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Comprehensive analysis of immune 
cell enrichment in the tumor 
microenvironment of head 
and neck squamous cell carcinoma
Ikko Mito1, Hideyuki Takahashi1*, Reika Kawabata‑Iwakawa2, Shota Ida1, Hiroe Tada1 & 
Kazuaki Chikamatsu1

Head and neck squamous carcinoma (HNSCC) is highly infiltrated by immune cells, including 
tumor‑infiltrating lymphocytes and myeloid lineage cells. In the tumor microenvironment, tumor 
cells orchestrate a highly immunosuppressive microenvironment by secreting immunosuppressive 
mediators, expressing immune checkpoint ligands, and downregulating human leukocyte antigen 
expression. In the present study, we aimed to comprehensively profile the immune microenvironment 
of HNSCC using gene expression data obtained from public database. We calculated enrichment 
scores of 33 immune cell types based on gene expression data of HNSCC tissues and adjacent non‑
cancer tissues. Based on these scores, we performed non‑supervised clustering and identified three 
immune signatures—cold, lymphocyte, and myeloid/dendritic cell (DC)—based on the clustering 
results. We then compared the clinical and biological features of the three signatures. Among HNSCC 
and non‑cancer tissues, human papillomavirus (HPV)‑positive HNSCCs exhibited the highest scores 
in various immune cell types, including CD4+ T cells, CD8+ T cells, B cells, plasma cells, basophils, and 
their subpopulations. Among the three immune signatures, the proportions of HPV‑positive tumors, 
oropharyngeal cancers, early T tumors, and N factor positive cases were significantly higher in the 
lymphocyte signature than in other signatures. Among the three signatures, the lymphocyte signature 
showed the longest overall survival (OS), especially in HPV‑positive patients, whereas the myeloid/
DC signature demonstrated the shortest OS in these patients. Gene set enrichment analysis revealed 
the upregulation of several pathways related to inflammatory and proinflammatory responses in 
the lymphocyte signature. The expression of PRF1, IFNG, GZMB, CXCL9, CXCL10, PDCD1, LAG3, 
CTLA4, HAVCR2, and TIGIT was the highest in the lymphocyte signature. Meanwhile, the expression 
of PD‑1 ligand genes CD274 and PDCD1LG2 was highest in the myeloid/DC signature. Herein, our 
findings revealed the transcriptomic landscape of the immune microenvironment that closely reflects 
the clinical and biological significance of HNSCC, indicating that molecular profiling of the immune 
microenvironment can be employed to develop novel biomarkers and precision immunotherapies for 
HNSCC.

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor  worldwide1,2. In 
addition to tobacco-derived carcinogens and excessive alcohol consumption, infection with oncogenic strains 
of human papillomavirus (HPV) has been recognized as a major risk factor for developing HNSCCs, mainly 
oropharyngeal  cancers3,4. Despite ongoing improvements in therapeutic strategies, including surgery, chemo-
therapy, and radiotherapy, the 5-year survival rate remains 66%. Recently, cancer immunotherapy has been 
developed as an additional approach for various cancer types, including  HNSCC5–7. The programmed cell death 
1/programmed cell death ligand 1 (PD-1/PD-L1) axis is a crucial target for immune checkpoint  therapies8. In 
clinical settings, anti-PD-1 antibodies have been widely employed for treating recurrent or metastatic HNSCC; 
however, survival benefits have been observed in only 20–30% of patients. Accordingly, novel biomarkers have 
been widely investigated to improve the efficacy of immunotherapies.
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In the tumor microenvironment (TME), various stromal cells such as immune cells, fibroblasts, and endothe-
lial cells exist and interact with tumor  cells9,10. HSNCC is highly infiltrated by immune cells, including tumor-
infiltrating lymphocytes (TILs) and myeloid lineage  cells11,12. In the TME of HNSCC, tumor cells reportedly 
orchestrate a highly immunosuppressive state by secreting immunosuppressive mediators, expressing immune 
checkpoint ligands, and downregulating human leukocyte antigen  expression13,14. These tumor cell behaviors 
result in the dysfunction and exhaustion of cytotoxic T lymphocytes (CTLs), as well as increased infiltration and 
activation of immunosuppressive cell types, such as regulatory T cells (Tregs), tumor-associated macrophages, 
and myeloid-derived suppressor cells (MDSCs)15. As immune checkpoint agents target the interaction between 
tumor cells and immune cells, a comprehensive analysis of the complex state of the immune microenvironment 
would be beneficial for developing new biomarkers and precision immunotherapies.

