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Metabolic signatures 
in the conversion from gestational 
diabetes mellitus to postpartum 
abnormal glucose metabolism: 
a pilot study in Asian women
Xi‑Meng Wang1,2,12, Yan Gao3,12, Johan G. Eriksson1,4,5, Weiqing Chen6, Yap Seng Chong1,4, 
Kok Hian Tan7,8, Cuilin Zhang9, Lei Zhou3,10,11 & Ling‑Jun Li3,4*

We aimed to identify serum metabolites related to abnormal glucose metabolism (AGM) among 
women with gestational diabetes mellitus (GDM). The study recruited 50 women diagnosed with GDM 
during mid‑late pregnancy and 50 non‑GDM matchees in a Singapore birth cohort. At the 5‑year post‑
partum follow‑up, we applied an untargeted approach to investigate the profiles of serum metabolites 
among all participants. We first employed OPLS‑DA and logistic regression to discriminate women 
with and without follow‑up AGM, and then applied area under the curve (AUC) to assess the 
incremental indicative value of metabolic signatures on AGM. We identified 23 candidate metabolites 
that were associated with postpartum AGM among all participants. We then narrowed down to five 
metabolites [p-cresol sulfate, linoleic acid, glycocholic acid, lysoPC(16:1) and lysoPC(20:3)] specifically 
associating with both GDM and postpartum AGM. The combined metabolites in addition to traditional 
risks showed a higher indicative value in AUC (0.92–0.94 vs. 0.74 of traditional risks and 0.77 of 
baseline diagnostic biomarkers) and  R2 (0.67–0.70 vs. 0.25 of traditional risks and 0.32 of baseline 
diagnostic biomarkers) in terms of AGM indication, compared with the traditional risks model and 
traditional risks and diagnostic biomarkers combined model. These metabolic signatures significantly 
increased the AUC value of AGM indication in addition to traditional risks, and might shed light on the 
pathophysiology underlying the transition from GDM to AGM.

Gestational diabetes mellitus (GDM) is a hyperglycemic condition first recognized during  pregnancy1. GDM 
affects 4.5% to 20.3% of pregnancies among Asian women depending on different countries and GDM diagnostic 
 criteria2. GDM increases the woman’s lifetime risk of developing abnormal glucose metabolism (AGM), includ-
ing prediabetes and type 2 diabetes (T2D)3,4. Additionally, these women are also at higher risk of developing 
cardiovascular disease and renal  disease5,6. Therefore, identifying more convenient approaches such as novel 
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biomarkers to quantify the risk of AGM could be beneficial for risk stratification and early postpartum interven-
tion among women with GDM.

It is well known that metabolites are the end products of specific cellular regulatory processes. The levels 
of metabolites could reflect the ultimate response of biological systems to genetic or environmental  changes7. 
In terms of the transition from GDM to postpartum AGM, the capture of metabolic signals underlying post-
partum AGM might be indicative and even predict this process. Emerging studies demonstrated that specific 
metabolomic biomarkers improved the prediction of the transition risk from GDM to T2D, including lipids 
[i.e., Cholesteryl ester (20:4), Lphosphatidylethanolamine (36:2), Phosphatidylserine (38:4), Lphosphatidylserine 
(C40:5)] and amino acids (i.e., branched-chain amino acids, Hexose)8–11. However, there is still a lack of adequate 
understanding in this field of research. Firstly, previous studies have only focused on metabolic biomarkers in 
the transition from GDM to T2D, mainly ignoring the transition from GDM to prediabetes. Secondly, these 
prior studies have primarily used targeted approaches to assess metabolic profiles and tested specific categories of 
metabolites (e.g., lipids) based on potential mechanisms and  interests8–10. Such methods limit the consideration of 
the full spectrum of human metabolic profiles and misinterpret the underlying mechanisms between GDM and 
the development of AGM with selection bias in specific categories of metabolites. Thirdly, these existing studies 
mainly focused on non-Asian populations in the US and Australia while lacking data on the Asian population, 
which are at a high risk of both GDM and  T2D12. Lastly, all the present studies reported metabolic biomarkers 
identified only in GDM women. However, there is also a trend in developing postpartum AGM among women 
without a history of  GDM13.

