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Automated predictive analytics 
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Australia faces a dryness disaster whose impact may be mitigated by rainfall prediction. Being 
an incredibly challenging task, yet accurate prediction of rainfall plays an enormous role in policy 
making, decision making and organizing sustainable water resource systems. The ability to accurately 
predict rainfall patterns empowers civilizations. Though short-term rainfall predictions are provided 
by meteorological systems, long-term prediction of rainfall is challenging and has a lot of factors 
that lead to uncertainty. Historically, various researchers have experimented with several machine 
learning techniques in rainfall prediction with given weather conditions. However, in places like 
Australia where the climate is variable, finding the best method to model the complex rainfall process 
is a major challenge. The aim of this paper is to: (a) predict rainfall using machine learning algorithms 
and comparing the performance of different models. (b) Develop an optimized neural network and 
develop a prediction model using the neural network (c) to do a comparative study of new and existing 
prediction techniques using Australian rainfall data. In this paper, rainfall data collected over a span of 
ten years from 2007 to 2017, with the input from 26 geographically diverse locations have been used 
to develop the predictive models. The data was divided into training and testing sets for validation 
purposes. The results show that both traditional and neural network-based machine learning models 
can predict rainfall with more precision.

Water is crucial and essential for sustaining life on earth. Water plays a key role in the development of the 
economic, social and environment of a region. Every aspect of life, be it life’s survival, agriculture, industries, 
livestock everything depends on the availability of water. Increase in population, urbanization, demand for 
expanded agriculture, modernized living standards have increased the demand for  water1. Water is a renew-
able resource, and it is transferred between the ocean, atmosphere, and the land (through rainfall)2. Rainfall is 
a life-sustaining water resource, and its variability influences the water availability across any region. Rain also 
irrigates all flora and fauna. When water is added to rivers and dams in turn, it may be used to generate electric-
ity through hydropower.

Australia is the driest inhabited continent with 70% of the continent classified as desert or semi-desert. This 
island continent depends on rainfall for its water  supply3,4. Just like any other region, variation in rainfall often 
influences water availability across Australia. The continent encounters varied rainfall patterns including dry-
ness (absence of rainfall), floods (excessive rainfall) and  droughts5. Some examples are the Millenium drought, 
which lasted over a decade from 1995 to  20096, the 1970s dry shift in southwest  Australia7, and the widespread 
flooding from 2009 to 2012 in the eastern Australian  regions8. It has the highest rainfall in the tropical regions 
in the north and dry and deserted regions in the interior. These changes in the rainfall creates serious issues in 
water availability, management, and future resource planning.

Researchers have developed many algorithms to improve accuracy of rainfall predictions. Predicting rainfall 
accurately is a complex process, which needs improvement continuously. Our rainfall prediction approach lies 
within the traditional synoptic weather prediction that involves collecting and analyzing large data, while we 
will use and compare various data science techniques for classification, model selection, sampling techniques 
etc. to train and test our models. In this paper, different machine learning models are evaluated and compared 
their performances with each other. We have attempted to develop an optimized neural network-based machine 
learning model to predict rainfall. The models use GridSearchCV to find the best parameters for different models.
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Literature survey
Water is essential to all livelihood and all civil and industrial applications. Accurate rainfall prediction is impor-
tant for planning and scheduling of these  activities9. There is numerous literature available on different rain-
fall prediction approaches including but not limited to data mining, artificial neural networks and machine 
 learning10.

Hu11 was one of the key people who started using data science and artificial neural network techniques in 
weather forecasting. He used Adaline, which is an adaptive system for classifying patterns, which was trained at 
sea-level atmospheric pressures and wind direction changes over a span of 24 h. Adaline was able to make “rain 
vs. no-rain” forecasts for the San Francisco area on over ninety independent cases. The predictions were compared 
with actual United States Weather Bureau forecasts and the results were favorable. Hu’s work was foundational 
in developing advanced and accurate rainfall techniques.  Cook12 presented a data science technique to predict 
average air temperatures. Among many algorithms they had tested, back-propagation learning algorithm was 
one of them.

An important research work in data-science-based rainfall forecasting was undertaken by  French13 with 
a team of researchers, who employed a neural network model to forecast two-class rainfall predictions 1 h in 
advance.  Michaelides14 and the team have compared performance of a neural network model with multiple linear 
regressions in extrapolating and simulating missing rainfall data over Cyprus.

Data mining techniques are also extremely popular in weather predictions. Chauhan and  Thakur15 broadly 
define various weather prediction techniques into three broad categories:

1. Synoptic weather prediction: A traditional approach in weather prediction and refers to observing the feature 
weather elements within a specific time of observations at a consistent frequency. It involves collecting data 
daily and analyzing the enormous collection of observed data to find the patterns of evidence.