In the present study, we aimed to comprehensively profile the immune microenvironment of HNSCC using 
gene expression data obtained from public database. We calculated the cell enrichment scores of 33 immune 
cell types based on RNA-seq data of both HNSCC tissues and adjacent non-cancer tissues. Based on these 
scores, we performed non-supervised clustering and identified three immune signatures—cold, lymphocyte, 
and myeloid/dendritic cell (DC)—based on clustering results. Finally, the clinical and biological features of the 
three signatures were compared.

Results
HPV‑positive HNSCCs exhibited upregulated enrichment of various immune cells. We calcu-
lated the enrichment scores of 33 immune cell types among 520 HNSCCs and 44 normal samples (Fig. 1, Suppl. 
Fig. 1) in the TCGA cohort. HPV-positive HNSCCs exhibited the highest scores for various immune cell types, 
including CD4+ T cells, CD8+ T cells, B cells, plasma cells, basophils, as well as their subpopulations. Normal 
samples exhibited the lowest scores for several cell types. Similarly, we calculated the enrichment scores among 
270 HNSCCs in the GSE65858 cohort (Suppl. Fig. 3). In consistent with the TCGA cohort, HPV-positive tumors 
exhibited higher scores for various immune cell types than HPV-negative tumors.

The lymphocyte signature correlated with clinical parameters and better prognosis. Based 
on hierarchical clustering results, we segregated 520 HNSCCs in the TCGA cohort into three immune signa-
tures (Fig. 2a). The lymphocyte signature was characterized by the enrichment of CD4+ T cells, CD8+ T cells, B 
cells, and plasma cells (Fig. 2b, Suppl. Fig. 2). The myeloid/DC signature exhibited enrichment of neutrophils, 
macrophages, monocytes, DCs, Tregs, and eosinophils (Fig. 2b, Suppl. Fig. 2). Table 1 represents correlations 
between the immune signatures and clinical parameters. The proportion of HPV-positive patients (59%) was 
significantly higher in the lymphocyte signature than in other signatures. Regarding primary lesions, the propor-
tion of the oropharynx (50%) was higher in the lymphocyte signature than in other signatures. The proportion of 
patients with early T factor (63%) was higher in the lymphocyte signature than in other signatures. Furthermore, 
the proportion of N factor-positive patients (61%) was higher in the lymphocyte signature than in other signa-
tures. No difference was observed between the immune signatures and the M factor/tumor-node-metastasis 
(TNM) stage. Univariate survival analyses revealed that the lymphocyte signature showed the longest overall 
survival (OS) among the three signatures, especially in HPV-positive patients (Fig. 2c). The myeloid/DC signa-
ture showed the shortest OS among the three signatures in HPV-positive patients. No difference in disease-free 
survival (DFS) was observed between the immune signatures. Multivariate regression analyses revealed that the 
lymphocyte signature was an independent prognostic factor for better OS (Table 2).

Alternatively, we performed hierarchical clustering of the GSE65858 cohort and confirmed that HNSCCs 
cases were also divided into three immune signatures (Suppl. Fig. 4a,b). In addition, correlations between the 
immune signatures and clinical parameters, including HPV status and primary lesions, exhibited same trends 
as the TCGA cohort (Suppl. Table 1). Although survival analyses showed no significant difference between the 
immune signatures, the myeloid/DC signature tended to correlate with shorter OS (Suppl. Fig. 4c). Moreover, in 
HPV-negative patients, the myeloid/DC signature significantly correlated with shorter DFS and OS.

