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A modified SEIR model to predict 
the behavior of the early stage 
in coronavirus and coronavirus‑like 
outbreaks
Wilfredo Angulo1, José M. Ramírez2, Dany De Cecchis1*, Juan Primera3,4, Henry Pacheco3 & 
Eduardo Rodríguez‑Román5

COVID‑19 is a highly infectious disease that emerged in China at the end of 2019. The COVID‑19 
pandemic is the first known pandemic caused by a coronavirus, namely, the new and emerging 
SARS‑CoV‑2 coronavirus. In the present work, we present simulations of the initial outbreak of this 
new coronavirus using a modified transmission rate SEIR model that takes into account the impact 
of government actions and the perception of risk by individuals in reaction to the proportion of fatal 
cases. The parameters related to these effects were fitted to the number of infected cases in the 33 
provinces of China. The data for Hubei Province, the probable site of origin of the current pandemic, 
were considered as a particular case for the simulation and showed that the theoretical model 
reproduces the behavior of the data, thus indicating the importance of combining government actions 
and individual risk perceptions when the proportion of fatal cases is greater than 4% . The results show 
that the adjusted model reproduces the behavior of the data quite well for some provinces, suggesting 
that the spread of the disease differs when different actions are evaluated. The proposed model 
could help to predict outbreaks of viruses with a biological and molecular structure similar to that of 
SARS‑CoV‑2.

COVID-19 is a highly contagious respiratory disease caused by a new virus named SARS-CoV-2. The first 
COVID-19 contagion was reported in Wuhan, China, in early December 2019. During the following weeks, the 
disease spread rapidly in mainland China and other countries, leading the World Health Organization (WHO) to 
declare COVID-19 a pandemic on March 11,  20201. The pandemic declaration was supported by a large number 
of cases and deaths. Based on data from Johns Hopkins University, more than 21.2 million cases worldwide and 
767 thousand global deaths were reported by late May 2020 the date when the authors started this work. Since 
then, these values have risen to more than 170 million cases and 3.5 million  deaths2.

To reduce the spread of the virus, the countries affected by the pandemic adopted sanitary and social dis-
tancing measures, reduced traffic, and banned any activity that involved a concentration of people, especially in 
confined spaces. Previous studies that correlated health data with past flu pandemics show that school lockdowns 
and the human response caused by the associated risks may explain the reduction in the disease propagation 
 rate3. Similar studies using data on other coronaviruses were performed by Kissler et al.4. Tian et al.5 present 
research based on correlated health data during the first fifty days of the COVID-19 epidemic in China, and they 
report that the measures adopted by citizens impacted the control of disease spread. The most effective measures 
examined in Tian H. et al.5 and the measures that provided plausible explanations for the reduced propagation 
rates are the suspension of city public transportation, closure of entertainment venues, and banning of public 
reunions. Although the conclusions from this study in China indicate that the emergency response delayed and 
reduced the COVID-19 epidemic, the analysis does not reveal a clear cause-effect relationship between the impact 
of actions taken by citizens and the rate of disease propagation. A method of establishing the causes consists of 
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combining statistical analysis and mechanistic mathematical  models6. He et al.7 propose a mechanistic math-
ematical model that incorporates the effect of school closures, human behavior responses, and weather changes 
as the most plausible actions from a health data correlation study about the flu pandemic of 1918 in  London3. 
Lin et al.8 use a modified version of the method introduced by He et al.7 to simulate the spread of COVID-19 
in the city of Wuhan, China, thus emphasizing the effects of the measures adopted by the government and the 
individual reaction on the risk associated with the disease infection rate. They use this model because of the 
similarities between both diseases regarding the spreading velocity. However, they eliminate the effect of weather 
changes because there is no evidence about its relationship with the COVID-19 infection rate. The benefits of 
the proposed model are related to its consideration of zoonotic transmission and high migration of people dur-
ing a short period as well as government measures and individual actions. The results of the simulations show 
a disease spread tendency consistent with the data on infected individuals reported in the city of Wuhan from 
January 27 to mid-February 2020. Nevertheless, the authors do not report simulations with extended periods 
that would allow us to verify the mechanistic model validity regarding the most recent data and the correlation 
study published recently by Tian et al.5.