In this pilot with 100 women nested in a Singapore birth cohort, we identified metabolic signatures associated 
with postpartum AGM and GDM via an untargeted and discovery-based metabolomic approach. Subsequently, 
we investigated the postpartum AGM indicative value given by such metabolic signatures, in addition to tradi-
tional risks including a family history of T2D and body mass index (BMI).

Results
Of the 100 participants, 24 out of 50 women with GDM (46%) and 17 out of 50 women without GDM (34%) 
developed AGM after 5 years’ follow-up (p = 0.22). Women with GDM at baseline had similar pre-pregnancy 
BMI (22.8 vs. 21.6, p = 0.54), lower gestational weight gain at 26–28 weeks of gestation (8.2 vs. 8.8, p = 0.07), and 
lower higher BMI at follow-up (24.1 vs. 25.9, p = 0.54) compared with women without GDM at baseline (Table 1).

Figure 1 illustrate women’s metabolic profiles with and without AGM at the 5-year follow-up in OPLS-DA 
score plots. A total of 31 serum metabolites were found at different levels between women with and without 5-year 
postpartum AGM in a crude model (OPLS-DA VIP score > 1, Mann–Whitney U test or t-test p-values 0.0006 to 
0.049). After adjusting for age at follow-up, race/ethnicity, BMI at follow-up, college education, family history of 
T2D and nulliparity, 23 metabolites remained statistically significant in association with 5-year postpartum AGM 
(FDR < 0.1), of which 5 metabolites were able to further differentiate women with a history of GDM (Table 2). 
Regression coefficients of all 23 metabolites are presented in Supplementary Table 1. 

After further controlling for collinearity with ridge regression, all 5 metabolites remained significant in rela-
tion to 5-year postpartum AGM (p: 0.001 to 0.018) (Supplementary Table 2). These five metabolites, namely 
p-cresol sulfate, linoleic acid, glycocholic acid, lysophosphatidylcholines [LysoPC(16:1) and LysoPC(20:3)], were 
included in the AGM indication models. Higher serum levels of LysoPC(16:1) and LysoPC(20:3) were associ-
ated with increased risk of 5-year postpartum AGM, while higher levels of p-cresol sulfate, linoleic acid, and 
glycocholic acid were associated with reduced risk of 5-year postpartum AGM. LysoPC(16:1) and LysoPC(20:3) 
were analyzed separately to avoid biological collinearity.

Figure 2 presents the results of the comparison across four models, namely Model 1 (traditional risks), Model 
2 (traditional risks and diagnostic biomarkers including fasting and 2-h glycemic levels at study entry), Model 3 
[Model 2 and metabolites p-cresol sulfate, linoleic acid, glycocholic acid and lysoPC(16:1)], and Model 4 [Model 
2 and metabolites p-cresol sulfate, linoleic acid, glycocholic acid and lysoPC(20:3)]. Variables included in each 
model and AUC and R square for each model are presented in Table 3. The AUC  (R2) for all models were listed 
accordingly: 0.74 (0.25) in Model 1, 0.77 (0.32) in Model 2, 0.94 (0.70) in Model 3 and 0.92 (0.67) in Model 4. 
The AUC of Models 3 and 4 were both significantly higher than Model 1 and Model 2 individually and Model 3 
yielded the highest indicative value among all stepwise models (Supplementary Table 3).

Additional KEGG pathway analyses with the 31 metabolites that passed OPLS-DA and univariate analysis 
(Table 4) showed that among all women, AGM-related metabolites were associated with 3 biological pathways 
with p-value < 0.1. They included alpha-linolenic acid metabolism (alpha-linolenic acid) (p = 0.03), glycerophos-
pholipid metabolism [LysoPC(16:1) and LysoPC(20:3)] (p = 0.09) and biosynthesis of unsaturated fatty acids 
(alpha-linolenic acid) (p = 0.09). The metabolic map that shows the location of alpha-linolenic acid metabolism 
is presented in Fig. 3.