The lymphocyte signature correlated with upregulated inflammatory pathways. Based on 
these findings, we then focused on the transcriptomic significance of the lymphocyte signature. In the TCGA 
cohort, 3330 differentially expressed genes (DEGs), including 1831 upregulated and 1499 downregulated genes, 
were identified in the lymphocyte signature (Fig. 3a, Suppl. Table 2). Additionally, we performed gene set enrich-
ment analysis (GSEA) to identify pathways upregulated in the lymphocyte signature (Fig. 3b). In the lymphocyte 
signature, 8 hallmark pathways were upregulated, whereas 12 were downregulated (false discovery rate ˂ 0.05). 
Several pathways associated with inflammatory and proinflammatory responses, such as allograft rejection, 
interferon (IFN) gamma response, interleukin (IL) 6-Janus kinase (JAK)-signal transducer and activator of tran-
scription (STAT) 3 signaling, interferon-alpha response, IL2 STAT5 signaling, and complement, were upregu-
lated in the lymphocyte signature. Meanwhile, several pathways representing malignant features of HNSCCs, 
including hypoxia, angiogenesis, transforming growth factor (TGF)-β signaling, and epithelial-mesenchymal 
transition, were downregulated in the lymphocyte signature. Similarly, we also performed GSEA with the 
GSE65858 cohort, confirming the upregulation of similar pathways in the lymphocyte signature (Suppl. Fig. 5a).

The lymphocyte signature correlated with activated cytotoxic T cell response. We investigated 
the expression of immune-related genes to compare cytotoxic T cell responses across the three immune signa-
tures (Fig. 3c). The lymphocyte signature demonstrated the highest expression of genes related to cytotoxic T 
cell responses, including PRF1, IFNG, GZMB, CXCL9, and CXCL10. Additionally, the expression of immune 
checkpoint genes, including PDCD1, LAG3, CTLA4, HAVCR2, and TIGIT, was the highest in the lymphocyte 
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signature. Meanwhile, the expression of PD-1 ligand genes CD274 and PDCD1LG2 was the highest in the mye-
loid/DC signature, which also revealed the highest expression of immunosuppressive genes, TGFB1 and IL10. 
Similarly, we confirmed these results in the GSE65858 cohort (Suppl. Fig. 5b).

Discussion
Recent advances in bioinformatics and the accumulation of public genomic databases have enabled the compre-
hensive genomic characterization of cancers in a large  cohort16. In the present study, we elucidated the transcrip-
tomic landscape of the immune microenvironment that closely reflects the clinical and biological significance 
of HNSCC. Our results suggest that molecular profiling of the immune microenvironment can potentially help 
develop new biomarkers and precision immunotherapies.

