during severe stress in adults, we investigated the effect of restraint stress 
on intestinal motility, permeability, corticosterone and 5-HT levels in colon, and the levels of monoamines and 
metabolites in six brain regions. Interestingly, introduction of restraint stress in the juvenile SDS group pro-
voked significant gastrointestinal hypermotility, increased corticosterone and 5-HT in the colon and increased 
noradrenaline turnover in the amygdala compared with control mice, suggesting a vulnerability to acute stress 
in adulthood.

Characterization of fecal pellet output is a relevant readout to assess gastrointestinal function primarily related 
to motility, secretion, and  permeability33. It has previously been shown that early life stress in rats increases 
fecal pellet output following water avoidance stress or exposure to a novel  environment34. Several studies have 
demonstrated that the exposure of animals to various acute stressors, such as water avoidance or maternal separa-
tion, can affect intestinal barrier  function35. We found that juvenile SDS alone did not affect intestinal integrity, 
secretion, or intestinal motility and permeability in adults in the non-restraint condition. However, combined 
with juvenile SDS, restraint stress increased the fecal pellet output number and colonic motility, but did not affect 
water content or intestinal permeability when compared with restraint stress in the control group. These results 
suggest that juvenile SDS induced intestinal motility dysfunction under an acute stress condition in adulthood.

In a previous study, postprandial 5-HT was significantly higher in patients with diarrhea-dominant IBS than 
in healthy  volunteers36. In experimental animals, altered 5-HT signaling contributes to visceral hypersensitivity 
and bowel habits including motility and  secretion37. Results from experimental studies have shown that early life 
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stress induces enterochromaffin cell hyperplasia in the gut of adult  animals38. A previous study has reported that 
5-HT levels in the colon are increased in neonatal maternal separation  rats26. Additionally, it has been shown 
that combined neonatal maternal separation and acute water avoidance stress induces visceral hypersensitivity 
and motility dysfunction, accompanied by an increase in 5-HT content and enterochromaffin cell number in rat 
 colon39. In a report by De Palma et al., there was no statistically significant effect of neonatal maternal separation 
on 5-HT levels in the hippocampus and  amygdala40. In this study, juvenile SDS significantly increased 5-HT 
levels in the colon compared with 5-HT in control mice, in both the non-restraint and restraint stress groups. 
However, juvenile SDS did not affect 5-HT and its metabolism in the examined brain regions. These results are 
consistent with previous studies in neonatal maternal  separation39,40 and suggest that juvenile SDS induces long 
term 5-HT alterations in the periphery.

The hypothalamic–pituitary–adrenal axis is the physiological system involved in coping with stressors, and 
matures during  adolescence41. It is strongly linked to both anxiety and depression disorders and regulates cir-
culating levels of corticosterone. In the present study, there was no significant difference in basal corticosterone 
levels between the juvenile SDS and control mice. Restraint stress exposure for 1 h increased corticosterone levels 
in both juvenile SDS and control mice. Interestingly, the acute stress during adulthood significantly increased 
the corticosterone level in juvenile SDS mice compared with that in control mice. These results suggest that mice 
exposed to SDS as juveniles could not cope well with acute stress in adulthood and displayed higher hypotha-
lamic–pituitary–adrenal axis activation.

Release of monoamines in the frontal cortex, hippocampus, hypothalamus, amygdala, striatum, and limbic 
regions has been associated with anxiety and  depression42. Among these regions, our results suggest that the 
amygdala is involved in the interaction between juvenile SDS and acute restraint stress. The amygdala is a key 
component of the neural network that determines the emotional significance of external events and organ-
izes the behavioral response to emotionally significant  events43. In the present study, we found that restraint 
stress significantly decreased noradrenaline and increased the MHPG/noradrenaline ratio in juvenile SDS mice 
compared with control mice. It has been shown that noradrenaline in the bed nucleus of the stria terminalis 
(also called extended amygdala), which plays important role in the emotional processing in combination with 
amygdala, affect gastric emptying and small intestine transit through β-adrenergic  receptors44. The interaction 
between juvenile SDS and acute restraint stress was observed especially in the noradrenaline metabolite MHPG 
and the MHPG/noradrenaline ratio in the amygdala. It has been previously reported that both restraint stress 
and SDS in adults increases MHPG accumulation in the  amygdala45. These results suggest that the extent of 
noradrenaline utilization, reflected by elevated MHPG, was increased by the acute restraint stress particularly 
in juvenile SDS mice. Noradrenaline is usually released in the amygdala in response to the various  stimuli46. 
Therefore, the increased noradrenaline turnover ratio suggested that noradrenaline released from the presynaptic 
neurons were rapidly metabolized into MHPG. It has been previously reported that noradrenaline transporter-
deficient mice show social interaction impairments and depression-like behaviors in SDS and restraint stress 
 models47. Therefore, it is possible that the increase of noradrenaline turnover is linked to the behavioral altera-
tions observed during adulthood in juvenile SDS mice. Dopamine neurons in the mesocorticolimbic area are 
activated by stressful stimuli, similar to noradrenaline  neurons48,49. Therefore, we calculated the ratio between 
DOPAC + HVA/dopamine as an index of acute restraint stress. Our results indicated that there was no difference 
in the ratio between the juvenile SDS group and normal group, which suggests that juvenile SDS had no effect 
on mesocorticolimbic dopamine neurons.