In the present work, we intend to model the early stage of the spread of COVID-19 (we started this research in 
February 2020 and finished the modeling and writing in May 2020) using a modified version of the simple SEIR 
(susceptible-exposed-infected-recovered9–11) and coupled it with the mechanistic model on disease infection 
rates proposed by He et al.7. For this infection rate, we eliminated the effect of weather changes but incorporated 
the effects studied by Tian et al.5 as a function of time and individual reactions to deaths, which is one of the 
model parameters. Our purpose is to show predictions about the disease spread in the short and initial epidemic 
phases for the entire province of Hubei, China, and compared these finding with the health data reported for their 
respective periods. Although the complete model is not sophisticated, the results obtained in our simulations 
show an acceptable and valuable match with the health data reported for Hubei for the initial 90-day period. 
Hence, we consider that the results can be used by decision-makers to plot and implement policies, as well as 
contingency plans, to face possible new epidemic outbreaks in the early stage. In the near future, we plan to add 
new features to discuss more realistic scenarios, not only for COVID-19 but also for other diseases caused by 
other viruses that may occur in the future.

At the time of writing this paper, different variants have arisen during the pandemic. These variants might 
differ substantially in the characteristics that affect the dynamics of the simulations, for example, the transmission 
rate or the case fatality  proportion12. In addition, the values of the adjusted parameters are appropriate for the 
data provided in a particular case, and the model describes the mean behavior of the state variables. Thus, the 
results given for a model simulation represent the behavior of specific data provided at a specific time. Hence, 
we consider the procedure to be applicable to other data sets as a framework, and comparisons of these data sets 
with the obtained data provides a measure of the method’s effectiveness. The authors suggest that the methodol-
ogy should be applied in future works for other regions.

This paper is structured as follows. In “Mathematical model”, we introduce the mathematical aspects of the 
model, defining all state variables and equations. In “Data used in the model”, we describe the health data used 
to fit the parameters. In “Numerical simulations”, we describe all the simulation runs. In “Results and discussion”, 
we provide a discussion. Finally, in “Conclusions”, we present the conclusions of this work.

Mathematical model
We adopt the classical SEIR (Susceptible-Exposed-Infected-Recovered) framework as a baseline. In the SEIR 
model, the total population, which is represented by the variable N(t) for all t ≥ 0 , is regrouped into sets of indi-
viduals who are seen as  units11. In this sense, the variable S(t) represents the number of persons susceptible to 
infection, E(t) represents the number of persons exposed to the infection, I(t) represents the number of persons 
infected after exposure, and R(t) represents the number of persons recovered after infection. Additionally, we 
add the variable D(t), which represents those patients who do not recover from infection, are not infectious but 
ultimately die, and the variable M(t), which represents the number of deaths from the disease. All these vari-
ables, of course, depend on time.

We consider the parameter φ related to the case fatality proportion (CFP) leaving the infected unit, which 
represents the individuals who are not susceptible to becoming infected again because they are in the process of 
dying within time g−1 and whose time until death is measured by the rate of change of the variable D(t). This frac-
tion of individuals is dynamically accounted for by the rate of variation with respect to time of the variable M(t).