The comparison of immune cell enrichment scores revealed high infiltration of various immune cells into 
HNSCC tissues, especially in HPV-positive HNSCCs. The scores of various TILs were higher in HNSCCs than 
in normal tissues. Among TILs, CD8+ T cells are the main subset of CTLs and play vital roles in tumor eradi-
cation. CD8+ T cells, as well as their subset CD8+ central memory T cells (Tcm) and CD8+ effector memory 
T cells (Tem), represented significantly higher scores in HPV-positive HNSCCs than in other groups, indicat-
ing a highly activated CTL function in the TME of HPV-positive  HNSCCs17,18. Consistent with our results, 
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Figure 1.  Enrichment scores of 33 immune cell types in normal tissues and HNSCCs. (a) Heat map of xCell 
enrichment scores of 33 immune cell types in 44 normal tissues, 97 HPV-positive HNSCCs, and 423 HPV-
negative HNSCCs of TCGA cohort. (b) Bar graphs of enrichment scores of major immune cell types shown in 
(a). HNSCC Head neck squamous cell carcinoma, HPV Human papillomavirus, HPVneg HPV-negative, HPVpos 
HPV-positive, DC Dendritic cells. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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accumulating evidence suggests that HPV-positive HNSCCs correlate with T cell-enriched TME, increased T 
cell receptor pathway signaling, activated cytotoxic capacity, and viral antigen-specific CD8+ T cell infiltration 
into the  TME19–21. Additionally, we observed a significant increase in B cell subsets and plasma cells in HPV-
positive tumors but not in HPV-negative tumors. Although the significance of B cell infiltration in the TME is 
not well understood, recent studies have reported the anti-tumor activity of B cells and plasma cells through 
antigen presentation and antibody  production22. A recent study reported the presence of HPV-specific antibody-
secreting cells in the TME of HPV-positive  tumors23. Moreover, Kim et al. have reported that B cells correlate 
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Figure 2.  The lymphocyte signature correlates with a favorable prognosis. (a) Heat map showing non-
supervised hierarchical clustering of 520 HNSCCs of TCGA cohort based on enrichment scores of 33 immune 
cell types. (b) Bar graphs of enrichment scores upregulated in the lymphocyte signature or myeloid/DC 
signature. (c) Kaplan–Meier survival curves based on the three immune signatures. Disease-free survival was 
evaluated in all patients (n = 429), HPV-negative patients (n = 348), and HPV-positive patients (n = 81). Overall 
survival was evaluated in all patients (n = 495), HPV-negative patients (n = 403), and HPV-positive patients 
(n = 92). HNSCC Head neck squamous cell carcinoma, HPV Human papillomavirus, DC Dendritic cells. *, 
P < 0.05; **, P < 0.01; ****, P < 0.0001.
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with longer OS and are activated by radiation and PD-1 blockade  therapy24. These findings suggest the potential 
of B-cell-targeted immunotherapy. Further investigations regarding the specific roles of B cells and plasma cells 
in the TME are warranted.

Herein, non-supervised clustering of HNSCC cases based on the cell enrichment scores of 33 immune cell 
types revealed three immune signatures: cold, lymphocyte, and myeloid/DC. The lymphocyte signature cor-
related with the HPV-positive type, early T factor, positive N factor, and favorable prognosis in the TCGA 
cohort. Notably, the presence of T cell subsets has been widely investigated in several  malignancies25–29. In 
HNSCC, the presence of TILs in the TME is reportedly considered a favorable prognostic  factor30,31. Moreover, 
Tsujikawa et al. have previously assessed immune cell complexity profiles of 38 HNSCC cases using multiplex 
 immunohistochemistry32. They acquired cell densities of 15 immune cell lineages using image cytometry, fol-
lowed by normalization and unsupervised hierarchical clustering. Their analysis revealed three immune signa-
tures: lymphoid-inflamed, myeloid-inflamed, and hypo-inflamed. The myeloid-inflamed signature exhibited 
significantly shorter OS. In addition, the lymphoid-inflamed signature consisted of more HPV-positive HNSCCs 
than the other signatures. Surprisingly, the results of the present study are consistent with those of their protein 
expression-based analysis. Although bulk RNA sequencing cannot evaluate the localization of each immune 
cell in the TME, our results suggest that bulk RNA sequencing-based molecular profiling has the potential to 
comprehensively profile immune cell complexity of the TME in combination with protein expression-based 
profiling, such as multiplex IHC. In addition to Tsujikawa’s work, our results of the TCGA cohort revealed that 
the myeloid/DC signature dramatically correlates with shorter OS in HPV-positive HNSCCs but not in HPV-
negative cases. HPV-positive HNSCCs are widely recognized to exhibit a better prognosis than HPV-negative 
 HNSCCs33,34. However, in clinical settings, some HPV-positive HNSCCs present aggressive behavior, resulting 
in a poor prognosis. Therefore, biomarkers that indicate the aggressive phenotype of HPV-positive HNSCCs 
are needed. The screening for myeloid-enriched TME has the potential to predict survival and allow precision 
medicine in HPV-positive HNSCCs.