There are multiple limitations that must be considered when interpreting the results of this study using 
juvenile SDS as a model of early life stress associated with IBS. Firstly, further characterization of the effects of 
juvenile SDS during adolescence, such as on peripheral and central sensitization and immune responses, will be 
required to validate this paradigm as an early life stress-induced IBS model. Secondly, we did not investigate the 
relationship between juvenile SDS and IBS-like symptoms using drugs for IBS treatment. In this regard, future 
studies should consider using current IBS drugs, such as anti-diarrheal agents and anti-depressants, on the juve-
nile SDS model. Thirdly, further characterization of SDS’s effects on gut microbiota (for example, by performing 
a fecal bacteria analysis in the colon immediately after juvenile SDS or restraint stress exposure) would provide 
additional insight. Finally, further studies investigating the differences of sex and developmental stages in mice 
exposed to SDS are needed to better understand IBS-like alterations on the gastrointestinal system and brain.

The present findings show that the juvenile SDS model demonstrates the main features of early life stress-
associated IBS, such as visceral hypersensitivity, psychiatric symptoms, motility disorder and vulnerability to 
acute severe stress in adulthood (Fig. 8). These results suggest that juvenile SDS exposure results in later onset 
of IBS-like symptoms. Therefore, this model may be useful for studies on early life stress-associated IBS.

Materials and methods
All methods were carried out in accordance with relevant guidelines and regulations.

Animals. Male C57BL/6 mice (4 weeks old) and male adult CD1 (ICR) mice (13–15 weeks old) were pur-
chased from Japan SLC Inc. (Shizuoka, Japan). All mice were maintained in plastic cages with free access to food 
and water, and housed at 22 ± 1 °C with a 12 h light/dark cycle. This study was carried out in strict accordance 
with ARRIVE for reporting experiments involving  animals50. The protocols were approved by the committee on 
the Ethics of Animal Research of Kyoto Pharmaceutical University (Permit numbers: 19–011). The number of 
animals was kept to the minimum necessary for meaningful interpretation of the data, and all efforts were made 
to minimize animal suffering.
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Juvenile SDS model. The SDS model has been employed relatively in male rodents because of the difficulty 
of initiating attack behavior directed toward female  mice51. We therefore conducted the SDS paradigm in juve-
nile male mice. C57BL/6 male mice weaned after 4 weeks of age show increased behavioral stability compared 
with mice weaned at 3 weeks of  age52. Therefore, we purchased 4-week-old mice and began experiments after a 
3-day habituation period. This condition did not strongly affect the growth of the mice (Fig. 1B). The procedure 
of juvenile SDS was performed as reported previously with modifications (Fig. 1A)53. Briefly, each 4-week-old 
C57BL/6 mouse was exposed to a different CD1 aggressor mouse once a day for 10 min. After the interaction, 
the mice were returned to their home cages and kept isolated until SDS on the next day. Mice were subjected 
to this procedure for 10 consecutive days. The pairs of defeated and aggressor mice were randomized daily to 
minimize the variability in aggressiveness between the aggressor mice. To avoid habituation to the presence of 
C57BL/6 mice, all aggressor mice were screened for aggressive behavior before their use in the consecutive social 
defeat experiments. The control mice were housed in a similar cage without interaction with CD1 mice. Defeated 
and control mice were housed 4–5 mice per cage for 5 weeks after the last exposure to defeated stress and then 
investigated each experiment. Social interaction was evaluated as previously  reported53. The time spent in the 
escape zone (corner zone, Fig. 1D, yellow line) was measured and social avoidance behavior was recorded using 
EthoVision XT Software (Noldus, Wageningen, Netherlands).