We now describe the equations governing the system in terms of the normalized variables s(t), e(t), i(t), r(t), 
d(t) and m(t). In other words, we rescale the variables described above with respect to the total population, 
which allows the suitable management of the model from a numerical perspective without the effects of differ-
ences in scale. In this sense, we assume that the change in the s(t) fraction decreases proportionally to that of 
[β0s(t)f (t)+ β(t)s(t)i(t)] , where β(t) is the transmission rate, which converts s(t) into e(t), and before spending 
a mean amount of time, it converts to σ−1 into the unit of infected individuals i(t). The zoonotic transmission is 
implemented with a stepwise function f(t). Denoting the derived operator with respect to time by ∂t , our model 
is described as follows:

(1)∂t s(t)+ β0 s(t)f (t)+ β(t) s(t)i(t)+ µ s(t) = 0,

(2)∂t e(t)− β0 s(t)f (t)− β(t) s(t)i(t)+ (µ+ σ) e(t) = 0,

(3)∂t i(t)− σ e(t)+ (γ + µ) i(t) = 0.
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The next layer in our model represents individuals that recovered with a rate of (1− φ)γ . After a period of 
illness γ−1 (mean infectious period), the i(t) is converted into r(t):

The rates of change for the variables d(t) and m(t) are given as follows:

This model is complemented by the following equation used to determine the total population at each instant 
of time t > 0:

The total individual population N(t) decreases for a positive migration rate µ(t) and increases for a negative 
migration rate (the population model remains constant with µ = 0 ). Although we consider the parameter µ 
as a time-dependent stepwise function, as shown in Table 1, we remove the time dependency for simplicity of 
notation.

All dynamical quantities in our novel SEIR model, which is normalized by N(t), satisfy the following 
relationship:

Figure 1 shows the flow diagram that summarizes the model.
We use the transmission rate function β(t) defined by He et al.3 that incorporates the impact of governmen-

tal actions (all actions that impact mobility) and the decreasing contacts among individuals in response to the 
proportion of deaths or severe cases (i.e., the severity of the epidemic) as follows:

where the quantity (1− α) represents the seasonality of governmental actions (quarantine, airport closure, shop-
ping center closure, social distancing, curfews, etc.)8 for all α ∈ [0, 1] , and κ is a parameter that represents the 
intensity of perception of the risk p(t) that the individuals exhibit during the pandemic. This public perception 
of risk is modeled as follows:

where �−1 is the mean duration of impact of deaths on public perception. For instance, the spread of a disease 
without any action from part of the susceptible population is κ = 0 (naive spread). Governmental actions, such 
as quarantine and lockouts, are considered when α  = 0 . A goal of this model is to analyze the effects of individual 

(4)∂t r(t)− (1− φ) γ i(t)+ µ r(t) = 0.

(5)∂t d(t)+ g d(t)− φ γ i(t) = 0,

(6)∂t m(t)− g d(t) = 0.

(7)∂tN(t)+ µ(t)N(t)[1− d(t)−m(t)] = 0.

(8)s(t)+ e(t)+ i(t)+ r(t)+ d(t)+m(t) = 1− µ(t) [1− d(t)−m(t)].

(9)β(t) := β0(1− α)
[

1− p(t)
]κ
,

(10)∂tp(t)+ �p(t)− gd(t) = 0,

Table 1.  Parameters of the Wuhan COVID-19 outbreak models. a From January 23 to January 29, 2020, 
α = 0.4239 . After January 30, 2020, α = 0.8478.

Quantity Description Type Value Initial value References

F(t) Zoonotic/day Stepwise function {0, 10} 10 –

N(t) City population Computed – 14 MM South China Morning Post 
(2020)13

s(t) Susceptible Computed – 0.9999 –

e(t) Exposed Computed – 0.0001 –

i(t) Infected Computed – 0 –

r(t) Recovered Computed – 0 –

d(t) Expected to die Computed – 0 –

p(t) Perception of risk Computed – 0 –

κ Strength of response Constant (0, 1117.3) – He et al. (2013)3

α Governmental action strength Stepwise function {0, 0.4239, 0.8478}a 0 Lin et al. (2020)8

β0 Baseline transmission rate Stepwise function {0.5944, 1.68} 0 Lin et al. (2020)8

µ Emigration rate Stepwise function {0, 0.0205, 0} 0 South China Morning Post 
(2020)13

σ−1 Mean latent period Constant 3 days 0 Wu et al. (2020)14

γ−1 Mean infectious time Constant 5 days 0 Wu et al. (2020)14

�
−1 Mean time of public reaction Constant 11.2 days 0 He et al. (2013)3 & Lin et al. 