Discussion
Our study identified 5 metabolic signatures [p-cresol sulfate, linoleic acid, glycocholic acid, LysoPC(16:1), and 
LysoPC(20:3)] that were associated with postpartum AGM specifically among women with a history of GDM. 
In addition to the indicative value of postpartum AGM using traditional risk factors including BMI and family 
history of T2D as well as glucose level at index pregnancy, these metabolites significantly increased the AUC of 
the regression model by ~ 20%. Furthermore, our pathway analysis showed that such identified metabolites were 
involved in either lipid or insulin metabolism.

Emerging evidence has suggested a plausible role of metabolites underlying the transition from GDM to 
manifest T2D. Several metabolites have been suggested to be predictive of T2D development among women 
with a history of GDM. These metabolites include branched-chain amino acids, acylcarnitines, fatty acids (i.e., 
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linoleic acid, phospholipids including lysoPCs), and sphingomyelins (i.e., SM (OH) C14:1)8–11. However, most 
existing studies identified these metabolites using targeted approaches focusing on lipids and amino  acids8,9. 
Therefore, they may neglect metabolites in other pathways that could significantly contribute to the transition 
from GDM to T2D.

Table 1.  Sociodemographic and clinical characteristics at baseline and 5-year postpartum follow-up of the 
study population. AGM abnormal glucose metabolism, T2D type 2 diabetes, BMI body mass index, GWG  
gestational weight gain, GDM gestational diabetes mellitus, IFG impaired fasting glucose, IGT impaired 
glucose tolerance, IQR interquartile range. † Generalized linear mixed model with matching factors (baseline 
age and/or pre-pregnancy BMI when appropriate) modeled as random intercepts. ‡ Generalized estimating 
equations accounting for matched pairs.

Maternal characteristics

GDM subjects (N = 50) Non-GDM subjects (N = 50) p-value

Median (IQR) or N (%) Median (IQR) or N (%)

At baseline (24–28 weeks of gestation)

Age, years 34.0 (6.0) 33.0 (9.0) 0.40†

Ethnicity

 Chinese 25 (50%) 30 (61%)

0.90‡ Indian 8 (16%) 12 (24%)

 Malay 17 (34%) 8 (16%)

College degree, yes 23 (46%) 22 (44%) 0.85‡

Family history of T2D, yes 22 (44%) 23 (46%) 0.85‡

nulliparous, yes 24 (48%) 16 (32%) 0.10‡

Pre-pregnancy BMI, kg/m2 22.8 (6.0) 21.6 (6.5) 0.94†

26–28 weeks GWG, kg 8.2 (5.8) 8.8 (7.0) 0.06†

At 5-year postpartum follow-up

Cumulative numbers of GDM episodes

 None 0 (0%) 42 (84%) < 0.01‡

 1 40 (80%) 6 (12%)

 2 or more 10 (20%) 2 (4%)

Age at year 5, years 39.0 (7.0) 38.0 (9.0) 0.40†

BMI at year 5 24.1 (5.9) 25.9 (7.3) 0.54†

Baseline-year 5 BMI increase 1.2 (2.5) 2.0 (4.2) 0.31†

Number of pregnancies during follow-up 1.0 (1.0) 1.5 (1.0) 0.27†

Glucose metabolism at year 5

 Normal glucose metabolism 26 (52%) 33 (66%)

0.19‡ IFG/IGT 22 (44%) 15 (30%)

 T2D 2 (4%) 2 (4%)