Assessment of visceromotor responses to colorectal distension. Assessment of visceromotor 
responses to colorectal distension was performed at 5 weeks after the exposure to juvenile SDS. As a visceral 
stimulus, mechanical distensions of the rectum were performed by pressure-controlled air inflation of a flexible 
polyethylene balloon connected to an electronic distension device (Distender Series II barostat, G&J Electronics, 
Willowdale, ON, Canada). The balloon was lubricated, inserted intra-anally and positioned 5 mm proximal to 
the anus. The visceromotor responses to colorectal distension were quantified by electromyographic recordings 
of abdominal wall muscle activity. Mice were challenged with distending pressures of 15, 30, 45, and 60 mmHg, 
with two 10-s trials at each pressure and a 2-min recovery period between distensions. Data were imported 
into 8-channel analyzer software (Starmedical, Tokyo, Japan) for analysis. Representative raw electromyographic 
recordings are depicted in mV. The electromyographic baseline activity during the 10-s before stimulation was 
subtracted from the 10-s of each reflex response.

Immunohistochemistry. Immunohistochemical procedures were performed as previously  described54. 
Sections were probed for 40 h at room temperature with rat anti-CD4 (1:500, BD Bioscience, San Jose, CA, 
USA), rat anti-CD68 or rat anti-Ly6B.2 (1:1,000, AbD Serotec, Bio-Rad, Raleigh, NC, USA), goat anti-5-HT 
(1:5000, Immunostar, Hudson, WI, USA), rat anti-CD117 (1:500, R&D Systems, Minneapolis, MN, USA), or 
sheep anti-calcitonin gene-related peptide (CGRP) antibody (1:4000, Enzo Life Sciences, Farmingdale, NY, 
USA). After washing in PBS, sections were incubated for 4 h at room temperature with corresponding second-
ary antibody. Quantitative determinations were made from three random locations for each mouse. For analysis, 
the number of CD4-, CD68-, Ly6B.2-, 5-HT-, and CD117-immunopositive cells, and CGRP-immunopositive 
neurons were counted per  106 µm2 area of tissue.

Behavioral test. For the open field test, each mouse was placed in the center of a circular open field cham-
ber as reported  previously55. Activity in the open field chamber was video recorded for 30 min and the distance 
of the movement was analyzed using EthoVision XT Software. The tail suspension test and forced swim test 
were performed in accordance with previously described  methods56. Each mouse was suspended by its tail with 
tape, and the period of immobility was measured by a trained observer. During the 6-min test session, the last 
4 min were recorded and analyzed by a video camera. Immobility was defined as the absence of any limb or body 
movements, except those caused by respiration. For the forced swimming test, each mouse was placed in a glass 
cylinder that contained water at 22 °C, and the period of immobility was recorded and analyzed using a video 
tracking system (EthoVision XT). The duration of the test was 6 min and immobility was measured during the 
last 4 min to facilitate comparisons with the tail suspension test. The elevated plus maze test was performed in 
accordance with previously described  methods57. Briefly, each mouse was placed in the center of an elevated plus 

Figure 8.  The schematic diagram of the juvenile SDS induced IBS-like symptoms in adulthood. Juvenile 
traumatic SDS caused anxiety-/depression-like behaviors, and an increase of CGRP/5-HT expression in large 
intestine on adulthood. Juvenile SDS mice showed vulnerability against acute restraint stress and IBS-like 
symptoms such as visceral hypersensitivity, psychiatric symptoms, and motility disorder on adulthood. Image 
was generated using Motifolio illustration tool kit (Motifolio Inc., Ellicott City, MD, USA).
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maze apparatus, facing an open arm, and allowed to freely explore it for 10 min. The number of entries and dura-
tion of time spent in the open and closed arms were measured using a video tracking system (EthoVision XT). 
For the sucrose preference test, each mouse was placed in a cage and given a choice between two bottles, one with 
30 mM sucrose solution and the other with tap water. The position of the bottle was switched every 24 h. Intake 
from each tube was obtained by recording the weight of the fluid at the beginning and end of each 48-h test. Pref-
erence ratios were calculated as the intake of each solution divided by total intake and expressed as a percentage.