(2020)8

g−1 Mean time in unit d Constant 8 0 He et al. (2013)3

φ Case fatality proportion Constant (0.5%, 20%) 0 –
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reactions, public risk perceptions, and governmental action on the dynamics of susceptible populations to suffer 
the spread of a disease, in this case, COVID-19.

Data used in the model
We use the data provided by the COVID-19 Data Repository by the Center for Systems Science and Engineering 
(CSSE) at Johns Hopkins  University2. From this repository, we use the time series of confirmed cases, number of 
deaths and number of recovered individuals in China’s 33 administrative dependencies from January 22, 2020, 
until 90 days later. For example, Fig. 2 depicts a plot of cumulative cases in the province of Hubei.

From the beginning of the outbreak, we assume the timeline given in Fig. 3. The outbreak started on Decem-
ber 1, 2019, in a seafood market in the city of Wuhan in  Hubei8. Then, because of the Chinese New Year holiday, 
a strong migration occurred from December 31 until January 22, 2020, when the Chinese government started 
the first soft control measures, with additional stronger governmental measures taken on January 29 that imposed 
circulation control, social distancing, educational lockout, etc. In our model, following the settings by Lin et al.8 
for the transmission function in Eq. (9), we set the parameter α to values of α = 0 from December 1 until Janu-
ary 23, α = 0.4239 from January 23 to January 29, and α = 0.8478 after January 29 . The zoonotic transmission 
function f(t) in Eq. (1) is the normalized value of the zoonotic transmission rate F(t) defined in Table 1. For the 
province of Hubei, F(t) is set as a stepwise function, with the value of F0 = 10 from December 1 until December 
31 and zero the rest of the time. For the rest of the administrative dependencies, the zoonotic transmission rate 
is always set to zero.

Figure 1.  Diagram of the modified SEIR model.

Figure 2.  Reported cumulative daily confirmed COVID-19 cases in the province of Hubei since January 22, 
2020. Source: CSSE, Johns Hopkins University.
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Data fitting. We fit the 33 administrative dependencies in China reflected in the aforementioned database, 
including the province of Hubei, which is the case study considered in this work. The data set used in our analy-
sis consists of the first 90 days from January 22, 2020. We use the maximum-likelihood method, which closely 
follows the procedure used by He et al.3, to fit the free parameters N0 , σ , and β0 . The latter is split into two differ-
ent base transmission rates, β01 and β02 . The splitting of β0 corresponds to the finding that the disease transmis-
sion rate changes in response to the different governmental actions on two different dates.

Numerical simulations
We organize the numerical simulations into two main sets. For the first set, which is presented in subsection 
entitled Model simulations, we run our model for four different values of the CFP to elucidate its effect on the 
evolution of the disease spread related to government actions and the public perception of risk. For the second 
set, which is presented in subsection entitled Fitting using the health data from Chinese provinces, we perform 
data fitting with the health data using the maximum-likelihood method.

Model simulations. From this set of simulations, we intend to elucidate the effect of individual reactions 
from the perception of risk and governmental actions on the transmission dynamic. Thus, we define three dif-
ferent model categories: the naive model, in which the disease spread is modeled via SEIR using a constant 
transmission rate β(t) = β0 ( α = 0 and κ = 0 ); the individual reaction model, which considers only the public 
perception of risk ( α = 0 and κ = 1117.3 ); and the individual and government reaction model, which consid-
ers both the government actions and the individual reaction for perception risk ( α  = 0 and κ  = 0 ). Then, we 
run the three categories of models for four different CFPs: φ = 0.2 , 0.02, 0.01, and 0.005. We label these runs 
as extreme, high, middle, and low CFPs, respectively. The simulations start on December 1, 2019, and run over 
180 days based on the timeline in Fig. 3. In all of the runs, we monitor the evolution of N(t) according to Eq. (8).