We further focused on the transcriptomic significance of immune signatures. GSEA revealed the upregulation 
of multiple pathways related to inflammatory and proinflammatory responses, as well as the downregulation of 
pathways closely related to cancer hallmarks in the lymphocyte signature, as shown in Fig. 3b and Suppl. Fig. 5a. 
The upregulation of IFN-α responses, IFN-γ, and IL2 STAT5 signaling represents activated CTL responses, con-
sistent with the presence of abundant lymphocytes. Furthermore, the lymphocyte signature showed the highest 
expression of both cytotoxic response-related genes PRF1, IFNG, GZMB, CXCL9, and CXCL10, and immune 
checkpoint genes PDCD1, LAG3, CTLA4, HAVCR2, and TIGIT. As these immune checkpoint molecules report-
edly function as receptors for T cell inactivation and exhaustion signals, these molecules are abundantly expressed 
on effector memory T cells and tissue-resident memory T cells, which are activated phenotypes of T  cells35–38. 
Accordingly, PD-1-expressing TILs are reportedly considered a favorable prognostic biomarker in HPV-positive 

Table 1.  Relationship between immune cell signature and clinical parameters in 520 patients with HNSCC. 
HNSCC Head and neck squamous cell carcinoma, HPV Human papillomavirus, TNM Tumor-node-metastasis, 
DC Dendritic cell.

Variables

Immune cell signature

Cold (n = 319) Myeloid/DC (n = 145) Lymphocyte (n = 56) p value

HPV status

Negative 271 129 23
 < 0.0001

Positive 48 16 33

Primary lesion

Hypopharynx 6 3 1

 < 0.0001
Larynx 86 24 6

Oral cavity 210 113 28

Oropharynx 17 5 21

T factor

T0-2 120 55 35
0.002

T3-4 199 90 21

N factor

Negative 143 57 13

0.0005Positive 165 79 34

Unknown 11 9 9

M factor

M0 307 142 55

0.582M1 3 1 1

Unknown 9 2 0

TNM stage

I-II 67 33 11
0.86

III-IV 252 112 45
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 HNSCCs39. Overall, the lymphocyte signature represented the enrichment of lymphocyte infiltration, activation 
of CTL functions, and favorable prognosis. As the cost of RNA sequencing has recently decreased, molecular 
profiling of the immune microenvironment using biopsy tissues may provide an alternative for the initial diag-
nosis of HNSCCs. However, in bulk RNA sequencing, the localization of immune cells cannot be determined. 
Dual profiling using both molecular and protein-based profiling would be helpful in comprehensively profiling 
the complexity of the immune milieu of the TME.

In conclusion, the present study revealed the transcriptomic landscape of the immune microenvironment that 
closely reflects the clinical and biological significance of HNSCC. Our results suggest that molecular profiling of 
the immune microenvironment can be employed for developing new biomarkers and precision immunotherapies 
for HNSCC.

Materials and methods
Acquisition of the cancer genome atlas (TCGA) data. RNA-seq data (Illumina Hiseq RNAseq V2, 
raw counts, and normalized counts) and clinical data were obtained from TCGA Research Network (TCGA 
Provisional version updated in 2016, http:// cance rgeno me. nih. gov/). In total, 564 cases, consisting of 44 normal 
samples, 97 HPV-positive HNSCCs, and 423 HPV-negative HNSCCs, were included. Alternatively, GSE65858 
dataset, including microarray data (Illumina HumanHT-12 V4.0 expression beadchip platform) and clinical 
data, were obtained from the Gene Expression Omnibus (GEO) database. In total, 270 cases, consisting of 73 
HPV-positive HNSCCs, 196 HPV-negative HNSCCs, and 1 HPV-unknown HNSCC were included.

Cell type enrichment analysis. We performed cell type enrichment analysis to evaluate the enrichment 
of 33 immune cell types in both TCGA dataset and GSE65858 dataset using the xCell  tool40. Enrichment scores 
were calculated using the xCell R package, version 1.1.0. The calculated scores were visualized using the pheat-
map R package, version 1.10.12. Then, normal and HNSCC tissue scores were compared.