Figure 1.  OPLS-DA score plots of metabolic profiles of gestational diabetes mellitus/normal glucose 
metabolism women at baseline (24–28 weeks of gestation), and abnormal glucose metabolism (AGM)/normal 
glucose metabolism women at 5-year’s follow-up. (A) The purple dots and the yellow dots represent women with 
and without GDM at baseline, respectively; (B) The pink dots and the green dots represent women with and 
without AGM at 5-year’s follow-up, respectively.
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In our study, serum metabolites were examined using an untargeted, discovery-based approach (LC–MS) 
that includes more classes of metabolites other than lipids and amino acids for analyses, thus providing a more 
comprehensive metabolic profiling. Models with identified metabolites yielded higher indicative values on post-
partum AGM than model using traditional risk factors and/or glycemic levels collected at index pregnancy. 
Such findings might suggest a great potential of utilizing these identified metabolites to underlie the transition 
between GDM and AGM. Two out of the five identified AGM-associated metabolites among women with a his-
tory of GDM were lysoPCs [lysoPC(16:1) and lysoPC(20:3)], both increased in women with AGM. LysoPCs are 
essential elements of glycerophospholipid metabolism and also reservoirs and transporters for fatty acids and 
 choline14. Insulin resistance, prediabetes, and T2D are accompanied by  hypertriglyceridemia15 and abnormal 
glycerophospholipid  metabolism16. Previous studies have reported an upregulation of lysoPCs including lysoPC 
(16: 1) in women with  GDM16,17. Therefore, the increase of lysoPCs found in our study might lead to a surplus in 
fatty acids and choline, which ultimately results in a higher risk of impairment in glucose  metabolism18.

We also observed linoleic acid (LA) signatures, alpha-linoleic acid (ALA), and glycocholic acid in women with 
postpartum AGM. LA is a polyunsaturated fatty acid (PUFA) and a type of omega-6 fatty acid associated with 
reduced risk of T2D and improved glucose tolerance in women after  GDM19,20. Incorporating linoleic acid into 
phospholipids could alter membrane fluidity and further enhance insulin receptor  activity21. ALA is an essential 
omega-3 fatty acid and a precursor of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). It has been 
reported to be an active agent reducing circulating free fatty acids (FFA) and increasing insulin sensitivity and 
may reduce the risk of  T2D22. Moreover, ALA has also shown the potential of lowering the levels of  HbA1c and 
fasting blood glucose concentrations in diabetic  patients23. In addition, glycocholic acid is an acyl glycine and a 
bile acid-glycine conjugate involved in fats’ emulsification and part of the primary bile acid biosynthesis pathway 
(KEGG ID: hsa00120). As we know, bile acids are physiological detergents that facilitate excretion, absorption, 
and transport of fats and sterols in the intestine and liver. The inter-organ signaling and interplay between bile 
acids receptors and the gut microbiota have been suggested to underlie the pathophysiology of  T2D24,25.

Interestingly, we also observed decreased level of a metabolite (p-cresol sulfate) underlying AGM that was not 
reported to be associated with GDM or AGM. The level of circulating 4-cresol in the host organism may reflect 

Table 2.  Metabolites that were associated with 5-year postpartum abnormal glucose metabolism after multiple 
adjustment. FDR false discovery rate. † All models were adjusted for age at year 5, ethnicity (Chinese as 
reference), college education, BMI at year 5, family history of T2D, and nulliparity.  + : Associated with 5-year 
postpartum AGM with FDR < 0.1, −: FDR ≥ 0.1, ●: considered as potential indicator of AGM among GDM 
women.

Metabolites ID Chemical name

Association with 5-year postpartum  AGM† Potential predictor of 
AGM among GDM 
womenregardless GDM status GDM subjects Non-GDM subjects