Figures 4 and 5 depict the results of the simulations using the values of the parameters shown in Table 1 except 
for those parameters established in each scenario. Figure 4 depicts the number of infections per day (I(t)) and 
the number of deaths (M(t)) considering the extreme and middle CFPs. In the left panel, the number of infec-
tions per day is depicted for the extreme CFP in the upper plot (a) and for the middle CFP in the lower plot (b). 
A second outbreak is shown in the inset of plot (a). In the right panel, the number of deaths M(t) in the naive 
and individual reaction together with government action models for the extreme and middle CFPs is depicted 
in the upper plot. A magnified view of the lower lines is shown in the lower plot (d).

Similarly, Fig. 5 depicts the results obtained by simulating high and low CFPs, and it shows the numbers of 
infections per day (I(t)) and deaths (M(t)). The left panel shows plots of the number of infections per day for 
the high CFP in the upper plot (a) and for the low CFP in the lower plot (b). The right panel shows a plot of the 
number of deaths (M(t)) in the upper plot (c) and a magnified view in the lower plot (d).

Fitting using the health data from Chinese provinces. We fit the parameters shown in Table 2 using 
the maximum-likelihood method as described in He et  al.3. We consider the following free parameters: the 
initial susceptible population, N0 ; the inverse of the mean latent period, σ ; and the baseline transmission rate, 
β0 . In some cases, we split this parameter into two, e.g., β01 and β02 , to consider different dynamics for disease 
spread. Once the best fit of the parameters is found, we identify the 1− σ error estimation (1 standard deviation). 
It is worth mentioning that some of the fits are of good quality, for which we have modest to high confidence, 
whereas some are of low quality. Nevertheless, we present all of these fits for the sake of completeness of the 
survey.

Figure 6 shows the results of fitting the number of infections per day I(t) for a subset of 15 provinces in China, 
and the remaining results are shown in Fig. 7. Figure 8 depicts the results of the model using the Hubei data, 
using N0 = 1.14× 106 , β01 = β02 = 0.5 , which was estimated in the data fitting, and CFP φ = 4.5% , which is 
very similar to the actual value. The rest of the parameters are the same as in Table 1. Plot (a) represents the 
number of infected individuals I(t), plot (b) indicates the number of deaths M(t), plot (c) indicates the number 
of recovered individuals R(t), and plot indicates (d) the total cumulative cases.

Figure 3.  Timeline of the spread of COVID-19 and governmental actions taken in Wuhan (China) 
surrounding the days of the outbreak in 2019. Zoonotic transmission began on December 1, 2019. Migration 
started on December 31, 2019, and ended on 22 January 2020. Soft government actions taken on 23 January and 
stronger actions taken on 29 January 2020 decreased the baseline human-to-human transmission rate β0.
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Results and discussion
In Figs. 4 and 5, we observe a reduction in the number of infections per day based on a comparison of the naive 
model, the individual reaction model and the individual reaction with government reaction model. The find-
ings show that individual reactions and government measures led to a reduction in the number of infections 
per day. The curve representing the naive simulation did not show variations with respect to the changes in the 
CFP parameter φ , while these changes produced a remarkable effect on the other two models. The simulations 
showed that a larger value of parameter φ corresponds to a lower peak in the number of infections per day. The 
reduction with respect to the naive simulation is approximately 5:1 when φ = 20% , while it is barely perceptible 
when φ = 0.5%.