Non‑supervised hierarchical clustering of HNSCC samples. HNSCC cases underwent non-super-
vised hierarchical clustering based on cell enrichment scores of 33 immune cell types. Patients were then divided 
into three immune signatures—cold, lymphocyte, and myeloid/DC—using the cutree R function based on the 
clustering results. The three signatures were compared in terms of clinical parameters, including HPV status, 

Table 2.  Univariate and multivariate survival analyses of OS and DFS in HNSCC patients. DFS Disease 
free survival, OS Overall survival, HNSCC Head and neck squamous cell carcinoma, HR Hazard ratio, CI 
Confidence interval, DC Dendritic cell.

Variables

Disease free survival Overall survival

Univariate Multivariate Univariate Multivariate

p value HR (95% CI) p value p value HR (95% CI) p value

HPV status

Negative
0.027

1
0.037 0.132

Positive 0.566 (0.331–0.967)

Primary lesion

Hypopharynx

0.158 0.140
Larynx

Oral cavity

Oropharynx

T factor

T0-2
0.001

1
0.132 0.0002

1
0.016

T3-4 1.474 (0.889–2.444) 1.839 (1.118–3.026)

N factor

Negative
0.06 0.037

1
0.217

Positive 1.267 (0.870–1.846)

M factor

M0
0.26 0.001

1
0.0005

M1 6.263 (2.215–17.707)

TNM stage

I–II
0.009

1
0.254 0.009

1
0.483

III–IV 1.457 (0.763–2.782) 0.788 (0.405–1.534)

Immune signature

Cold

0.320 0.005

1

Lymphocyte 0.362 (0.172–0.763) 0.008

Myeloid/DC 1.077 (0.780–1.486) 0.654

http://cancergenome.nih.gov/
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primary lesion, T factor, N factor, M factor, TNM stage, DFS, and OS. The three immune signatures were also 
compared to the normalized gene expression of various immune-related genes.

Differentially expressed gene analysis. In the TCGA cohort, we identified DEGs between the lym-
phocyte signature group and other signature groups, using the ExperimentHub R package version 1.16.0 and 
DESeq2 R package version 1.30.0. DEGs were filtered using the threshold |log2FC|≥ 1 and an adjusted p value 
of < 0.05. Volcano plots were constructed to visualize DEGs using the calibration R package version 1.7.7.

Gene set enrichment analysis. GSEA (GSEA v4, Broad Institute) was performed to identify pathways 
upregulated in the lymphocyte group when compared with other groups. For each gene set, the normalized 
enrichment score, p value, and false discovery rate (FDR) q-values were calculated based on the Hallmark path-
way database.

Statistical analysis. Data were analyzed using R (version 4.0.3; The R Foundation for Statistical Comput-
ing, Vienna, Austria) in combination with R studio version 1.3.1093 (R studio, Boston, MA, USA) and GraphPad 
Prism version 8 (GraphPad Software, San Diego, CA, USA). Student’s t-test and one-way ANOVA with Tukey’s 
post-hoc test for multiple pairwise testing were employed to compare continuous variables between groups. 
The Chi-square test for independence and Fisher’s exact test were used for comparing categorical variables. 
Two-sided p values of < 0.05 were considered statistically significant. Survival curves were calculated using the 
Kaplan–Meier method and compared using the log-rank test. Multivariate regression analysis was performed 
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Figure 3.  The lymphocyte signature correlated with activated cytotoxic T cell response. (a) Volcano plot of 
differentially expressed genes in the lymphocyte signature of TCGA cohort. Red dots represent upregulated 
genes (Padj < 0.05, log2FC > 1), whereas blue dots represent downregulated genes (Padj < 0.05, log2FC <  − 1). 
(b) Upregulated and downregulated hallmark pathways in the lymphocyte signature obtained by GSEA 
(FDR < 0.05). (c) Violin plots of normalized expression of immune-related genes. GSEA Gene set enrichment 
analysis, FDR False discovery rate. *, P < 0.05; ***, P < 0.001; ****, P < 0.0001.
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using the Cox proportional hazards model. Variables were included in subsequent multivariate analyses when p 
values were < 0.05 in univariate analyses.
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