187.0077_3.20_rn p-Cresol sulfate + + – ●

212.0026_2.41_rn Indoxyl sulfate + – –

217.0177_3.95_rn 3-CMPFP + – –

254.9827_0.42_rn Ascorbic acid-2-sulfate + – –

271.2053_6.85_rp Alpha-Amylcinnamyl 
isovalerate + – –

274.1047_0.42_rn Glutaminylglutamic 
acid + – +

279.2316_0.44_hp Alpha-Linolenic acid + – –

279.2323_9.57_rp Alpha-Linolenic acid + – –

281.2476_0.44_hp Linoleic acid + + – ●

351.1640_4.20_rn Epiandrosterone sulfate + – –

367.1062_0.46_rn 3-O-Feruloylquinic acid + – –

369.1742_5.47_rn Epiandrosterone sulfate + – –

369.1746_4.93_rn Epiandrosterone sulfate + – –

378.1011_5.22_rn Chondroitin + – –

429.3001_8.36_rp Spirotaccagenin + – +

446.2915_5.37_rn Glycocholic acid – + – ●

449.1307_4.15_rn Oleoside 11-methyl 
ester + – –

464.3024_4.78_rn LysoPC(16:1) + – –

471.2434_4.21_rn LysoPE(20:4) + – –

494.3249_8.41_rp LysoPC(16:1) – + – ●

546.3563_8.78_rp LysoPC(20:3) + + – ●

559.4713_0.44_hp DG(18:4) + – –

577.4823_0.44_hp DG(18:3) + – –
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Figure 2.  Receiver operating characteristic (ROC) curve admissions of the indicative models on AGM 
at 5-year’s follow-up. The gray line represents the ROC curve of Model 1: AGM at year 5 ~ Age at year 
5 + Ethnicity + BMI at year 5 + Family History of T2D + Number of GDM Episodes,  R2 = 0.25, AUC = 0.74; 
The green line represents the ROC curve of Model 2: AGM at year 5 ~ Age at year 5 + Ethnicity + BMI at year 
5 + Family History of T2D + Number of GDM Episodes + Fasting and 2-h glycemic levels at study entry,  R2 = 0.32, 
AUC = 0.77; The orange line represents the ROC curve of Model 3: AGM at year 5 ~ p-cresol sulfate + linoleic 
acid + Glycocholic acid + LysoPC(16:1) + Age at year 5 + Ethnicity + BMI at year 5 + Family History of 
T2D + Number of GDM Episodes + Fasting and 2-h glycemic levels at study entry,  R2 = 0.70, AUC = 0.94; The 
blue line represents the ROC curve of Model 4: AGM at year 5 ~ p-cresol sulfate + linoleic acid + Glycocholic 
acid + LysoPC(20:3) + Age at year 5 + Ethnicity + BMI at year 5 + Family History of T2D + Number of GDM 
Episodes + Fasting and 2-h glycemic levels at study entry,  R2 = 0.67, AUC = 0.92.

Table 3.  Contribution of variables in each regression model for abnormal glucose metabolism. AUC  area 
under the curve, BMI body mass index, T2D type 2 diabetes, GDM gestational diabetes mellitus. † All models 
were fitted with tenfold cross validation. ‡ Z-test against Model 1.

Model performance Model 1 Model 2 Model 3 Model 4

AUC † 0.74 0.77 0. 94 0.92

AUC p-value‡ n/a 0.57 (vs. Model 1) 0.040 (vs. Model 1)
0.038 (vs. Model 2)

0.047 (vs. Model 1)
0.045 (vs. Model 2)

R2 0.25 0.32 0.70 0.67

Variables in models β (95%CI) p-value β (95%CI) p-value β (95%CI) p-value β (95%CI) p-value

Age at 5-year Follow-up, years 0.21 (0.02, 0.46) 0.05 0.22 (0.01, 0.49) 0.07 0.25 (− 0.08, 0.72) 0.2 0.32 (− 51.39, 4.31) 0.16

Ethnicity

Chinese Reference – Reference – Reference – Reference –

Malay 1.94 (− 0.39, 4.61) 0.12 1.85 (− 0.59, 4.62) 0.15 0.84 (− 2.82, 5.07) 0.65 0.29 (− 0.98, 5.41) 0.88

Indian 0.68 (− 1.19, 2.62) 0.47 0.54 (− 1.37, 2.05) 0.58 − 0.84 (− 4.09, 2.47) 0.60 − 1.69 (− 3.53, 4.47) 0.32

BMI at 5-year Follow-up, kg/m2 0.14 (− 0.03, 0.33) 0.11 0.20 (0.01, 0.41) 0.05 0.05 (− 0.25, 0.39) 0.74 0.23 (− 0.04, 0.85) 0.21

Family history of T2D, yes − 0.12 (− 1.8, 1.47) 0.88 − 0.27 (− 2.07, 1.42) 0.76 1.81 (− 1.08, 5.26) 0.25 2.33 (− 0.09, 0.63) 0.15

Cumulative GDM episodes 1.07 (− 0.38, 2.87) 0.19 1.31 (− 0.23, 3.24) 0.13 0.45 (− 1.93, 3.25) 0.73 1.71 (− 0.57, 6.10) 0.29

Baseline fasting glucose n/a 0.15 (− 1.77, 1.45) 0.85 − 0.32 (− 3.23, 2.27) 0.81 − 1.81 (− 5.41, 1.62) 0.24