2. Numerical weather prediction: Uses computer analytical power to do weather prediction and allows the 
computer program to build models rather than human-defined parametric modeling after visualizing the 
observed data. This is often combined with artificial intelligence methods.

3. Statistical weather prediction: Often coupled with numerical weather prediction methods and uses the main 
underlying assumption as “the future weather patterns will be a repetition of the past weather patterns”.

Petre16 uses a decision tree and CART algorithm for rainfall prediction using the recorded data between 2002 
and 2005. Sharif and  team17 have used a clustering method with K-nearest neighbors to find the underlying pat-
terns in a large weather dataset. They achieved high prediction accuracy of rainfall, temperatures, and humidity.

Our main goal is to develop a model that learns rainfall patterns and predicts whether it will rain the next day.

Data source
We used the dataset containing 10 years’ worth of daily weather observations from multiple Australian weather 
stations (climate data online, Bureau of meteorology, Australian government)18. We use a total of 142,194 sets of 
observations to test, train and compare our prediction models. These observations are daily weather observations 
made at 9 am and 3 pm over a span of 10 years, from 10/31/2007 to 06/24/2017. This data is used in building 
various regression and classification models in this paper, including but not limited to the binary classification 
model on the response Rain Tomorrow. Figure 1 lists all data parameters collected.

Data wrangling and exploratory data analysis (EDA). We primarily use R-studio in coding and visu-
alization of this project. We used several R libraries in our analysis. In our data, there are a total of twenty-four 
columns. Out of a total of 142,194 rows, there are multiple rows in the data that are missing one or more feature 
values. First, we perform data cleaning using dplyr library to convert the data frame to appropriate data types.

In performing data wrangling, we convert several variables like temperatures and pressures from character 
type to numeric type. We also convert qualitative variables like wind-direction, RainTomorrow from character 
type to factor type. Moreover, we convert wind speed, and number of clouds from character type to integer type. 
The next step is assigning ‘1’ is RainTomorrow is Yes, and ‘0’ if RainTomorrow is No.

Also, we convert real numbers rounded to two decimal places. The next step is to remove the observations 
with multiple missing values. Thus, after all the cleaning up, the dataset is pruned down to a total of 56,466 set 
of observations to work with.

Note that a data frame of 56,466 sets observation is usually quite large to work with and adds to computational 
time. Therefore, we use K-fold cross-validation approach to create a K-fold partition of n number of datasets 
and for each k experiment, use k − 1 folds for training and the held-out fold for testing. This does not have to be 
performed necessarily in k − 1/1 partition for training/testing but may also be compared with other combinations 
like k − 2/2, k − 3/3 and so one for training/held-out testing folds, according to Wei and  Chen19. For the starter, 
we split the data in ten folds, using nine for training and one for testing.

It is evident from the plots that the temperature, pressure, and humidity variables are internally correlated 
to their morning and afternoon values. However, it is also evident that temperature and humidity demonstrate 
a convex relationship but are not significantly correlated. Moreover, sunshine and temperature also show a vis-
ible pattern and so does pressure and temperature, but do not have much correlation as can be confirmed from 
the correlation heat map. As expected, morning and afternoon features are internally correlated. Also, observe 
that evaporation has a correlation of 0.7 to daily maximum temperature. Further, we can also plot the response 
of RainTomorrow along with temperature, evaporation, humidity, and  pressure20. The scatter plots display how 
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the response is classified to the predictors, and boxplots displays the statistical values of the feature, at which 
the response is Yes or No.

Figure 2 displays the process flow chart of our analysis. We first performed data wrangling and exploratory 
data analysis to determine significant feature correlations and relationships as shown in Figs. 3 and 4.

It is evident from scatter plots in Fig. 5 that rainfall depends on the values of temperature, humidity, pres-
sure, and sunshine levels. For the variable RainTomorrow to have a higher probability for a Yes value, there is a 
minimum relative humidity level of 45%, atmospheric pressure range of 1005 and 1028 hectopascals, and lower 
sunshine level as evident from the boxplot (Fig. 6).

Now we have a general idea of how the data look like; after general EDA, we may explore the inter-relation-
ships between the feature temperature, pressure and humidity using generalized logistic regression models.

Feature selection. We explore the relationships and generate generalized linear regression models between 
temperature, humidity, sunshine, pressure, and evaporation. The purpose of using generalized linear regression 

Figure 1.  Data parameters.