Restraint stress. Experiments were performed at 5 weeks after the final day of SDS. Control and SDS mice 
were subjected to restraint stress by being placed individually into a restraint cage for 1 h. The number of fecal 
pellets excreted during the restraint stress was counted. The stool samples were dried for 24 h and water content 
(%) was calculated as follows: (stool wet weight − dry weight/stool wet weight) × 100.

Bead expulsion test. Mice were fasted for 18 h before the experiments. A glass bead (approximately 3 mm 
in diameter) was inserted into the distal colon to a depth of 2 cm from the anus with a silicone tube. Bead expul-
sion time was measured in the non-restraint and restraint conditions.

Measurement of corticosterone and 5‑HT levels. Corticosterone in plasma and 5-HT content in the 
colon was analyzed by enzyme immunoassay using a enzyme immunoassay kit (Enzo Life Sciences) and (Beck-
man Coulter, Fullerton, CA, USA),  respectively58.

Intestinal permeability. FITC-dextran MW4000 (Sigma-Aldrich, St. Louis, MO) was administered to the 
mouse by gavage at a volume of 200 µL, using a stock solution at 50 mg/mL. After gavage, the mouse remained in 
the non-restraint or restraint condition. After 1 h, blood was obtained from the inferior vena cava. Samples were 
centrifuged (2000×g for 10 min), and the plasma concentration of FITC was measured the fluorescence intensity 
using a Varioskan Flash microplate reader (Thermo Fisher Scientific).

Fecal bacteria analysis. Bacterial DNA was extracted from stool with NucleoSpin DNA Stool kit (MACH-
EREY–NAGEL GmbH & Co. KG, Dueren, Germany) according to the manufacturer’s instructions. DNA was 
stored at − 80 °C until use. The V3–V4 region of bacterial 16S rRNA was amplified by PCR using specific prim-
ers. Each primer sequence was as follows. Forward primer: 5′-TCG TCG GCA GCG TCA GAT GTG TAT AAG 
AGA CAG CCT ACGGGNGGC WGC AG-3′, reverse primer: 5′-GTC TCG TGG GCT CGG AGA TGT GTA TAA 
GAG ACA GGA CTACHVGGG TAT CTA ATC C-3′. The amplicon was purified with AMPure XP beads. Then, a 
barcode sequence was added to each amplicon using Illumina Nextera XT Index kit v2 (Illumina, San Diego, 
CA, USA) for labeling and distinguishing the samples. The barcoded library was purified as described above, 
then diluted to 4 nmol/L in 10 mmol/L Tris–HCl (pH 8.0). Five microliters of each diluted sample were pooled 
and further diluted to 6 pmol/L using buffer from the respective sequencing kit. This sample DNA library was 
applied to a MiSeq Reagent Kit v3 (Illumina) and sequenced with 2 × 300-bp paired-end on a MiSeq, spiked with 
5% PhiX control DNA (6 pmol/L). Annotation and calculation of obtained sequences were processed by 16S 
Metagenomics Database Creator v1.0.0.

Quantification of monoamine contents in the brain. Mice were sacrificed immediately after the 
restrain stress, the brain was quickly removed and the frontal cortex, striatum, limbic region (brain region 
including nucleus accumbens, piriform cortex, nucleus of the limb of the diagonal band, and medial preoptic 
area), hypothalamus, hippocampus, and amygdala were dissected on an ice-cold glass plate. Hypothalamus, 
hippocampus, and amygdala were dissected on an ice-cold glass plate. The tissue samples were frozen at − 80 °C 
and stored until assayed. The concentrations of monoamines in the brain were determined by high-throughput 
liquid chromatography as reported  previously59.

Data and statistical analyses. Data are presented as the mean ± S.E.M. Statistical analyses were per-
formed with GraphPad Prism 6.07 (GraphPad Software, La Jolla, CA, USA). Multiple groups were compared by 
two-way ANOVA. If the ANOVAs revealed a significant main effect or interaction between the factors, a post 
hoc Holm-Sidak test was performed. The Student’s t-test was used to compare two sets of data. P-values of < 0.05 
were considered statistically significant.
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