Baseline 2 h OGTT glucose n/a 0.56 (− 0.18, 1.36) 0.14 0.46 (− 0.50, 1.69) 0.38 0.84 (− 5.32, 0.97) 0.19

p-cresol sulfate n/a n/a − 0.30 (− 0.71, 0.03) 0.10 − 0.31 (− 0.23, 2.40) 0.12

Linoleic acid n/a n/a − 8.89 (− 18.7, − 1.68) 0.04 − 11.14 (− 0.77, 0.05) 0.02

Glycocholic acid n/a n/a − 13.03 (− 34.35, 1.54) 0.16 − 9.19 (− 22.92, − 2.91) 0.28

LysoPC(16:1) n/a n/a 1.75 (0.50, 3.53) 0.02 n/a

LysoPC(20:3) n/a n/a n/a 1.69 (− 8.40, 4.93) 0.03

(Intercept) − 13.58 (− 27.2, − 3.02) 0.03 − 13.65 (− 41.15, 7.54) 0.25 − 18.65 (0.03, 0.98) 0.18
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architectural alterations of the gut microbiota in obese and diabetic  patients26,27. However, the pathophysiological 
mechanisms of p-cresol sulfate’s role in AGM development remain unclear and require further investigation.

This study’s strengths lie in the application of AGM as an early stage outcome, measurements evaluated via 
standardized protocols, and reliable quality control on metabolites examination. However, our study is not 
without limitations. First, the relatively small sample size might have restricted the study power to detect more 
potential metabolites signatures underlying AGM. In addition to the small sample size, we were unable to match 
ethnicity completely. However, considering that all mothers were of Southeast Asian origin and no significant 
difference was found across ethnicities between GDM and non-GDM controls, the genetic heterogeneity in our 
findings might not be substantive. Second, residual bias might exist such as glycated hemoglobin (HbA1C) at 
index pregnancy. Third, we did not collect any dietary intake data after delivery. Even though some evidence 
showed no difference between the GDM and non-GDM group after delivery in terms of diet or energy  intake9,11, 
further studies are warranted to include such variable. Fourth, since levels of the metabolites were examined 
at follow-up rather than at baseline, reverse causality cannot be ruled out in our preliminary findings. Future 
studies with larger sample sizes in a multiracial and prospective study setting with external validation, as well as 
multiple time points of metabolites testing, are warranted to verify these preliminary findings.

Conclusion
Our study identified five metabolites including p-cresol sulfate, linoleic acid, glycocholic acid, lysoPC(16:1) and 
lysoPC(20:3) that were associated with postpartum AGM, specifically among women with prior GDM, beyond 
traditional risk factors. These metabolic signatures might shed light on the pathophysiology underlying the 
transition from GDM to AGM, and even provide insights into potential screening approaches using metabolites 
in clinical practice.

Methods
Study participants and design. This is a cross-sectional and observational pilot study nested in a lon-
gitudinal birth cohort study in Singapore (Growing Up in Singapore Towards Healthy Outcomes, GUSTO). 
This cohort recruited 1136 mothers with singleton pregnancies during their first trimester from June 2009 to 
September 2010. We have reported the study design and recruitment criteria in previous  publications28. We per-
formed an oral glucose tolerance test (OGTT) at 26–28 weeks of gestation for all recruited mothers. As a pilot 
in the metabolomics study, we enrolled a total of 100 participants in the current study, including 50 GDM and 
50 non-GDM women matched for age (± 2 years), ethnicity and pre-pregnancy BMI (± 2 kg/m2 and within the 
same WHO category). All participants attended both baseline (26–28 weeks’ gestation) and follow-up (5-year 
postpartum) visits. Supplementary Fig. 1 presents the flowchart of the current study design.

Table 4.  Kyoto encyclopedia of genes and genomes (KEGG) pathways of AGM-associated metabolites among 
all subjects. † Pathways with p-value < 0.1 were included in the results.