Figure 2.  Process flow chart.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17704  | https://doi.org/10.1038/s41598-021-95735-8

www.nature.com/scientificreports/

to explore the relationship between these features is to one, see how these features depend on each other includ-
ing their correlation with each other, and two, to understand which features are statistically  significant21.

For example, Fig. 7 shows that there is a quadratic trend between temperature and evaporation. Also, we 
determined optimal kernel bandwidth to fit a kernel regression function and observed that a kernel regression 
with bandwidth of 1 is a superior fit than a generalized quadratic fit. Fig. 8 presents kernel regression with three 
bandwidths over evaporation-temperature curve.

We use generalized linear regression to establish the relationships between correlated features. However, the 
outliers are affecting the model performance. So, after removing those outliers, we reproduce a kernel regression 
model with different bandwidths and pick an optimum bandwidth of 1. We also use bias-variance decomposition 
to verify the optimal kernel bandwidth and  smoother22.

We have used the “nprobust” package of R in evaluating the kernels and selecting the right bandwidth and 
smoothing parameter to fit the relationship between quantitative parameters. We have used the cubic polynomial 
fit with Gaussian kernel to fit the relationship between Evaporation and daily MaxTemp.

After fitting the relationships between inter-dependent quantitative variables, the next step is to fit a classifica-
tion model to accurately predict Yes or No response for RainTomorrow variables based on the given quantitative 
and qualitative features. For this, we start determining which features have a statistically significant relationship 
with the response. We also perform Pearson’s chi squared test with simulated p-value based on 2000 replicates 
to support our  hypothesis23–25.

After running the above replications on ten-fold training and test data, we realized that statistically significant 
features for rainfall prediction are the fraction of sky obscured by clouds at 9 a.m., humidity and evaporation 
levels, sunshine, precipitation, and daily maximum temperatures. Moreover, after cleaning the data of all the 
NA/NaN values, we had a total of 56,421 data sets with 43,994 No values and 12,427 Yes values. We used this 
data which is a good sample to perform multiple cross validation experiments to evaluate and propose the high-
performing models representing the  population3,26.

Performance. Scalability and autonomy drive performance up by allowing to promptly add more process-
ing power, storage capacity, or network bandwidth to any network point where there is a spike of user requests. 
Moreover, autonomy also allows local developers and administrators freely work on their nodes to a great extent 
without compromising the whole connected system, therefore software can be upgraded without waiting for 
“approval” from other systems. Load balancing over multiple nodes connected by high-speed communication 
lines helps distributing heavy loads to lighter-load nodes to improve transaction operation performance.

Model selection
For the classification problem of predicting rainfall, we compare the following models in our pursuit:

Figure 3.  Correlation heat plot.
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• Logistic regression
• Linear discriminant analysis
• Quadratic discriminant analysis
• K-Nearest Neighbor for classification
• Decision tree and gradient boosted trees
• Random forest
• Bernoulli Naïve Bayes
• Deep learning

To maximize true positives and minimize false positives, we optimize all models with the metric precision 
and f1-score. Thus, the model with the highest precision and f1-score will be considered the best. As shown in 
Fig. 9, we perform subset selection and find optimal subset to minimize BIC and Cp and maximize adjusted.

Figure 4.  Feature scatter plot.

Figure 5.  Box plots between significant features.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17704  | https://doi.org/10.1038/s41598-021-95735-8

www.nature.com/scientificreports/

Logistic regression. We performed feature engineering and logistic regression to perform predictive clas-
sification modelling. During the testing and evaluation of all the classification models, we evaluated over 500 
feature set combinations and used the following set of features for logistic regression based on their statistical 
significance, model performance and prediction  error27. After performing above feature engineering, we deter-
mine the following weights as the optimal weights to each of the above features with their respective coefficients 
for the best model  performance28. The confusion matrix obtained (not included as part of the results) is one of 
the 10 different testing samples in a ten-fold cross validation test-samples.

Figure 6.  Box plots between significant features.

Figure 7.  Boxplots between significant features.

Figure 8.  Boxplots between significant features.
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Figure 10a displays class precision and f1-score along with optimized hyper parameters used in the model. 
Figure 10b presents significant feature set and their weights in rainfall prediction. The results of gridSearchCV 
function is used to determine the best hyper parameters for the model.

Linear discriminant analysis. We performed a similar feature engineering, model evaluation and selec-
tion just like the above, on a linear discriminant analysis classification model, and the model selected the fol-
lowing features for generation. Figure 11a,b show this model’s performance and its feature weights with their 
respective coefficients.