At first glance, one can assume that the CFP is not related to the number of infected individuals. However, 
the higher the number of deaths is, the more cautious individuals become because the risk perception increases; 
thus, the possibility of contagion decreases. Equation (5) indicates that our model reproduces this behavior in a 
consistent manner. In fact, the variable i(t) is directly related to the variable d(t) (and then to m(t)) and inversely 
related to the parameter φ . Thus, for a higher value of φ , a lower value of i(t) is obtained.

In Fig. 4a, when φ = 10% , we also observe another small peak produced by the simulations around day 160, 
although this is only observed when only the individual reaction is considered. In contrast, we do not observe 
this second peak for the other model categories with a lower value of φ . These secondary peaks might represent 
rebounding outbreaks; thus, the model consistently reproduces this behavior that we expect in the short and long 
term, which is similar to that observed for other infectious  diseases3. It is worth mentioning that there is almost 
no difference in the curves when we add the government measurements in addition to the individual response, 
which indicates that government action does not have a significant impact on the change in the curve. From our 
simulations, we understand that it is more important to consider actions taken by citizens than actions taken by 
the government that are not assimilated by individuals. Such a perspective centers contagion prevention mainly 
on individuals instead of measure enforcement.

With respect to the number of deaths (M(t)), the simulations are also consistent. Figures 4 and 5 (plots (c) 
and (d)) clearly show that a larger the CFP corresponds to a higher number of deaths. Additionally, we assess 
the influence of public risk perception and government action regarding deaths when varying the CFP, φ . A 

Figure 4.  Simulations using the values of the parameters shown in Table  1 for the three different model 
categories. Plot (a) depicts the number of infections per day for the extreme CFP ( φ = 20%). Plot (b) shows the 
number of infections per day for the middle CFP ( φ = 1%). Plot (c) shows the number of deaths per day for 
both the extreme and middle CFPs ( φ = 20 % and φ = 1% ), and plot (d) is a magnified view of the lower lines 
of number of deaths.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16331  | https://doi.org/10.1038/s41598-021-95785-y

www.nature.com/scientificreports/

larger value of φ corresponds to a larger difference in the M(t) curves. In Fig. 4c, the effect of the individual and 
government actions reduces the height of the curve for the extreme CFP by four-fifths, while the reduction in 
plot (d) is less than 10in Fig. 5c, the reduction in the number of deaths is approximately one-fifth compared with 
that of the high CFP but is barely noticeable for the low CFP. This result highlights the importance of different 
measures (individual or collective) for reducing the effect of disease impacts.

For fitting the parameters, in Figs. 6 and 7, as mentioned in subsection entitled Fitting using the health data 
from Chinese provinces, some parameters are of good quality and promote modest to high confidence, while 
others are of low quality. However, we can highlight that our model is generally able to reproduce the disease 
outbreak rebound observed in the data, which was pointed out in our previous discussion. Additionally, it is 
worth noting that the free parameter β01 is mainly fitted in the range from 0.5944 to 1.68, which is similar to the 
values reported by Lin et al.8.

The large differences in the values of σ obtained in our data fittings probably indicate a contribution of the 
rapid onset of contagion once an individual is exposed, although they might also be due to differences in the 
population densities among the provinces of China. The contagion rate β represents the likelihood that a suscep-
tible individual (S(t)) is exposed (E(t)), and this depends on the outbreak intensity. However, once an individual 
is exposed, the time until they are infected is given by σ . This value contributes to a higher velocity of disease 
spread once an individual is exposed, thus indicating the importance of personal security measures.

The values of the parameters that determine the dynamics of disease spread are closely related to the period 
of time considered in the data, as well as the appearance of new variants. Viruses, such as SARS-CoV-2, mutate 
continuously and may have varying effects over  time15. Thus, models need to adjust the values of the parameters 
accordingly and mainly consider the appearance of variants of concern (VOCs). Future work could consider a 
parameter factor that includes the variation rate of viruses or the appearance of VOCs, or they could even include 
more equations to represent several virus  variants12.