KEGG pathway (pathway ID) Expected p-value† − log(p) Impact Total intermediates in the pathway
Intermediates associated with AGM 
(chemical name)

Alpha-Linolenic acid metabolism (hsa00592) 0.034 0.033 3.406 0.333 13 279.2316_0.44_hp (Alpha-Linolenic acid)

Glycerophospholipid metabolism (hsa00564) 0.093 0.090 2.410 0.003 36 494.3249_8.41_rp [LysoPC(16:1)] 
546.3563_8.78_rp [LysoPC(20:3)]

Biosynthesis of unsaturated fatty acids 
(hsa01040) 0.093 0.090 2.410 0.017 36 279.2316_0.44_hp (Alpha-Linolenic acid)

Figure 3.  The metabolic network of identified alpha-linolenic acid metabolism.
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GDM diagnosis at the index pregnancy. At baseline, we diagnosed 50 women with GDM using a 2-h 
75 g oral glucose tolerance test (OGTT) during 24–28 weeks gestation according to World Health Organization 
1999  criteria29: fasting glucose ≥ 7.0 mmol/l and/or 2-h plasma glucose ≥ 7.8 mmol/l. None of these 50 women 
with GDM required drug treatment.

Diagnosis of abnormal glucose metabolism (AGM) at 5‑year postpartum. At the 5-year postpar-
tum visit, we assessed glucose tolerance of all 100 participants using  HbA1c and a 2-h 75 g OGTT. We defined 
prediabetes as follows: (a) fasting plasma glucose 6.1‒6.9 mmol/l and 2-h plasma glucose < 11.0 mmol/lL, or (b) 
fasting plasma glucose < 7.0 mmol/l and 2-h plasma glucose 7.9‒11.0 mmol/l. We defined T2D as: (a) fasting 
plasma glucose ≥ 7.0 mmol/l, or (b) 2-h plasma glucose ≥ 11.0 mmol/l, or (c)  HbA1c ≥ 6.5%, or (d) self-reported 
physician-diagnosed T2D during the 5  years follow-up. We subsequently categorized participants as having 
AGM if they had either prediabetes or T2D at the 5-year postpartum visit.

Liquid chromatograph–mass spectrometer (LC–MS) based metabolic profiling at 5‑year post-
partum follow‑up. We extracted the metabolites using 200 μl serum samples collected at the 5-year post-
partum visit. Briefly, we added 800 μl ice-cold mixture of methanol/acetone/acetonitrile (1:1:1, v/v/v) to each 
serum sample and incubated the mixture at − 20 °C for 30 min to precipitate. We then centrifuged the mixture at 
16,000×g for 15 min (4 °C) to collect supernatant containing metabolites and dried the supernatant in a vacuum 
concentrator (miVac, GeneVac, Warminster, UK) before LC–MS analysis. We described the detailed laboratory 
procedures in Appendix, Supplementary Table 4 and Supplementary Figs. 2 and 3. We tested all samples in one 
batch.

We obtained and imported raw data from LC–MS analysis to MarkerView (SCIEX, Foster, California, US) 
for peak extraction, the lists of which contained m/z values, retention time and integrated ion intensity for each 
m/z feature. We employed a modified 80% rule for missing value handling, i.e., a metabolite feature is kept if the 
metabolite feature has a non-zero value for at least 80% in any group  samples30. We applied interquartile range 
(IQR) to the peak lists and performed data filtering using MetaboAnalyst (Version 4.0)31. We filtered the data 
further if the relative standard deviation (RSD) were more than 20% in QC samples.

We detected a total of 21,226 metabolite features using LC–MS (1734 features from HILIC negative mode, 
2636 features from HILIC positive mode, 6181 features from RP negative mode and 10,655 featured from RP 
positive) after applying the modified 80% rule. We finally included a total of 3067 metabolite features for statisti-
cal analysis after MetaboAnalyst processing.

Covariates. We measured standing height using the SECA model 213 (Seca, Hamburg, Germany) and 
standing weight using SECA model 803 scale (Seca, Hamburg, Germany), according to standardized  protocols32 
at baseline and the 5-year follow-up visit. We calculated BMI as weight in kilogram over the square of height in 
meter. We calculated 26–28 weeks’ gestational weight gain (GWG) as the difference in weight between 26 and 
28 weeks’ gestation and pre-pregnancy. Trained staff administered questionnaires in either English, Chinese, 
Malay, or Tamil at baseline index pregnancy. We collected information on the highest education level (college 
vs. below college), family history of diabetes (yes vs. no), past pregnancy history (parity, past GDM), and pre-
pregnancy weight.