Quadratic discriminant analysis. Quadratic discriminant analysis selects the following features and 
weights and performs as demonstrated by the following Fig. 12a,b. Note that QDA model selects similar features 
to the LDA model, except flipping the morning features to afternoon features, and vice versa. Also, QDA model 
emphasized more on cloud coverage and humidity than the LDA model.

K-Nearest neighbors. From Fig. 13a, k = 20 is the optimal value that gives K-nearest neighbor method 
a better predicting precision than the LDA and QDA models. This may be attributed to the non-parametric 

Figure 9.  Boxplots between significant features.

Figure 10.  Logistic regression performance and feature set.
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nature of KNN. If the data is not linear or quadratic separable, it is expected that parametric models may show 
substandard performance. The performance of KNN classification is comparable to that of logistic regression.

The precision, f1-score and hyper-parameters of KNN are given in Fig. 13a. Also, Fig. 13b displays optimal 
feature set along with their feature weights.

Decision tree. The decision tree model was tested and analyzed with several feature sets. After generating 
the tree with an optimal feature set that maximized adjusted-R2, we pruned it down to the depth of 4. The deci-
sion tree with an optimal feature set of depth 4 is shown in Fig. 14.

Figure 15a displays the decision tree model performance. Also, Fig. 15b displays the optimal feature set with 
weights.

Gradient boosting. We ran gradient boosted trees with the limit of five trees and pruned the trees down 
to five levels at most. The following are the associated features, their weights, and model performance. Note that 
gradient boosted trees are the first method that has assigned weight to the feature daily minimum temperature. 
Figure 16a displays the decision tree model performance. Also, Fig. 16b displays the optimal feature set with 
weights.

Figure 11.  LDA performance and feature set.

Figure 12.  QDA performance and feature set.
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Random forest. We perform similar feature engineering and selection with random forest model. Just like 
gradient forest model evaluation, we limit random forest to five trees and depth of five branches. Random forest 
model’s simple algebraic operations on existing features are noteworthy. Further, the model designated the fol-
lowing weights to the above features and demonstrated the following performance.

For the given dataset, random forest model took little longer run time but has a much-improved precision. 
This trade-off may be worth pursuing. Figure 17a displays the performance for the random forest model. Also, 
Fig. 17b displays the optimal feature set and weights for the model. It is noteworthy that the above tree-based 

Figure 13.  KNN performance and feature set.

Figure 14.  Decision tree.
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Figure 15.  Decision tree performance and feature set.

Figure 16.  Gradient boosting performance and feature set.

Figure 17.  Random forest performance and feature set.
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models show considerable performance even with the limited depth of five or less branches, which are simpler 
to understand, program, and implement.

Bernoulli Naïve Bayes. Figure  18a,b show the Bernoulli Naive Bayes model performance and optimal 
feature set respectively. It does not do well with much less precision. This could be attributed to the fact that the 
dataset is not balanced in terms of True positives and True negatives.

Deep learning model. To find out how deep learning models work on this rainfall prediction problem 
compared to the statistical models, we use a model shown in Fig. 19a. Although much simpler than other com-
plicated models used in the image recognition problems, it outperforms all other statistical models that we 
experiment in the paper. The deep learning model for this task has 7 dense layers, 3 batch normalization layers 
and 3 dropout layers with 60% dropout.

Like other statistical models, we optimize this model by precision. Figure 20a shows the effect of the dropout 
layers onto the training and validation phases. During training, these layers remove more than half of the neu-
rons of the layers to which they apply. Effectively they put a negative impact onto the model. In the validation 
phase, all neurons can play their roles and therefore improve the precision. Starting at epoch 2000, as shown 

Figure 18.  Bernoulli Naïve Bayes performance and feature set.

Figure 19.  Deep learning model and performance.
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in Fig. 20a,b, both precision and loss plots for validation do not improve any more. Figure 19b shows the deep 
learning model has better a performance than the best statistical model for this task—the logistic regression 
model, in both the precision and f1-score metrics.

Conclusion
In this project, we obtained the dataset of 10 years of daily atmospheric features and rainfall and took on the 
task of rainfall prediction. We performed exploratory data analysis and generalized linear regression to find cor-
relation within the feature-sets and explore the relationship between the feature sets. This enabled us to express 
correlated features into the form of one another. Moreover, we performed feature engineering and selected certain 
features for each of eight different classification models. We compared these models with two main performance 
criteria: precision and f1-score.

Based on the above performance results, the logistic regression model demonstrates the highest classification 
f1-score of 86.87% and precision of 97.14% within the group of statistical models, yet a simple deep-learning 
model outperforms all tested statistical models with a f1-score of 88.61% and a precision of 98.26%. This proves 
that deep learning models can effectively solve the problem of rainfall prediction.
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