Finally, for more detailed insights into the case of Hubei, we obtain the simulation results depicted in Fig. 8. 
The simulation time starts on December 1, 2019, using the timeline shown in Fig. 3 and the data from Hubei: 
the initial susceptible population N0 = 1.14× 106 , β01 = β02 = 0.5 , as the value we obtain from the data fit-
ting; the rest of the parameters are the same as in Table 1, and they are based on both government action and 

Figure 5.  Simulations using the values of the parameters shown in Table 1 for the three different model 
categories. Plot (a) depicts the number of infections per day for a high CFP ( φ = 2%). Plot (b) shows the 
number of infections per day for a low CFP ( φ = 0.5%). Plot (c) shows the number of deaths per day for both 
high and low CFPs ( φ = 2 % and φ = 0.5% ). Plot (d) shows a magnification of the lower lines of number of 
deaths.
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individual reaction to the perception of risk. The plots show the infected population I(t) in plot (a), the number 
of deaths M(t) in plot (b), the number of recovered individuals R(t) in plot (c) and the total number of cases in 
plot (d). Although we fit the values of the free parameters using a time series starting on January 22, the simula-
tion qualitatively shows good agreement with the Hubei data. The peak of the number of contagious individuals 
occurs around day 50, which is close to the end of January, consistent with the results of Lin et al.8, who noted that 
there is a delay in values after processing the tests. Thus, the simulation results must be offset by approximately 
15 days with respect to the data time series. However, the simulation shows an underestimation of the peak. 
The number of deaths M(t) is very similar to that reported in the data. With respect to the number of recovered 
individuals and total cases, the results show qualitatively good agreement but are quantitatively overestimated.

Conclusions
In this paper, we present an SEIR model for computationally simulating the COVID-19 outbreak, and it considers 
the combined effect of governmental actions, public perception of contagion risk and the case fatality proportion 
(CFP). The outcome is a theoretical model that qualitatively reproduces the behavior expected for the COVID-
19 outbreak based on the three scenarios of no governmental action or individual reaction due the perception 
of contagion risk, which is labeled as the naive category; only the individual reaction based on the perception 

Table 2.  Parameters of the 33 provinces in China with publicly available data COVID-19 outbreak models. 
a Human-to-human infection rate (in cases per day) when the soft governmental measures were implemented 
on January 23, 2020 (α = 0.4239). b Human-to-human infection rate (in cases per day) when the hard 
governmental measures were implemented on January 29, 2020 (α = 0.8478).