Statistical analyses. Identifying candidate metabolites associated with 5-year postpartum AGM. First, we 
compared GDM and non-GDM women characteristics with generalized linear mixed models or generalized 
estimating equations when appropriate to account for matching factors. We constructed orthogonal projections 
to latent structures discriminant analysis (OPLS-DA) to separate and discriminate women with AGM and nor-
mal glucose metabolism. Generally, OPLS-DA aimed to differentiate between groups in highly complex datasets 
(e.g. LC–MS based metabolic data), despite within-group  variability33. Second, we used variable importance for 
the projection (VIP) plot to summarize the importance of the metabolite features to the OPLS-DA model (VIP 
score > 1). Then we used univariate analysis (Mann–Whitney U test and t-test when appropriate, p < 0.05) to 
determine whether a metabolite showed different level between women with AGM and normal glucose metabo-
lism. Third, we included these candidate metabolites for multivariable analysis.

Differentiating candidate metabolites associated with 5-year postpartum AGM between women with or without 
GDM at the index pregnancy. We stratified the participants based on their GDM status diagnosed at index 
pregnancy, and then used multivariable logistic regression models to identify metabolites specifically associated 
with 5-year postpartum AGM among women with a history of GDM. We employed false discovery rate (FDR) 
with the Benjamini–Hochberg procedure to correct for multiple testing and deemed significance at FDR less 
than 0.1. Next, we applied the ridge regression model to account for collinearity. We only included the metabo-
lites with p-value < 0.05 in the ridge regression to further analyses.

Exploring the AUC in the regression model for 5-year postpartum AGM with serum metabolites among women with 
a history of GDM. We narrowed down the significant metabolites and used multivariable logistic regression 
models to assess their individual and combined indicative values on 5-year postpartum AGM. Using receiver 
operating characteristic (ROC) curves with tenfold cross-validation, we tested the following models: Model 1—
known risk factors of postpartum AGM including age at follow-up, ethnicity, BMI at follow-up, family history of 
T2D, and the cumulative number of GDM episodes among all live pregnancies at follow-up; Model 2—Model 1, 
and additional baseline glucose parameters (fasting and 2-h glycemic levels at study entry); Models N—Model 
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2 and additional significant metabolites identified in our study, using a stepwise approach [e.g., each metabolite, 
each pair (if applicable), each triplet (if applicable), each quartet (if applicable), all metabolites (if applicable)]. 
We ranked the best fitting model with the highest  R2 and area under curve (AUC) values. We further verified 
metabolites in the MS/MS spectrum’s final model using pure chemical standards if commercial standards were 
available. The complete procedures of data processing and statistical analysis to discover metabolite features and 
identify candidate metabolites are illustrated in Supplementary Fig. 4.

Pathway analysis. We performed pathway analysis based on the KEGG (Kyoto Encyclopedia of Genes and 
Genomes) pathway database using MetaboAnalyst (Version 4.0). Such step aimed to investigate the published 
biological function in our significant metabolites identified in the OPLS-DA and univariate analysis. We also 
plotted a metabolic map (Fig. 3) to show the identified metabolic network.

We expressed data as median (interquartile range, IQR) or mean (standard deviation, SD) when appropriate. 
We conducted all statistical analyses using SIMCA 13.2 (Umetrics, Umea, Sweden), MetaboAnalyst (Version 4.0), 
and R Software (Version 3.5.0), and deemed significance at p-value (2-sided) less than 0.05.

Ethics approval. We conducted the study according to the tenets of the Declaration of Helsinki and 
obtained approval by the SingHealth Centralized Institutional Review Board and the National Health Group’s 
Domain Specific Review Board of Singapore. We obtained written informed consent from all participants for 
our study before any testing.

Data availability
All datasets generated during and/or analyzed during the current study are not publicly available but are available 
from the corresponding author on reasonable request.
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