Province N0 σ β01
a β02

b R
2

Anhui 7499.0± 1217.0 30.190± 186.9 0.62± 0.067 – 0.91

Beijing 3947.0± 500.8 60.350± 477.4 0.56± 0.036 10.75± 2.726 0.78

Chongqing 2330± 67.1 0.061± 0.003 28.19± 2.526 – 0.97

Fujian 1356± 62.3 0.054± 0.004 36.66± 5.359 250000± 2.8(−14) 0.93

Gansu 288.6± 19.1 2.077± 0.531 1.03± 0.07 3787± 3663 0.74

Guangdong 6169± 176 0.05± 0.003 31.84± 2.706 − 0.97

Guangxi 1164.0± 46.3 0.054± 0.004 23.61± 2.655 – 0.95

Guizhou 1086.0± 169.5 22.820± 104.8 0.6± 0.061 – 0.91

Hainan 1119± 200 20.61± 95.04 0.64± 0.078 – 0.88

Hebei 1999± 176.8 46.66± 221.6 0.6± 0.032 96550± 1.532× 10−13 0.90

Heilongjiang 4198± 1129 1.229± 0.832 0.7± 0.146 11.9± 6.088 0.79

Henan 8154± 975.6 43.23± 261.9 0.65± 0.052 – 0.89

Hong Kong 2.6× 106 ± 6.9× 107 0.0003± 0.006 221.3± 5691 3.2± 4.698 0.83

Hubei 1.1× 106±200,600 37.26± 369.8 0.45± 0.04 – 0.90

Hunan 5647± 537.7 33.82± 113.3 0.68± 0.042 – 0.85

Inner Mongolia 905.3± 247.1 1.03± 0.622 0.69± 0.139 14.87± 8.254 0.69

Jiangsu 2133± 65.6 0.073± 0.004 15.74± 1.399 100,000±1.239× 10−14 0.96

Jiangxi 3243± 99 0.09± 0.006 10.54± 0.937 – 0.96

Jilin 311.6± 8.8 0.083± 0.005 11.33± 0.918 97710± 1.375× 109 0.97

Liaoning 839.6± 231.6 16.75± 96.38 0.67± 0.134 4.53± 1.841 0.80

Macau 264.8± 110.4 0.604± 0.479 0.71± 0.238 34.21± 46.650 0.37

Ningxia 368.4± 96.1 23.140± 175.3 0.64± 0.115 – 0.80

Qinghai 78.6± 4.9 35.9± 73.33 0.84± 0.039 – 0.91

Shaanxi 1762± 298.9 37.740± 291.8 0.64± 0.074 – 0.85

Shandong 9032± 2857 28.3± 370.7 0.46± 0.074 – 0.74

Shanghai 2567± 353.8 24.33± 84.53 0.65± 0.054 12.51± 3.579 0.78

Shanxi 1012± 157 14.22± 36.75 0.64± 0.064 7.34± 1.575 0.83

Sichuan 4656± 1292 24.94± 230.2 0.56± 0.096 – 0.78

Tianjin 1061± 99.3 24.32± 57.34 0.6± 0.03 10.81± 1.919 0.85

Tibet – – – – –

Xinjiang 801.9± 159.9 25.11± 172.6 0.53± 0.061 – 0.89

Yunnan 1255± 102.7 32.490± 77.14 0.65± 0.03 3.49± 4.682 0.80

Zhejiang 7090± 1869 28.35± 253 0.7± 0.136 – 0.81
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of risk; and the combination of individual reaction and governmental actions. In all scenarios, we also consider 
low ( 0.5% ), middle ( 1% ), high ( 2% ), and extreme ( 20% ) values of CPF. The results of the simulations show that 
the influence of CFP variations is more important when considering the individual reaction in terms of the 
perception of risk. In one case, a disease outbreak rebound appears when only the individual reaction to risk is 
considered; however, this rebound effect disappears when government action is considered as a complementary 
measure. We conclude that individual actions with regard to the perception of contagion risk are more effective in 
reducing disease spread; however, government measures reinforce the reduction in spread when people relax after 
a reduction in the death rate. We deploy a maximum-likelihood method to fit health data from the 33 provinces 
of China provided by the Johns Hopkins University COVID-19 database. We fit the data for the free parameters 
of the initial population N0 , the inverse of the main latent period σ , and the baseline transmission rate β0 , which 
is split into two parameters, β01 and β02 , acting at different times. The data fitting is reported for all 33 provinces. 
By adjusting certain parameters, the model can capture the transmission dynamics of the COVID-19 outbreak.

Figure 6.  Fit of the first 15 Chinese provinces produced using the data from the CSSE repository and 
our model using the values of the parameters as in Table 1, with F0 = 10 for Hubei and F0 = 0 otherwise. 
Occasionally, β02 has to be removed from the fit to reproduce the smaller second outbreaks seen in some 
provinces. We give the best fit parameters and their quality of fit ( R2 ) in Table 2.
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Figure 7.  Fits from the remaining 18 to 33 Chinese provinces produced using the data from the CSSE 
repository and our model using the values of the parameters as in Table 1, with F0 = 10 , for Hubei and F0 = 0 , 
otherwise. Occasionally, β02 has to be removed from the fit to reproduce the smaller second outbreaks seen in 
some provinces. We give the best fit parameters and their quality of fit ( R2 ) in Table 2.
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